CN106446460B - 一种运载火箭超大规模三维模型轻量化方法 - Google Patents

一种运载火箭超大规模三维模型轻量化方法 Download PDF

Info

Publication number
CN106446460B
CN106446460B CN201610951280.3A CN201610951280A CN106446460B CN 106446460 B CN106446460 B CN 106446460B CN 201610951280 A CN201610951280 A CN 201610951280A CN 106446460 B CN106446460 B CN 106446460B
Authority
CN
China
Prior art keywords
model
feature
modeling
interference
rocket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610951280.3A
Other languages
English (en)
Other versions
CN106446460A (zh
Inventor
王哲
郭逸婧
皮赞
李澍
陈仁越
刘敏
宋漪萍
罗军
聂蓉梅
熊焕
张立洲
陈海东
赵博
贾瑞林
周培
李莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Launch Vehicle Technology CALT
Beijing Institute of Astronautical Systems Engineering
Original Assignee
China Academy of Launch Vehicle Technology CALT
Beijing Institute of Astronautical Systems Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Launch Vehicle Technology CALT, Beijing Institute of Astronautical Systems Engineering filed Critical China Academy of Launch Vehicle Technology CALT
Priority to CN201610951280.3A priority Critical patent/CN106446460B/zh
Publication of CN106446460A publication Critical patent/CN106446460A/zh
Application granted granted Critical
Publication of CN106446460B publication Critical patent/CN106446460B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种运载火箭超大规模三维模型轻量化方法,(1)在Creo环境下对运载火箭进行常规零件三维建模;(2)进行化铣壁板类零件建模:(3)进行多孔类零件建模:(4)在Creo环境下对运载火箭进行组件三维建模;(5)将仪器安装在箭体上,利用骨架进行电缆敷设,并断开电缆敷设路径与参考模型的参照关系,(6)除机构件外,使零件在组件中完全定位;(7)启用模型旋转细节控制功能;(8)对装配后火箭模型进行分段干涉检查,对每段涉及的装配模型进行筛选,对筛选后的模型计算干涉体积,若存在干涉则对干涉相关模型进行重新设计,并从步骤(1)重新开始执行。

Description

一种运载火箭超大规模三维模型轻量化方法
技术领域
本发明涉及航天产品数字样机设计、装配及干涉分析技术,属于航天产品数字化设计与系统仿真领域。
背景技术
随着航天工业的快速发展,型号任务越来越多,型号研制周期不断缩短,数字模装试验在研制流程中的重要性日益体现。数字样机已逐步成为与实物样机同等重要的工程设计产品,是体现设计部门智力成果的载体。航天产品三维数字样机设计及应用过程中,往往由于三维模型规模较大、模型数量较多等原因,造成增压输送系统总装、仪器电缆及总装设计过程等待时间长、打开困难、操作卡顿、总装过程响应速度缓慢、总装结果几乎无法浏览等问题,极大影响了总装设计及航天产品模型使用效率。同时航天产品模型中存在一定数量的收缩包络模型,导致干涉检查计算过程漫长、结果缺乏足够可靠性等问题。
发明内容
本发明的技术解决问题是:克服现有技术的不足,提供了一种运载火箭超大规模三维模型轻量化方法。
本发明的技术解决方案是:一种运载火箭超大规模三维模型轻量化方法,步骤如下:
(1)在Creo环境下对运载火箭进行常规零件三维建模;所述的常规零件为运载火箭上除化铣壁板类零件和多孔零件外的其他零件;
(2)进行化铣壁板类零件建模:
首先,设置模型精度,使用“旋转”特征创建基础曲面,利用扁平曲面特征展平创建的旋转曲面,加厚展平后的曲面后拉伸添加材料,使用拉伸特征剪切材料、创建网格;
然后,将网格特征进行阵列并明确阵列类别,选择不允许虚阵列的再生选项,随后使用草绘及加厚特征创建需要加厚的网格区域,完成倒角细节特征;
最后,使用实体折弯特征获得零件最终状态;
(3)进行多孔类零件建模:
首先设置模型精度,随后应用统一的参照基准,对每种孔采用单独特征进行创建,符合阵列关系的使用阵列特征完成多孔建模,选择不允许虚打孔的再生选项,对一系列直径相同且成一定规律分布的孔组采用中心线简化表示,通过三维标注描述布局及数量信息;
(4)在Creo环境下对运载火箭进行组件三维建模,针对运载火箭组件拉伸特性进行调整,使其只与有意义模型相交,对在组件和零件中状态相同的元件设置显示级别为“零件级”,对在组件和零件中状态不同的元件设置显示级别为“顶级”;
(5)将仪器安装在箭体上,利用骨架进行电缆敷设,并断开电缆敷设路径与参考模型的参照关系,所述的参考模型包括单机、箭体结构及管路;
(6)除机构件外,使零件在组件中完全定位,贮箱、壳段、仪器电缆安装、管路安装、各子级、助推器、整流罩、有效载荷均使用坐标系安装,且不可在下级组件中直接装配上级组件作为参考模型;
(7)在Creo环境下,启用模型旋转细节控制功能,并取消预选加亮功能;
(8)对装配后火箭模型进行分段干涉检查,对每段涉及的装配模型进行筛选,对筛选后的模型计算干涉体积,若存在干涉则对干涉相关模型进行重新设计,并从步骤(1)重新开始执行。
步骤(1)中的建模遵循如下步骤:
首先,建立基准特征,后遵循“主要特征在前,辅助特征在后”的原则建立全部特征,所有特征须充分定位,不允许欠定位,优先使用几何定位;
其次,使用尺寸定位进行零件特征创建;
最后,最后遵循半径先大后小的原则创建倒圆角或倒角特征,并使用目的链选取倒圆角边,避免使用草图的拉伸或扫描形成圆角或倒角。
尺寸定位进行零件特征创建具体如下:轴类、圆盘类零件建模采用旋转特征构建,块状零件采用拉伸特征构建,规则等厚度零件采用抽壳特征构建,规律分布的孔、凸台件采用对称或阵列特征。
规律分布的孔、凸台件进行零件特征创建时可省略复杂制造特征,所述的复杂制造特征包括内螺纹、外螺纹、退刀槽。
利用骨架进行电缆敷设的实现方式如下:
(5.1)将电缆布线需要的曲面及坐标系信息添加进骨架模型,进行电缆敷设环境搭建;
(5.2)复制粘帖需要敷设电缆的仪器单机,将该单机装配在(5.1)中布线后的骨架中,断开该单机与外部参照关系;
(5.3)清除外部参考模型,在骨架中将虚拟电缆卡子安放至待敷设曲面,进行路径敷设操作,完成三维布线。
(5.4)当仪器单机状态更改时,在骨架中重新复制装配更新后单机模型,返回(5.2)步骤重新开始执行。
干涉检查步骤如下:
(8.1)使用打开表示选择待检查装配体顶层装配,以“面向任务”为原则,输入任务名称为此表示命名,如“一子级与助推干涉检查”;
(8.2)在模型树中选择需要的对象,即主表示,排除不需要的零组件;
(8.3)使用Analysis模块进行静态干涉检查,选取全局干涉进行计算,当检查对象包含收缩包络模型时,选取包括面组选项;
(8.4)计算完成后得到结果清单,对应结果查看干涉双方模型的详细位置及干涉体积;
(8.5)需要更改干涉检查对象时,使用视图管理器—简化表示—编辑进行重定义,返回(8.2)步骤重新开始执行;
(8.6)更换下一个任务,选择其他需关注对象重复此步骤,完成覆盖全箭的静态干涉检查。
本发明与现有技术相比有益效果为:
(1)本发明解决了零部组件传统三维设计过程中不关注模型规模导致的模型过大问题、传统电缆设计过程中参考模型庞大操作卡顿问题、以及传统干涉检查过程中附带过多非关注对象严重影响效率的瓶颈问题,显著提升三维模型设计及二次操作速度,大大降低对硬件的依赖,打破原有大规模模型使用局限,具有较好的应用效果及推广价值。
(2)本发明轻量化设计,得到相比传统方法规模更小的三维模型,同时采用简化表示功能,实现了10G以上大规模三维模型快速总装及检索,解决了原有超大规模三维模型二次应用卡滞的瓶颈问题,不仅达到了快速检索、快速进入工作状态的目的,同时满足了轻量化二次应用的要求,大大提高了应用效率,降低了对硬件的依赖,打破原有超大规模模型使用局限,拓宽了三维数字样机作为设计部门智力成果载体的应用领域,具有较大的推广价值。
(3)利用骨架的仪器电缆安装轻量化方法,实现了仪器电缆安装设计过程轻量化,解决了传统参考模型附带过多非关注对象严重影响效率的问题,有效提升仪器电缆安装三维模型设计及应用效率。
(4)基于简化表示的轻量化干涉检查方法,通过对关注区域进行个性需求定制,实现了基于详细设计模型的运载火箭轻量化干涉检查,在兼顾了干涉计算耗时与精度两方面要求的基础上,同时具备很高的准确度,实现了提前发现问题解决问题的目标,充分发挥了数字化试验预示作用。
附图说明
图1为本发明应用实现流程;
图2为本发明基于骨架的电缆敷设流程图。
具体实施方式
下面结合附图及实例对本发明做详细说明,如图1、2所示,本发明步骤如下:
(1)在Creo环境下对运载火箭进行常规零件三维轻量化建模,所述的常规零件为运载火箭上除化铣壁板类零件和多孔零件外的其他零件;
首先建立基准特征,后遵循“主要特征在前,辅助特征在后”的原则建立全部特征,所有特征须充分定位,不允许欠定位,优先使用平行、垂直、重合等定位方法;
其次进行零件所需所有特征的创建,可省略内螺纹、外螺纹、退刀槽等导致模型规模大且不必要的特征;
轴类、圆盘类零件建模采用旋转特征构建,块状零件采用拉伸特征构建,规则等厚度零件采用抽壳特征构建,规律分布的孔、凸台件采用对称或阵列特征;
最后遵循半径先大后小的原则创建倒圆角(或倒角)特征,并使用目的链选取倒圆角边,避免使用草图的拉伸或扫描形成圆角或倒角;
(2)化铣壁板类零件建模时,
首先,设置模型精度为0.01,使用“旋转”特征创建基础曲面,利用扁平曲面特征展平创建的旋转曲面,加厚展平后的曲面后拉伸添加材料,使用拉伸特征剪切材料、创建网格;
然后,将网格特征进行阵列并明确阵列类别,选择不允许虚阵列的再生选项,随后使用草绘及加厚特征创建需要加厚的网格区域,完成倒角细节特征,可不创建化铣网格小圆角特征;
最后,使用实体折弯特征获得零件最终状态;
(3)多孔零件建模时,
首先设置模型精度为0.01,随后应用统一的参照基准,对每种孔采用单独特征进行创建,符合阵列关系的使用阵列特征完成多孔建模,选择不允许虚打孔的再生选项,对一系列直径相同且成一定规律分布的孔组采用中心线简化表示,通过三维标注描述布局及数量信息;
(4)在Creo环境下对运载火箭进行组件三维建模,针对运载火箭组件拉伸特性进行调整,使其只与有意义模型相交,对在组件和零件中状态相同的元件设置显示级别为“零件级”,对在组件和零件中状态不同的元件设置显示级别为“顶级”;
(5)将仪器安装在箭体上,利用骨架进行电缆敷设,并断开电缆敷设路径与参考模型的参照关系,所述的参考模型包括单机、箭体结构及管路;
首先将电缆布线需要的曲面及坐标系信息添加进骨架模型,进行电缆敷设环境搭建;
其次复制粘帖需要敷设电缆的仪器单机,将该单机装配在(5.1)中布线后的骨架中,断开该单机与外部参照关系;
隐含外部参考模型,使得布线模型总体规模更小、更易操作,在骨架中将虚拟电缆卡子安放至待敷设曲面,进行路径敷设操作,完成三维布线;
当仪器单机状态更改时,在骨架中重新复制装配更新后单机模型,恢复隐含的外部参考模型,返回2步骤重新开始执行;
(6)除机构件外,使零件在组件中完全定位,贮箱、壳段、仪器电缆安装、管路安装、各子级、助推器、整流罩、有效载荷均使用坐标系安装,且不可在下级组件中直接装配上级组件作为参考模型;
(7)在Creo环境下,启用模型旋转细节控制功能,使用Config选项将lods_enabled值设置为yes,将lods_value值设置为50,并取消预选加亮功能,进一步提高超大规模模型显示速度;
(8)对装配后火箭模型进行分段干涉检查,对每段涉及的装配模型进行筛选,对筛选后的模型计算干涉体积,若存在干涉则对干涉相关模型进行重新设计,并从步骤(1)重新开始执行。
首先,使用打开表示选择待检查装配体顶层装配,以“面向任务”为原则,输入任务名称为此表示命名,如“一子级与助推干涉检查”;
其次在模型树中选择本次任务需要关注的对象,即主表示,排除不需要的零组件;
随后使用Analysis模块进行静态干涉检查,选取全局干涉进行计算,当检查对象包含收缩包络模型时,选取包括面组选项;
计算完成后得到结果清单,对应结果查看干涉双方模型的详细位置及干涉体积;
需要更改干涉检查对象时,使用视图管理器—简化表示—编辑进行重定义,返回2步骤重新开始执行;
最后,更换下一个任务,选择其他需关注对象重复此步骤,完成覆盖全箭的静态干涉检查。
本说明书未详细说明部分属于本领域技术人员公知常识。

Claims (7)

1.一种运载火箭超大规模三维模型轻量化方法,其特征在于步骤如下:
(1)在Creo环境下对运载火箭进行常规零件三维建模;所述的常规零件为运载火箭上除化铣壁板类零件和多孔零件外的其他零件;
(2)进行化铣壁板类零件建模:
首先,设置模型精度,使用“旋转”特征创建基础曲面,利用扁平曲面特征展平创建的旋转曲面,加厚展平后的曲面后拉伸添加材料,使用拉伸特征剪切材料、创建网格;
然后,将网格特征进行阵列并明确阵列类别,选择不允许虚阵列的再生选项,随后使用草绘及加厚特征创建需要加厚的网格区域,完成倒角细节特征;
最后,使用实体折弯特征获得零件最终状态;
(3)进行多孔类零件建模:
首先设置模型精度,随后应用统一的参照基准,对每种孔采用单独特征进行创建,符合阵列关系的使用阵列特征完成多孔建模,选择不允许虚打孔的再生选项,对一系列直径相同且成一定规律分布的孔组采用中心线简化表示,通过三维标注描述布局及数量信息;
(4)在Creo环境下对运载火箭进行组件三维建模,针对运载火箭组件拉伸特性进行调整,使其只与有意义模型相交,对在组件和零件中状态相同的元件设置显示级别为“零件级”,对在组件和零件中状态不同的元件设置显示级别为“顶级”;
(5)将仪器安装在箭体上,利用骨架进行电缆敷设,并断开电缆敷设路径与参考模型的参照关系,所述的参考模型包括单机、箭体结构及管路;
(6)除机构件外,使零件在组件中完全定位,贮箱、壳段、仪器电缆安装、管路安装、各子级、助推器、整流罩、有效载荷均使用坐标系安装,且不可在下级组件中直接装配上级组件作为参考模型;
(7)在Creo环境下,启用模型旋转细节控制功能,并取消预选加亮功能;
(8)对装配后火箭模型进行分段干涉检查,对每段涉及的装配模型进行筛选,对筛选后的模型计算干涉体积,若存在干涉则对干涉相关模型进行重新设计,并从步骤(1)重新开始执行。
2.根据权利要求1所述的方法,其特征在于:步骤(1)中的建模遵循如下步骤:
首先,建立基准特征,后遵循“主要特征在前,辅助特征在后”的原则建立全部特征,所有特征须充分定位,不允许欠定位,优先使用几何定位;
其次,使用尺寸定位进行零件特征创建;
最后,最后遵循半径先大后小的原则创建倒圆角或倒角特征,并使用目的链选取倒圆角边,避免使用草图的拉伸或扫描形成圆角或倒角。
3.根据权利要求2所述的方法,其特征在于:尺寸定位进行零件特征创建具体如下:轴类、圆盘类零件建模采用旋转特征构建,块状零件采用拉伸特征构建,规则等厚度零件采用抽壳特征构建,规律分布的孔、凸台件采用对称或阵列特征。
4.根据权利要求3所述的方法,其特征在于:规律分布的孔、凸台件进行零件特征创建时可省略复杂制造特征,所述的复杂制造特征包括内螺纹、外螺纹、退刀槽。
5.根据权利要求1所述的方法,其特征在于:利用骨架进行电缆敷设的实现方式如下:
(5.1)将电缆布线需要的曲面及坐标系信息添加进骨架模型,进行电缆敷设环境搭建;
(5.2)复制粘帖需要敷设电缆的仪器单机,将该单机装配在(5.1)中布线后的骨架中,断开该单机与外部参照关系;
(5.3)清除外部参考模型,在骨架中将虚拟电缆卡子安放至待敷设曲面,进行路径敷设操作,完成三维布线。
6.根据权利要求5所述的方法,其特征在于:(5.4)当仪器单机状态更改时,在骨架中重新复制装配更新后单机模型,返回(5.2)步骤重新开始执行。
7.根据权利要求1所述的方法,其特征在于:干涉检查步骤如下:
(8.1)使用打开表示选择待检查装配体顶层装配,以“面向任务”为原则,输入任务名称为此表示命名;
(8.2)在模型树中选择需要的对象,即主表示,排除不需要的零组件;
(8.3)使用Analysis模块进行静态干涉检查,选取全局干涉进行计算,当检查对象包含收缩包络模型时,选取包括面组选项;
(8.4)计算完成后得到结果清单,对应结果查看干涉双方模型的详细位置及干涉体积;
(8.5)需要更改干涉检查对象时,使用视图管理器—简化表示—编辑进行重定义,返回(8.2)步骤重新开始执行;
(8.6)更换下一个任务,选择其他需关注对象重复此步骤,完成覆盖全箭的静态干涉检查。
CN201610951280.3A 2016-10-26 2016-10-26 一种运载火箭超大规模三维模型轻量化方法 Active CN106446460B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610951280.3A CN106446460B (zh) 2016-10-26 2016-10-26 一种运载火箭超大规模三维模型轻量化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610951280.3A CN106446460B (zh) 2016-10-26 2016-10-26 一种运载火箭超大规模三维模型轻量化方法

Publications (2)

Publication Number Publication Date
CN106446460A CN106446460A (zh) 2017-02-22
CN106446460B true CN106446460B (zh) 2019-06-18

Family

ID=58179258

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610951280.3A Active CN106446460B (zh) 2016-10-26 2016-10-26 一种运载火箭超大规模三维模型轻量化方法

Country Status (1)

Country Link
CN (1) CN106446460B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109858189B (zh) * 2019-01-09 2023-03-31 蓝箭航天空间科技股份有限公司 运载火箭载荷分析方法
CN111080777B (zh) * 2019-12-20 2021-08-10 北京空间机电研究所 一种航天器热控产品的三维快速建模方法
CN112434445B (zh) * 2020-12-11 2024-02-09 北京空间机电研究所 一种空间光学遥感器三维布线设计方法
CN116595811B (zh) * 2023-07-18 2023-09-19 东方空间技术(山东)有限公司 一种用于火箭系统的检查方法及装置
CN117490604B (zh) * 2024-01-03 2024-03-19 中国科学院长春光学精密机械与物理研究所 一种光学平面面形绝对检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103870540A (zh) * 2014-02-24 2014-06-18 上海宇航系统工程研究所 一种基于结构设计分析一体化的数据库
CN103955557A (zh) * 2014-03-31 2014-07-30 北京航空航天大学 一种运载火箭多学科综合设计优化方法与系统
CN104217049A (zh) * 2013-05-31 2014-12-17 北京空间技术研制试验中心 一种复杂系统三维模型的轻量化显示方法
CN105787999A (zh) * 2016-02-26 2016-07-20 北京宇航系统工程研究所 一种火箭总体骨架曲面搭建系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104217049A (zh) * 2013-05-31 2014-12-17 北京空间技术研制试验中心 一种复杂系统三维模型的轻量化显示方法
CN103870540A (zh) * 2014-02-24 2014-06-18 上海宇航系统工程研究所 一种基于结构设计分析一体化的数据库
CN103955557A (zh) * 2014-03-31 2014-07-30 北京航空航天大学 一种运载火箭多学科综合设计优化方法与系统
CN105787999A (zh) * 2016-02-26 2016-07-20 北京宇航系统工程研究所 一种火箭总体骨架曲面搭建系统及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
航天结构标准件三维模型的构建与管理;陈仁越 等;《管理与实践》;20160115;第32-34页
飞行器主承力结构的轻量化设计;刘源 等;《光学精密工程》;20151130;第23卷(第11期);第3083-3089页

Also Published As

Publication number Publication date
CN106446460A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
CN106446460B (zh) 一种运载火箭超大规模三维模型轻量化方法
CN112084556B (zh) 一种海量数据bim模型的轻量化显示方法及系统
JP7421585B2 (ja) 光線バンドルの光線に対する差分データを決定する方法及びグラフィックス処理ユニット
CN107862110B (zh) 一种电子产品生产线虚拟换产方法
US8397203B2 (en) Planar manufacturing drawing production support device, planar manufacturing drawing production support method, planar manufacturing drawing production support program and branch angle design support device
CN103493053B (zh) 用于通过拓扑确定的飞行器电气系统连接布局和可视化的系统和方法
CN101576440B (zh) 一种液体火箭发动机虚拟试验平台及其试验方法
CN101257149B (zh) 基于结构电磁耦合的天线反射面网格划分方法
JP2014201307A (ja) 3次元視覚化のためのロケータシステム
CN104252554A (zh) 一种产品总装三维工艺生成方法
CN102308298A (zh) 用于复合材料的弯曲部件的先进设计的计算机辅助方法
JP2016517061A (ja) ビークル、例えば航空機アセンブリのためのオブジェクト視覚化システム
CN111460710B (zh) 一种基于铺丝轨迹的复材固化变形仿真建模方法
CN106951589B (zh) 一种基于成熟度的运载火箭数字样机设计方法
CN113642069B (zh) 基于bim和异构系统的建筑风荷载快速迭代设计方法
CN107292393A (zh) 一种便携式维修辅助系统
CN113111552A (zh) 一种固体火箭发动机药柱结构完整性分析建模方法
CN109290571A (zh) 一种3d 打印巡飞弹的轻量化设计与制造方法
CN107145651A (zh) 基于inp文件的abaqus三维无限元边界快速建模方法
CN111353188B (zh) 人造岩石结构设计和制造的自动化系统
US7315644B2 (en) Investigation of destroyed assemblies and identification of components thereof
CN110968914A (zh) 船舶舾装复板装配方法、系统、终端以及介质
US9996634B2 (en) Computer-aided design and manufacturing system and method for composite part manufacturing method and system
CN106199706A (zh) 三维观测系统面元属性统计方法及装置
CN116227055A (zh) 一种冷水机组智能设计方法及系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant