CN106466953B - 取向性导声材料及其制造方法 - Google Patents

取向性导声材料及其制造方法 Download PDF

Info

Publication number
CN106466953B
CN106466953B CN201510520249.XA CN201510520249A CN106466953B CN 106466953 B CN106466953 B CN 106466953B CN 201510520249 A CN201510520249 A CN 201510520249A CN 106466953 B CN106466953 B CN 106466953B
Authority
CN
China
Prior art keywords
sound
leads
orientation
sound material
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510520249.XA
Other languages
English (en)
Other versions
CN106466953A (zh
Inventor
李瑞忠
杨嘉凯
张灿峰
蔡英明
倪爱礼
董波
秦雷
陈多佳
许云鹏
刘志琴
金根顺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Baosight Software Co Ltd
Original Assignee
Shanghai Baosight Software Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Baosight Software Co Ltd filed Critical Shanghai Baosight Software Co Ltd
Priority to CN201510520249.XA priority Critical patent/CN106466953B/zh
Publication of CN106466953A publication Critical patent/CN106466953A/zh
Application granted granted Critical
Publication of CN106466953B publication Critical patent/CN106466953B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/095Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/02Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising animal or vegetable substances, e.g. cork, bamboo, starch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2325/00Polymers of vinyl-aromatic compounds, e.g. polystyrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2333/00Polymers of unsaturated acids or derivatives thereof
    • B32B2333/04Polymers of esters
    • B32B2333/12Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2375/00Polyureas; Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

本发明提供一种取向性导声材料及其制造方法,包括:步骤1:将各向同性的导声材料制成片状;将隔声材料制成片状;步骤2:将片状的导声材料、隔声材料交替叠加粘合在一起,得到二维取向性导声材料;步骤3:从片状的导声材料的法向对所述二维取向性导声材料进行切割,得到切片;步骤4:将所述切片、片状的隔声材料交替叠加粘合在一起,得到三维取向性导声材料。本发明制造出来的复合材料可以让声波在一个二维平面或三维空间中传播时不再扩散,像“激光”一样准直的向前传播。

Description

取向性导声材料及其制造方法
技术领域
本发明涉及声学材料,具体地,涉及取向性导声材料及其制造方法。
背景技术
在接触型超声换能器制造过程中,常常将带角度的声学楔块或者不带角度的柱状导声材料安置在压电晶片前端,用以将超声波传导至被检材料表面。声波在导声材料的传播过程中,由于衍射的原因,总是会产生声束扩散。因此,导致传统的接触型超声换能器检测时,总是附加声束扩散带来的声学噪音。
经检索,发现如下相关专利文献。
相关检索结果1:
申请号:CN200620129916.8
名称:一种经颅多普勒超声观察大脑动脉装置
该专利文献公开了一种经颅多普勒超声观察大脑动脉装置,该装置结构主要包括楔外板,楔外板的一端与楔内板铰接,另一端上铰接有支柱,支柱上设有用于支持楔内板保持立起状态的多个凸起,凸起处标有相应的角度刻度,以显示楔内板与楔外板之间的夹角,楔内板与楔外板之间设有弹性导声材料。
相关检索结果2:
申请号:CN90224156.7
名称:超声多普勒流量计用高温超声换能器
该专利文献提供了一种超声多普勒流量计用高温超声换能器,属于声学、传感技术领域。适用于各种超声流量计及其它超声传感检测设备。本实用新型是采用耐高温导声性能良好的材料制成声楔,采用耐高温材料制成背衬,并设置一耐高温压簧,以保证声楔、背衬和压电陶瓷晶片之间良好的声楔合,由此组成的换能器灵敏度高,工作温度最高可达200℃。
相关检索结果3:
申请号:CN200910108131.0
名称:线阵超声探头穿刺同步导向器
该专利文献涉及线阵超声探头穿刺同步导向器,其与介入超声发生设备配合使用,其作为该介入超声发生设备与被扫描人体之间的导向介质即时引导穿刺操作者于该被扫描人体上的穿刺位置,并即时反馈视觉信号,使该穿刺操作者随时调整于该被扫描人体上的该穿刺位置。
相关检索结果4:
申请号:CN03262147.7
名称:多普勒血流显像辅助装置
该专利文献公开了一种多普勒血流显像辅助装置,用以解决传统超声探头因血流和声束夹角较大而影响血流的彩色多普勒和频谱多普勒显像欠佳及速度测值不确切的问题。主要结构包括楔外板,楔外板的一端与楔内板铰接,楔外板的另一端上铰接有支柱,支柱上设有多个凸起,凸起处标有相应的角度刻度,楔内板与楔外板之间设有弹性导声材料。
技术要点比较:
以上相关专利文献、公知技术的检索结果均为一些应用装置,应用到一些普通导声材料,与本发明涉及一种特殊的导声材料没有明显的相关联系。
发明内容
针对现有技术中的缺陷,为了制造更加理想的接触型超声换能器,本发明的目的是提供一种取向性导声材料。这种材料可以让声波在一个二维平面或三维空间中传播时不再扩散,像“激光”一样准直的向前传播。
根据本发明提供的一种取向性导声材料的制造方法,包括:
步骤1:将各向同性的导声材料制成片状;将隔声材料制成片状;
步骤2:将片状的导声材料、隔声材料交替叠加粘合在一起,得到二维取向性导声材料;
步骤3:从片状的导声材料的法向对所述二维取向性导声材料进行切割,得到切片;
步骤4:将所述切片、片状的隔声材料交替叠加粘合在一起,得到三维取向性导声材料。
优选地,所述导声材料为聚甲基丙烯酸甲酯、聚苯乙烯或者金属合金。
优选地,所述隔声材料为软木或者发泡聚氨酯。
优选地,在步骤2中,将片状的导声材料、隔声材料浸胶,加压拉链式交叠在一起。
优选地,浸胶的胶水采用单组份热固环氧胶黏剂或者双组份环氧胶黏剂。
优选地,所述切片中的导声材料被切成多个矩形柱状条,每个矩形柱状条构成一个导声柱。
根据本发明提供的一种取向性导声材料,所述取向性导声材料是由上述的取向性导声材料的制造方法制造得到的。
根据本发明提供的一种取向性导声材料,包括柱状条形状的导声柱,导声柱仅侧面被隔声材料包裹覆盖。
与现有技术相比,本发明具有如下的有益效果:
1、声波在传播过程中不扩散
使用本发明,将传统材料改造为取向性导声材料,使声波在该复合材料中一个二维平面或三维空间传播时不再扩散,像“激光”一样准直的向前传播。
2、在接触型超声换能器制造中有较高的应用推广价值
使用本发明制造出的复合材料可以显著的提高大多数接触型超声换能器的声学性能,使检测的信噪比有较大提高,对超声检测工艺有较高的应用价值。
3、在其他方面应用中有一定推广价值
使用本发明制造出的复合材料在其它声学科学实验或工业应用中也有一定的推广应用价值。
(1)在高端接触型超声换能器中的推广应用
使用本发明制造出的复合材料可以显著的提高大多数接触型超声换能器的声学性能,使检测的信噪比有较大提高,对超声检测有较高的应用价值。
(2)在科学研究及声学工程方面的推广应用
使用本发明制造出的复合材料可应用于制造科学研究或声学工程中需要的定向声波传导器件。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1是本发明二维取向性导声材料示意图。
图2是本发明三维取向性导声材料示意图。
图中:
1-导声材料
2-隔声材料
网格填充部分表示隔声材料,无网格填充部分表示导声材料。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
本发明所要解决的技术问题是将传统的各向同性的导声材料制造为一种取向性导声材料。具体地,本发明提供的取向性导声材料的制造方法,包括如下步骤:
步骤1:将传统的各向同性的导声材料制成片状;将隔声材料制成片状;
步骤2:将片状的导声材料、隔声材料交替叠加粘合在一起,得到二维取向性导声材料;
步骤3:从片状的导声材料的法向对所述二维取向性导声材料进行切割,得到切片;
步骤4:将所述切片、片状的隔声材料交替叠加粘合在一起,得到三维取向性导声材料。
在优选例中:
在步骤1中,将传统的各向同性的导声材料(譬如聚甲基丙烯酸甲酯、聚苯乙烯、金属合金等)切成薄片,或者直接采购到薄片状的型材。薄片的厚度可根据声波的波长或应用案例由制造者自由选择;另准备隔声材料,例如声音衰减很高的材料,(譬如软木、发泡聚氨酯等)切成薄片,或者直接采购到薄片状的型材。薄片的厚度可根据隔声要求或应用案例由制造者自由选择;
在步骤2中,将准备的两种薄片浸胶,加压拉链式交叠在一起。胶水可采用单组份热固环氧、双组份环氧等胶黏剂;待胶水固化后,形成多层复合材料。该材料可以使声波在一个个独立的层面中传播,互不干涉。并使声波在二维平面中传播时不再扩散。
在步骤3中,在步骤2的基础上,将多层复合材料从另一个方向垂直切片,每片材料里面的导声材料被切成许多方形柱状长条。
在步骤4中,将新的切片和步骤1准备的材料交叠在一起,再次胶黏;待胶水固化后,形成由导声柱分散在隔声材料中形成的复合材料。该材料可以使声波在一个个独立的导声柱中传播,互不干涉。并使声波在三维空间中传播时不再扩散。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (7)

1.一种取向性导声材料的制造方法,其特征在于,包括:
步骤1:将各向同性的导声材料制成片状;将隔声材料制成片状;
步骤2:将片状的导声材料、隔声材料交替叠加粘合在一起,得到二维取向性导声材料;
步骤3:从片状的导声材料的法向对所述二维取向性导声材料进行切割,得到切片;
步骤4:将所述切片、片状的隔声材料交替叠加粘合在一起,得到三维取向性导声材料。
2.根据权利要求1所述的取向性导声材料的制造方法,其特征在于,所述导声材料为聚甲基丙烯酸甲酯、聚苯乙烯或者金属合金。
3.根据权利要求1所述的取向性导声材料的制造方法,其特征在于,所述隔声材料为软木或者发泡聚氨酯。
4.根据权利要求1所述的取向性导声材料的制造方法,其特征在于,在步骤2中,将片状的导声材料、隔声材料浸胶,加压拉链式交叠在一起。
5.根据权利要求4所述的取向性导声材料的制造方法,其特征在于,浸胶的胶水采用单组份热固环氧胶黏剂或者双组份环氧胶黏剂。
6.根据权利要求1所述的取向性导声材料的制造方法,其特征在于,所述切片中的导声材料被切成多个矩形柱状条,每个矩形柱状条构成一个导声柱。
7.一种取向性导声材料,其特征在于,所述取向性导声材料是由权利要求1至6中任一项所述的取向性导声材料的制造方法制造得到的。
CN201510520249.XA 2015-08-21 2015-08-21 取向性导声材料及其制造方法 Active CN106466953B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510520249.XA CN106466953B (zh) 2015-08-21 2015-08-21 取向性导声材料及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510520249.XA CN106466953B (zh) 2015-08-21 2015-08-21 取向性导声材料及其制造方法

Publications (2)

Publication Number Publication Date
CN106466953A CN106466953A (zh) 2017-03-01
CN106466953B true CN106466953B (zh) 2018-05-29

Family

ID=58229004

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510520249.XA Active CN106466953B (zh) 2015-08-21 2015-08-21 取向性导声材料及其制造方法

Country Status (1)

Country Link
CN (1) CN106466953B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5663536A (en) * 1995-10-10 1997-09-02 Amsted Industries Incorporated Sound attenuation assembly for air-cooling apparatus
US6758094B2 (en) * 2001-07-31 2004-07-06 Koninklijke Philips Electronics, N.V. Ultrasonic transducer wafer having variable acoustic impedance
KR101169131B1 (ko) * 2007-03-30 2012-07-30 고어 엔터프라이즈 홀딩즈, 인코포레이티드 개선된 초음파 감쇠 재료
CN201865683U (zh) * 2010-08-16 2011-06-15 彭世雄 片式栅栏分割导流消声器
US8997923B2 (en) * 2013-08-12 2015-04-07 Hexcel Corporation Sound wave guide for use in acoustic structures
CN204254135U (zh) * 2014-11-28 2015-04-08 浙江亿利达风机股份有限公司 阵列式消声器及其消声柱

Also Published As

Publication number Publication date
CN106466953A (zh) 2017-03-01

Similar Documents

Publication Publication Date Title
Murat et al. Scattering of guided waves at delaminations in composite plates
Geslain et al. Spatial Laplace transform for complex wavenumber recovery and its application to the analysis of attenuation in acoustic systems
Glushkov et al. Group velocity of cylindrical guided waves in anisotropic laminate composites
Bruno et al. Laser beam shaping for enhanced Zero-Group Velocity Lamb modes generation
Zhang et al. Investigation of surface acoustic wave propagation in composite pillar based phononic crystals within both local resonance and Bragg scattering mechanism regimes
Sikdar et al. Guided wave propagation in a honeycomb composite sandwich structure in presence of a high density core
Amjad et al. Detection and quantification of delamination in laminated plates from the phase of appropriate guided wave modes
Leduc et al. Propagation of Lamb waves in a plate with a periodic grating: Interpretation by phonon
Gao et al. Unsplit complex frequency shifted perfectly matched layer for second-order wave equation using auxiliary differential equations
Khurana et al. A description of transversely isotropic sound absorbing porous materials by transfer matrices
Xiong et al. Transmission loss of plates with embedded multi-scale and tuned acoustic black holes
Ayers et al. Measurement of Lamb wave polarization using a one-dimensional scanning laser vibrometer (L)
CN106466953B (zh) 取向性导声材料及其制造方法
Ratassepp et al. Wave mode extraction from multimodal wave signals in an orthotropic composite plate
Bottero et al. Broadband transmission losses and time dispersion maps from time-domain numerical simulations in ocean acoustics
Irfan et al. Development and performance evaluation of disk-type piezoelectric transducer for measurement of shear and compression wave velocities in soil
Koduru et al. Phased annular array transducers for omnidirectional guided wave mode control in isotropic plate like structures
Zhang et al. Air-coupled method to investigate the lowest-order antisymmetric Lamb mode in stubbed and air-drilled phononic plates
De Cicco et al. Elastic surface wave devices based on piezoelectric thick-films
Aslam et al. Dynamic response of piezoelectric smart beam with adhesive debonding
Potel et al. Lamb wave attenuation in a rough plate. I. Analytical and experimental results in an anisotropic plate
Bouzidi et al. A large ultrasonic bounded acoustic pulse transducer for acoustic transmission goniometry: Modeling and calibration
Yuan et al. Active monitoring for on-line damage detection in composite structures
Ech Cherif El Kettani et al. Effects of the interface roughness in metal-adhesive-metal structure on the propagation of shear horizontal waves
Shkerdin et al. Lamb mode conversion in an absorptive bi-layer with a delamination

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant