CN106454334B - 一种x射线分幅相机曝光时间的测量装置 - Google Patents

一种x射线分幅相机曝光时间的测量装置 Download PDF

Info

Publication number
CN106454334B
CN106454334B CN201611013324.4A CN201611013324A CN106454334B CN 106454334 B CN106454334 B CN 106454334B CN 201611013324 A CN201611013324 A CN 201611013324A CN 106454334 B CN106454334 B CN 106454334B
Authority
CN
China
Prior art keywords
beamlet
framing camera
ray framing
sequence
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611013324.4A
Other languages
English (en)
Other versions
CN106454334A (zh
Inventor
袁铮
陈韬
曹柱荣
邓克立
杨志文
李晋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laser Fusion Research Center China Academy of Engineering Physics
Original Assignee
Laser Fusion Research Center China Academy of Engineering Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laser Fusion Research Center China Academy of Engineering Physics filed Critical Laser Fusion Research Center China Academy of Engineering Physics
Priority to CN201611013324.4A priority Critical patent/CN106454334B/zh
Publication of CN106454334A publication Critical patent/CN106454334A/zh
Application granted granted Critical
Publication of CN106454334B publication Critical patent/CN106454334B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/002Diagnosis, testing or measuring for television systems or their details for television cameras

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Measurement Of Radiation (AREA)

Abstract

本发明提供了一种X射线分幅相机曝光时间的测量装置,所述装置包括沿光路方向顺序排列的激光器、光束分割延迟器、标准具和真空腔体。激光器输出的激光束被光束分割延迟器分割为等空间间距、等时间间隔的序列子光束Ⅰ,再正入射到标准具,转化成一系列与标准具的光程差相同、光强逐渐减弱的序列子光束Ⅱ,序列子光束Ⅱ透过真空腔体前端面的玻璃窗口,照射到X射线分幅相机的微带线阴极上,经选通成像后得到曝光图像,获得曝光时间。该测量装置具有体积小,效率高,测量结果直观易见的优点,能精密标定曝光时间小于10ps的X射线分幅相机,为X射线分幅相机的诊断测试数据的处理和理论程序的校验提供依据。

Description

一种X射线分幅相机曝光时间的测量装置
技术领域
本发明属于光学精密测量技术领域,具体涉及一种X射线分幅相机曝光时间的测量装置。
背景技术
X射线分幅相机可以提供二维空间、时间宽度几纳秒的多幅等离子体发光区图像,因而成为激光惯性约束聚变实验等研究中最重要的诊断工具之一。在激光聚变点火攻关的道路上,随着激光能量的提高和打靶装置的升级,聚变点火论证实验对诊断精密化的要求越来越高。曝光时间作为X射线分幅相机最重要的性能指标,其测量与标定成为诊断精密化的重要内容。
近年来,X射线分幅相机发展迅速,其时间分辨从原来的100ps左右提升到30ps甚至5ps。从前,X射线分幅相机曝光时间的测量一般采用短脉冲紫外激光大光斑均匀照射X射线分幅相机微带线阴极,采集动态选通图像后,根据增益曲线的半高宽读取曝光时间。当X 射线分幅相机曝光时间为100ps左右、触发信号晃动为50ps以内,这种方法是可行的。由于当前X 射线分幅相机的选通脉冲电源的电路原理决定其触发晃动无法优于50ps。而对于曝光时间低于50ps甚至达5ps的X 射线分幅相机,若触发信号晃动大于30ps,则当激光照射在X 射线分幅相机的微带线阴极上时,选通脉冲可能还未到达或者已经通过,故该测量方法采到动态选通图像的成功率极低,只能靠多次尝试碰运气。通常,这种方法只能测量曝光时间大于50ps的X射线分幅相机,且测量效率极低。
发明内容
本发明所要解决的技术问题是提供一种X射线分幅相机曝光时间的测量装置。
本发明的X射线分幅相机曝光时间的测量装置,其特点是,包括沿光路方向顺序排列的激光器、光束分割延迟器、标准具和真空腔体;所述的激光器输出的激光束照射到光束分割延迟器上,被光束分割延迟器分割为等空间间距、等时间间隔的序列子光束Ⅰ;序列子光束Ⅰ正入射到标准具,经标准具后序列子光束Ⅰ转化成一系列与标准具的光程差相同、光强逐渐减弱的序列子光束Ⅱ,序列子光束Ⅱ透过真空腔体前端面的玻璃窗口,进入真空腔体,照射到X射线分幅相机的微带线阴极上;所述的真空腔体的后端面与X射线分幅相机的前端面通过带密封圈的真空密封面密封连接;
所述的激光器输出的激光束的波长为X射线分幅相机的响应波长,激光束的脉宽小于等于X射线分幅相机曝光时间的1/10,激光束的光斑直径大于等于X射线分幅相机5的微带线阴极的宽度;
所述的标准具的光程差大于等于X射线分幅相机曝光时间的2倍;
所述的序列子光束Ⅰ的子光束的强度一致,序列子光束Ⅰ的子光束的宽度小于等于X射线分幅相机的微带线阴极宽度的1/12;所述的序列子光束Ⅰ的相邻子光束的空间距离小于X射线分幅相机微带线阴极宽度的1/7,相邻子光束的时间间隔小于等于X射线分幅相机曝光时间的1/2。
所述的光束分割延迟器为透射式光学组件。所述的透射式光学组件的光学元件的形状为长方体或柱体。所述的透射式光学组件为透射式光学元件逐层叠加,迎光面为等光程差的阶梯型,每个光学元件的迎光面涂覆透过率相同的透射膜。
所述的光束分割延迟器为反射式光学组件。所述的反射式光学组件的光学元件的迎光面为平面、柱面或球面。所述的反射式光学组件为反射式光学元件逐层叠加,迎光面为倾斜放置的等光程差的阶梯型,每个光学元件的迎光面涂覆反射率相同的反射膜。
本发明的X射线分幅相机曝光时间的测量装置具有体积小,效率高,测量结果直观易见的优点,能精密标定曝光时间小于10ps的X射线分幅相机,为X射线分幅相机的诊断测试数据的处理和理论程序的校验提供依据。
附图说明
图1为本发明的X射线分幅相机曝光时间的测量装置的结构示意图(透射式);
图2为本发明的X射线分幅相机曝光时间的测量装置中的光束分割延迟器结构示意图(透射式阶梯型);
图3为本发明的X射线分幅相机曝光时间的测量装置中序列子光束I正入射到标准具后转化为序列子光束Ⅱ的示意图;
图4为本发明的X射线分幅相机曝光时间的测量装置中序列子光束Ⅱ沿X射线分幅相机微带线阴极的排列方式示意图;
图5为本发明的X射线分幅相机曝光时间的测量装置的结构示意图(反射式);
图6为本发明的X射线分幅相机曝光时间的测量装置中的光束分割延迟器结构示意图(反射式阶梯型);
图中,1.激光器 2.光束分割延迟器 3. 标准具 4.真空腔体 5.X射线分幅相机。
具体实施方式
下面结合附图和实施例详细说明本发明。
实施例1
如图1所示,本发明的X射线分幅相机曝光时间的测量装置,包括沿光路方向顺序排列的激光器1、光束分割延迟器2、标准具3和真空腔体4;所述激光器1输出的激光束照射到光束分割延迟器2上,被光束分割延迟器2分割为等空间间距、等时间间隔的序列子光束Ⅰ;序列子光束Ⅰ正入射到标准具3,经标准具3后序列子光束Ⅰ转化成一系列与标准具3的光程差相同、光强逐渐减弱的序列子光束Ⅱ,序列子光束Ⅱ透过真空腔体4前端面的玻璃窗口,进入真空腔体4,并照射到X射线分幅相机5的微带线阴极上;所述真空腔体4的后端面与X射线分幅相机5的前端面通过带密封圈的真空密封面密封连接。
所述的激光器1输出的激光束的波长为248nm、脉宽为500fs,光斑直径为10mm。
如图2所示,所述的光束分割延迟器2为透射式光学组件,由长方体的透射式光学元件逐层叠加,迎光面为等光程差的阶梯型,每个光学元件的迎光面涂覆透过率相同的透射膜。
激光器1产生的激光束照射到光束分割延迟器2的迎光面。光束分割延迟器2将激光束分割为强度一致、单束宽度小于等于X射线分幅相机微带线阴极宽度的1/12、相邻子光束的空间距离小于等于X射线分幅相机微带线阴极宽度的1/7的序列子光束Ⅰ。如图3所示,序列子光束Ⅰ正入射到标准具3后,得到一系列与标准具3的光程差相同、光强逐渐减弱的序列子光束Ⅱ,然后进入真空腔体4,从而在X射线分幅相机5的微带线阴极上形成如图4所示的等空间间距、等时间间隔、等强度的序列延迟光斑。根据X射线分幅相机5的选通脉冲电源固有延迟时间与光路延迟时间的差值,设置X射线分幅相机5的选通脉冲电源的触发延迟时间,则在选通脉冲沿微带线阴极传输的过程中,X 射线分幅相机总能对标准具3出射的某个序列子光束Ⅱ进行动态选通成像并记录,通过被记录光斑数目、光斑时间间隔以及光斑成像的强弱分布,得到X射线分幅相机5的曝光时间。
设计光束分割延迟器2的透射式光学元件的光程差,使序列子光束Ⅰ的单束宽度为0.5mm,相邻子光束的空间距离为0.8mm,相邻子光束的时间间隔为2.5ps。设计标准具3的光程差为20ps。时间间隔2.5ps的序列子光束Ⅰ正入射到标准具3后,将从标准具3出射多组被依次延迟20ps的序列子光束Ⅱ,每组序列子光束Ⅱ内的相邻子光束的时间间隔保持2.5ps不变。序列子光束Ⅱ沿X射线分幅相机5的宽度为6mm的微带线阴极横向排列,计算X射线分幅相机5的选通脉冲电源固有延迟时间及光路延迟时间的差值,设置X射线分幅相机5的选通脉冲电源的触发延迟时间,则X射线分幅相机5的选通脉冲总是能与某一组序列子光束Ⅱ同步到达微带线阴极,从而被X射线分幅相机5选通成像后得到7个时间间隔2.5ps的曝光点,根据7个曝光点的最大强度拟合得到曝光曲线,曝光曲线的半高宽即为曝光时间,故X射线分幅相机5的曝光时间为5ps。被曝光的光斑数目越多、光束时间间隔越小,则测量精度越高。由于被光束分割延迟器2分割后的序列子光束的时间间隔是相等的,根据曝光点的强弱可直接读取曝光时间约为2.5ps×2=5ps。直接读取方式存在一定的误差。
光束分割延迟器2的透射式光学元件的长方体可替换为柱体。
实施例2
如图5所示,本发明的X射线分幅相机曝光时间的测量装置,包括沿光路方向顺序排列的激光器1、光束分割延迟器2、标准具3和真空腔体4;所述激光器1输出的激光束照射到光束分割延迟器2上,被光束分割延迟器2分割为等空间间距、等时间间隔的序列子光束Ⅰ;序列子光束Ⅰ正入射到标准具3,经标准具3后序列子光束Ⅰ转化成一系列与标准具3的光程差相同、光强逐渐减弱的序列子光束Ⅱ,序列子光束Ⅱ透过真空腔体4前端面的玻璃窗口,进入真空腔体4,并照射到X射线分幅相机5的微带线阴极上;所述真空腔体4的后端面与X射线分幅相机5的前端面通过带密封圈的真空密封面密封连接。
所述的激光器1输出的激光束的波长为248nm、脉宽为500fs,光斑直径为10mm。
如图6所示,所述的光束分割延迟器2为反射式光学组件,由迎光面为平面的光学元件逐层叠加,迎光面为等光程差的阶梯型,每个光学元件的迎光面涂覆反射率相同的反射膜。
激光器1产生的激光束照射到光束分割延迟器2的迎光面。光束分割延迟器2将激光束分割为强度一致、单束宽度小于等于X射线分幅相机微带线阴极宽度的1/12、相邻子光束的空间距离小于等于X射线分幅相机微带线阴极宽度的1/7的序列子光束Ⅰ。如图3所示,序列子光束Ⅰ正入射到标准具3后,得到一系列与标准具3的光程差相同、光强逐渐减弱的序列子光束Ⅱ,然后进入真空腔体4,从而在X射线分幅相机5的微带线阴极上形成如图4所示的等空间间距、等时间间隔、等强度的序列延迟光斑。根据X射线分幅相机5的选通脉冲电源固有延迟时间与光路延迟时间的差值,设置X射线分幅相机5的选通脉冲电源的触发延迟时间,则在选通脉冲沿微带线阴极传输的过程中,X 射线分幅相机总能对标准具3出射的某个序列子光束Ⅱ进行动态选通成像并记录,通过被记录光斑数目、光斑时间间隔以及光斑成像的强弱分布,得到X射线分幅相机5的曝光时间。
设计光束分割延迟器2的反射式光学元件的光程差,使序列子光束Ⅰ的单束宽度为0.5mm,相邻子光束的空间距离为0.8mm,相邻子光束的时间间隔为2.5ps。设计标准具3的光程差为20ps。时间间隔2.5ps的序列子光束Ⅰ正入射到标准具3后,将从标准具3出射多组被依次延迟20ps的序列子光束Ⅱ,每组序列子光束Ⅱ内的相邻子光束的时间间隔保持2.5ps不变。序列子光束Ⅱ沿X射线分幅相机5的宽度为6mm的微带线阴极横向排列,计算X射线分幅相机5的选通脉冲电源固有延迟时间及光路延迟时间的差值,设置X射线分幅相机5的选通脉冲电源的触发延迟时间,则X射线分幅相机5的选通脉冲总是能与某一组序列子光束Ⅱ同步到达微带线阴极,从而被X射线分幅相机5选通成像后得到7个时间间隔2.5ps的曝光点,根据7个曝光点的最大强度拟合得到曝光曲线,曝光曲线的半高宽即为曝光时间,故X射线分幅相机5的曝光时间为5ps。被曝光的光斑数目越多、光束时间间隔越小,则测量精度越高。由于被光束分割延迟器2分割后的序列子光束的时间间隔是相等的,根据曝光点的强弱可直接读取曝光时间约为2.5ps×2=5ps。直接读取方式存在一定的误差。
光束分割延迟器2的反射式光学元件的迎光面可由平面替换为有聚焦效果的柱面或者球面。
本发明不局限于上述具体实施方式,所属技术领域的技术人员从上述构思出发,不经过创造性的劳动,所作出的种种变换,均落在本发明的保护范围之内。

Claims (7)

1.一种X射线分幅相机曝光时间的测量装置,其特征在于,包括沿光路方向顺序排列的激光器(1)、光束分割延迟器(2)、标准具(3)和真空腔体(4);所述的激光器(1)输出的激光束照射到光束分割延迟器(2)上,被光束分割延迟器(2)分割为等空间间距、等时间间隔的序列子光束Ⅰ;序列子光束Ⅰ正入射到标准具(3),经标准具(3)后序列子光束Ⅰ转化成一系列与标准具(3)的光程差相同、光强逐渐减弱的序列子光束Ⅱ,序列子光束Ⅱ透过真空腔体(4)前端面的玻璃窗口,进入真空腔体(4),照射到X射线分幅相机(5)的微带线阴极上;所述的真空腔体(4)的后端面与X射线分幅相机(5)的前端面通过带密封圈的真空密封面密封连接;
所述的激光器(1)输出的激光束的波长为X射线分幅相机(5)的响应波长,激光束的脉宽小于等于X射线分幅相机(4)曝光时间的1/10,激光束的光斑直径大于等于X射线分幅相机(5)的微带线阴极的宽度;
所述的标准具(3)的光程差大于等于X射线分幅相机曝光时间的2倍;
所述的序列子光束Ⅰ的子光束的强度一致,序列子光束Ⅰ的子光束的宽度小于等于X射线分幅相机(5)的微带线阴极宽度的1/12;所述的序列子光束Ⅰ的相邻子光束的空间距离小于X射线分幅相机微带线阴极宽度的1/7,相邻子光束的时间间隔小于等于X射线分幅相机曝光时间的1/2。
2.根据权利要求1所述的X射线分幅相机曝光时间的测量装置,其特征在于:所述的光束分割延迟器(2)为透射式光学组件。
3.根据权利要求2所述的X射线分幅相机曝光时间的测量装置,其特征在于:所述的透射式光学组件的光学元件的形状为长方体或柱体。
4.根据权利要求2所述的X射线分幅相机曝光时间的测量装置,其特征在于:所述的透射式光学组件为透射式光学元件逐层叠加,迎光面为等光程差的阶梯型,每个光学元件的迎光面涂覆透过率相同的透射膜。
5.根据权利要求1所述的X射线分幅相机曝光时间的测量装置,其特征在于:所述的光束分割延迟器(2)为反射式光学组件。
6.根据权利要求5所述的X射线分幅相机曝光时间的测量装置,其特征在于:所述的反射式光学组件的光学元件的迎光面为平面、柱面或球面。
7.根据权利要求5所述的X射线分幅相机曝光时间的测量装置,其特征在于:所述的反射式光学组件为反射式光学元件逐层叠加,迎光面为倾斜放置的等光程差的阶梯型,每个光学元件的迎光面涂覆反射率相同的反射膜。
CN201611013324.4A 2016-11-18 2016-11-18 一种x射线分幅相机曝光时间的测量装置 Active CN106454334B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611013324.4A CN106454334B (zh) 2016-11-18 2016-11-18 一种x射线分幅相机曝光时间的测量装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611013324.4A CN106454334B (zh) 2016-11-18 2016-11-18 一种x射线分幅相机曝光时间的测量装置

Publications (2)

Publication Number Publication Date
CN106454334A CN106454334A (zh) 2017-02-22
CN106454334B true CN106454334B (zh) 2018-06-29

Family

ID=58220887

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611013324.4A Active CN106454334B (zh) 2016-11-18 2016-11-18 一种x射线分幅相机曝光时间的测量装置

Country Status (1)

Country Link
CN (1) CN106454334B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108414194B (zh) * 2018-04-18 2024-05-31 中国工程物理研究院激光聚变研究中心 一种超高速相机时间响应特性测定平台及测定方法
CN108692920B (zh) * 2018-05-11 2024-05-31 中国科学院西安光学精密机械研究所 一种反射型光束分割等比递减器及其制作装置、制作方法
CN108668127B (zh) * 2018-08-01 2019-09-27 昆山丘钛微电子科技有限公司 成像设备曝光时间测试装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100529714C (zh) * 2007-07-31 2009-08-19 深圳大学 用于光电图像选通快门时间标定的测量方法及装置
CN101644887A (zh) * 2009-08-28 2010-02-10 中国工程物理研究院流体物理研究所 一种门控型像增强器曝光时间的测量方法及其测量系统
CN105675633B (zh) * 2016-03-10 2018-08-17 中国工程物理研究院激光聚变研究中心 一种x射线分幅相机的标定装置
CN206164747U (zh) * 2016-11-18 2017-05-10 中国工程物理研究院激光聚变研究中心 一种x射线分幅相机曝光时间的测量装置

Also Published As

Publication number Publication date
CN106454334A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
JP6854828B2 (ja) 物体のリアルタイム位置検知
CN107219533B (zh) 激光雷达点云与图像融合式探测系统
US11675076B2 (en) Solid state light detection and ranging (LIDAR) system and system and method for improving solid state light detection and ranging (LIDAR) resolution
JP7165587B2 (ja) 多重ピクセル走査lidar
KR101645054B1 (ko) 게이트형 3d 카메라
Koenig et al. Optical smoothing techniques for shock wave generation in laser-produced plasmas
CN104483676B (zh) 一种3d/2d非扫描激光雷达复合成像装置
DE112019006845T5 (de) Kalibrierung einer tiefenerfassung unter verwendung eines dünnbesetzt arrays gepulster strahlen
US8749619B2 (en) Methods and apparatus for transient light imaging
CN106454334B (zh) 一种x射线分幅相机曝光时间的测量装置
CN105044704B (zh) 高精度星载激光发射机性能综合测试系统
CA2716980C (en) Light-integrating rangefinding device and method
CN105549029A (zh) 一种照明扫描叠加成像系统及方法
CN108828616A (zh) 可实现单脉冲测距的光子计数激光雷达及恒虚警控制方法
CN206164747U (zh) 一种x射线分幅相机曝光时间的测量装置
Veeser et al. Impedance‐match experiments using laser‐driven shock waves
Heckman et al. 2.7-Underwater optical range gating
CN102012515B (zh) 利用布里渊散射探测大气中固态目标的方法及装置
CA2554953C (en) Airborne laser image capturing system and method
Conneely et al. An integrated 256 channel TCSPC camera with sub-70ps single photon timing per channel
JP3840813B2 (ja) 三次元形状計測法および装置
JP6379646B2 (ja) 情報処理装置、測定方法及びプログラム
CN111443101A (zh) 一种用于不同晶体x射线衍射效率的直接比对系统
CN112462384A (zh) 一种高分辨率固态面阵激光雷达系统、控制方法及装置
JP3788060B2 (ja) 三次元形状計測法および装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant