CN106444738A - Mobile robot path planning method based on dynamic motion primitive learning model - Google Patents
Mobile robot path planning method based on dynamic motion primitive learning model Download PDFInfo
- Publication number
- CN106444738A CN106444738A CN201610348356.3A CN201610348356A CN106444738A CN 106444738 A CN106444738 A CN 106444738A CN 201610348356 A CN201610348356 A CN 201610348356A CN 106444738 A CN106444738 A CN 106444738A
- Authority
- CN
- China
- Prior art keywords
- robot
- motion
- dynamic motion
- data
- dynamic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000033001 locomotion Effects 0.000 title claims abstract description 105
- 238000000034 method Methods 0.000 title claims abstract description 33
- 230000006870 function Effects 0.000 claims abstract description 51
- 238000006073 displacement reaction Methods 0.000 claims description 25
- 230000001133 acceleration Effects 0.000 claims description 18
- 230000008859 change Effects 0.000 claims description 10
- 230000008878 coupling Effects 0.000 claims description 6
- 238000010168 coupling process Methods 0.000 claims description 6
- 238000005859 coupling reaction Methods 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 6
- 238000004422 calculation algorithm Methods 0.000 claims description 2
- 239000002245 particle Substances 0.000 claims description 2
- 230000004888 barrier function Effects 0.000 claims 8
- 238000010411 cooking Methods 0.000 claims 1
- 230000007423 decrease Effects 0.000 claims 1
- 230000001419 dependent effect Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 claims 1
- 238000004321 preservation Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 6
- 238000013016 damping Methods 0.000 description 4
- 230000002068 genetic effect Effects 0.000 description 4
- 238000004088 simulation Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000013178 mathematical model Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Manipulator (AREA)
- Feedback Control In General (AREA)
Abstract
本发明公开了一种基于动态运动基元学习模型的移动机器人路径规划方法。首先用手柄来控制机器人运动,记录机器人的运动轨迹。然后将记录的轨迹作为动态运动基元模型的样本,通过建立动态运动基元模型,利用轨迹样本进行训练获得动态运动基元模型参数,从而实现机器人自主路径规划。在此基础上,改变机器人运动的目标位置,完成对新目标的泛化推广。本发明的路径规划方法提升了移动机器人的智能化水平,当机器人运动的目标位置改变时,机器人可以自主的到达新的目标位置,即机器人可以完成不针对某一指定任务,而对于其他的任务也具有泛化推广的能力;并且动态运动基元模型的在线学习特征和其自主避障功能相结合提高了路径规划的效率。
The invention discloses a path planning method for a mobile robot based on a learning model of a dynamic motion primitive. First use the handle to control the movement of the robot and record the trajectory of the robot. Then, the recorded trajectory is used as a sample of the dynamic motion primitive model, and the parameters of the dynamic motion primitive model are obtained by establishing the dynamic motion primitive model and using the trajectory samples for training, so as to realize the autonomous path planning of the robot. On this basis, the target position of the robot movement is changed to complete the generalization of the new target. The path planning method of the present invention improves the intelligence level of the mobile robot. When the target position of the robot movement changes, the robot can reach the new target position autonomously, that is, the robot can complete not for a certain specified task, but for other tasks It also has the ability of generalization; and the combination of the online learning feature of the dynamic motion primitive model and its autonomous obstacle avoidance function improves the efficiency of path planning.
Description
技术领域technical field
本发明涉及移动机器人路径规划领域,具体是一种基于动态运动基元学习模型的移动机器人路径规划方法。The invention relates to the field of path planning for mobile robots, in particular to a path planning method for mobile robots based on a learning model of dynamic motion primitives.
背景技术Background technique
路径规划是移动机器人的关键技术之一,它在一定程度上标志着移动机器人智能水平的高低,能快速找出一条便捷、无碰撞的路径不仅保证了移动机器人自身的安全,更体现了机器人的高效性和可靠性。Path planning is one of the key technologies of mobile robots. To a certain extent, it marks the intelligence level of mobile robots. Being able to quickly find a convenient and collision-free path not only ensures the safety of the mobile robot itself, but also reflects the robot's Efficiency and reliability.
目前,常用到的机器人路径规划方法有人工势场法、模糊逻辑模型、遗传等模型。人工势场法是路径规划模型中较成熟且较高效的规划方法,以其简单的数学计算被广泛使用。但是传统的人工势场法存在局部极小点和目标不可达等问题。目前,有多种解决局部极小点的办法,如启发式搜索,随机逃走法等,但这些改进的人工势场法只是对机器人施加附加的控制力,没有从根本上解决问题。遗传模型是一种基于遗传和自然选择的多搜索模型,具有鲁棒、灵活、在种群中搜索不易落入局部最小点等优点。但遗传模型在进行机器人路径规划时存在种群规模大、搜索空间大、容易陷入局部极小点、收敛速度慢等问题。At present, the commonly used robot path planning methods include artificial potential field method, fuzzy logic model, genetic and other models. The artificial potential field method is a relatively mature and efficient planning method in the path planning model, and is widely used for its simple mathematical calculation. However, the traditional artificial potential field method has problems such as local minimum points and unreachable targets. At present, there are many ways to solve the local minimum point, such as heuristic search, random escape method, etc., but these improved artificial potential field methods only exert additional control force on the robot, and do not fundamentally solve the problem. The genetic model is a multi-search model based on genetic and natural selection, which has the advantages of robustness, flexibility, and the search in the population is not easy to fall into a local minimum point. However, the genetic model has problems such as large population size, large search space, easy to fall into local minimum point, and slow convergence speed when performing robot path planning.
以上传统的机器人路径规划模型主要存在以下两个方面的问题:The above traditional robot path planning model mainly has the following two problems:
(1)任务是特定的,仅仅针对某一任务有很好性能,而不具有泛化推广能力;(1) The task is specific, and it only has good performance for a certain task, but does not have the ability to generalize;
(2)学习往往是离线的,这就导致了对新的场景要重新训练学习,实时性很差。(2) Learning is often offline, which leads to retraining and learning for new scenes, and the real-time performance is poor.
发明内容Contents of the invention
本发明要解决的技术问题是:针对上述的移动机器人路径规划方法中所存在的实时性差,以及移动机器人完成任务单一的问题,提出一种基于动态运动基元学习模型的路径规划方法。能够实时搜索路径,与其自主避障功能结合起来能有效地提高路径规划的效率,此外,机器人在完成新的任务时,可以不用重新训练样本而保持原来样本轨迹的特性到达新的目标位置。The technical problem to be solved by the present invention is to propose a path planning method based on a learning model of dynamic motion primitives in view of the poor real-time performance and the single task of the mobile robot in the above path planning method for mobile robots. The ability to search for paths in real time, combined with its autonomous obstacle avoidance function, can effectively improve the efficiency of path planning. In addition, when the robot completes new tasks, it can maintain the characteristics of the original sample trajectory to reach the new target position without retraining samples.
为解决上述技术问题,本发明提供如下技术方案:In order to solve the above technical problems, the present invention provides the following technical solutions:
一种基于动态运动基元学习模型的移动机器人路径规划方法,其特征在于主要包括如下步骤:A method for path planning of a mobile robot based on a dynamic motion primitive learning model, characterized in that it mainly includes the following steps:
步骤1:对机器人运动的二维环境进行建模,模拟机器人运动的二维环境界面,机器人用小实心圆来代替,障碍物为各种平面图形;Step 1: Model the two-dimensional environment of the robot's movement, and simulate the two-dimensional environment interface of the robot's movement. The robot is replaced by a small solid circle, and the obstacles are various plane figures;
步骤2:利用手柄对机器人的操控,使机器人能从起点避免与障碍物碰撞而到达目标点;Step 2: Use the handle to control the robot so that the robot can avoid collision with obstacles and reach the target point from the starting point;
步骤3:在步骤2进行的过程中,采集机器人运动轨迹数据作为动态运动基元学习模型的样本点,所述机器人运动轨迹数据包括位移、速度和加速度;Step 3: During the process of step 2, collect the robot motion trajectory data as the sample points of the dynamic motion primitive learning model, and the robot motion trajectory data includes displacement, velocity and acceleration;
步骤4:根据步骤3得到的机器人运动轨迹时的位移、速度和加速度数据,将这些数据作为训练样本,通过动态运动基元算法对样本进行训练得到机器人运动轨迹所对应的最佳权重值;Step 4: According to the displacement, velocity and acceleration data of the robot's trajectory obtained in step 3, these data are used as training samples, and the samples are trained by the dynamic motion primitive algorithm to obtain the optimal weight value corresponding to the robot's trajectory;
步骤5:针对特定任务设置初始参数,所述初始参数包括机器人运动的起点和终点,根据步骤4得到的最佳权重值,规划出通过动态运动基元模型学习后的路径,该路径具有原样本轨迹的特性,即起点和终点一致,并且其运行轨迹与样本轨迹大致相同;Step 5: Set initial parameters for specific tasks, the initial parameters include the starting point and end point of robot motion, and plan the path after learning through the dynamic motion primitive model according to the optimal weight value obtained in step 4, which has the original sample The characteristics of the trajectory, that is, the starting point and the ending point are consistent, and its running trajectory is roughly the same as the sample trajectory;
步骤6:在步骤5的基础上,加入圆形障碍物,并且在原有的动力学方程中加入耦合项,从而构建带有避障功能的动力学系统,实现动态运动基元学习模型的自主避障功能;Step 6: On the basis of step 5, add circular obstacles, and add coupling terms to the original dynamic equation, so as to construct a dynamic system with obstacle avoidance function, and realize the autonomous avoidance of the dynamic motion primitive learning model dysfunction;
步骤7:在步骤5的基础上,改变机器人运动的目标位置,在不重新训练样本的前提下,仅仅改变目标位置的参数,机器人仍能自主到达新的目标点位置,即机器人可以完成不针对某一指定任务,而对于其他的任务也具有泛化推广的能力。Step 7: On the basis of step 5, change the target position of the robot movement, and only change the parameters of the target position without retraining samples, and the robot can still reach the new target point position autonomously, that is, the robot can complete untargeted A specific task, but also has the ability to generalize to other tasks.
上述技术方案中,步骤1中对机器人运动的二维环境进行建模,建模的要求为:移动机器人的活动范围在一个有限的二维空间;以移动机器人的尺寸为基准,将障碍物的尺寸向外扩展,将机器人看作一个质点;障碍物由各种平面图形组成,数目有限,并且在机器人移动过程中这些障碍物不会发生变化和移动。In the above technical solution, in step 1, the two-dimensional environment of the robot's movement is modeled, and the requirements for modeling are: the range of motion of the mobile robot is in a limited two-dimensional space; The size expands outwards, and the robot is regarded as a particle; the obstacles are composed of various plane figures, the number is limited, and these obstacles will not change and move during the movement of the robot.
上述技术方案中,步骤2具体过程如下:In the above technical solution, the specific process of step 2 is as follows:
步骤2-1:读取机器人手柄的数据,当手柄向上下或左右推动时,该界面实时的显示机器人在建模环境中运动的位移、速度和加速度;Step 2-1: Read the data of the robot handle. When the handle is pushed up and down or left and right, the interface will display the displacement, speed and acceleration of the robot in the modeling environment in real time;
步骤2-2:遥控手柄,人为的规划出一条机器人能从起始点到达终点的最优路径,考虑到机器人一般只能前后和左右运动,因此规划出来的路径也是前后或者左右运动的路径,规划出来的轨迹也叫做样本轨迹;Step 2-2: Remote control handle, artificially plan an optimal path for the robot to reach the end point from the starting point. Considering that the robot can only move back and forth and left and right, the planned path is also the path of front and back or left and right movement. Planning The resulting trajectory is also called the sample trajectory;
步骤2-3:在规划路径时,要避开障碍物,并且用数据保存的方法将样本轨迹的位移、速度和加速度的值记录下来,并作为样本数据。Step 2-3: When planning the path, avoid obstacles, and use the method of data saving to record the displacement, velocity and acceleration of the sample trajectory, and use it as sample data.
上述技术方案中,步骤4包括如下具体步骤:In the above technical solution, step 4 includes the following specific steps:
步骤4-1:建立动态运动基元的数学模型:动态运动基元一般用来形成离散的运动,对于单一的自由度位移y,引入带有恒定系数线性微分方程并称之为动力学系统,此系统作为对运动学习的基础:Step 4-1: Establish the mathematical model of dynamic motion primitives: dynamic motion primitives are generally used to form discrete motions. For a single degree of freedom displacement y, introduce a linear differential equation with constant coefficients and call it a dynamic system. This system serves as the basis for motor learning:
式中:In the formula:
x和v分别是系统的位移和速度;x0和g分别是初始位置和目标位置;τ是时间伸缩因子;K是弹簧的弹性系数;D是系统处于临界状态下的阻尼系数;f是非线性函数,用于生成任意复杂的运动;x and v are the displacement and velocity of the system, respectively; x 0 and g are the initial position and target position, respectively; τ is the time stretch factor; K is the elastic coefficient of the spring; D is the damping coefficient of the system in a critical state; f is the nonlinearity functions for generating arbitrarily complex movements;
步骤4-2:设置初始参数,机器人运动的起始点x0和目标点g,时间常数τ,弹簧的弹性系数K,系统处于临界状态下的阻尼系数D;非线性函数f用于形成任意复杂的运动,定义f为:Step 4-2: Set the initial parameters, the starting point x 0 and the target point g of the robot movement, the time constant τ, the elastic coefficient K of the spring, and the damping coefficient D when the system is in a critical state; the nonlinear function f is used to form any complex The motion of , define f as:
式中:In the formula:
ψi(s)是径向基核函数,i表示第i个径向基核函数ψi(s),其取值范围是1到N,其中N表示径向基核函数的个数;径向基核函数定义为:ψ i (s) is a radial basis kernel function, i represents the i-th radial basis kernel function ψ i (s), and its value ranges from 1 to N, where N represents the number of radial basis kernel functions; The basic kernel function is defined as:
ψi(s)=exp(-hi(s-ci)2) (4)ψ i (s)=exp(-h i (sc i ) 2 ) (4)
式中:In the formula:
ci是径向基核函数的中心,hi>0且决定核函数的宽;其中 hN=hN-1,i=1,...N,α为任意正常数;c i is the center of the radial basis kernel function, h i >0 and determines the width of the kernel function; where h N =h N-1 , i=1,...N, α is any normal constant;
公式(3)中的函数f并不取决于时间参数,而是取决于相位变量s,s的表达形式为:The function f in formula (3) does not depend on the time parameter, but on the phase variable s, the expression of s is:
式中:In the formula:
s是关于时间t的函数,α为任意正常数,τ是时间伸缩因子;由方程(5)可知s是由1到0单调递减的,因此方程(5)称为正则系统;s is a function of time t, α is any normal constant, and τ is a time expansion factor; from equation (5), it can be seen that s is monotonically decreasing from 1 to 0, so equation (5) is called a regular system;
步骤4-3:将步骤3中得到的样本数据代入公式(1)和公式(2)中,因为正则系统是可积分的,即s可以根据参数τ计算出来,所以训练样本中的非线性扰动f′(s)可以表示成:Step 4-3: Substitute the sample data obtained in step 3 into formula (1) and formula (2), because the regular system is integrable, that is, s can be calculated according to the parameter τ, so the nonlinear disturbance in the training sample f'(s) can be expressed as:
根据最小误差准则函数J来求解最佳权重值wi,其中最小误差准则函数的表达式为:According to the minimum error criterion function J to solve the optimal weight value w i , where the expression of the minimum error criterion function is:
J=∑s(f′(s)-f(s))2 (7)J=∑s (f′( s )-f(s)) 2 (7)
当J取最小时的wi就是最佳的权重值。When J is minimized, wi is the best weight value.
上述技术方案中,步骤5包括如下具体步骤:In the above technical solution, step 5 includes the following specific steps:
步骤5-1:当机器人执行指定的任务时,设置机器人的起点位置与终点位置;Step 5-1: When the robot performs the specified task, set the start position and end position of the robot;
步骤5-2:样本数据是二维的,也即包括x轴方向上的数据和y轴方向上的数据,将x轴方向上的数据按照步骤4进行训练,得到x轴方向上的最佳权重值,代入步骤5-1中的起点和终点值,计算出x方向上通过动态运动基元模型学习后的位移、速度和加速度;Step 5-2: The sample data is two-dimensional, that is, it includes data in the x-axis direction and data in the y-axis direction. The data in the x-axis direction is trained according to step 4 to obtain the best data in the x-axis direction. The weight value is substituted into the starting point and end point value in step 5-1 to calculate the displacement, velocity and acceleration in the x direction after learning through the dynamic motion primitive model;
步骤5-3:将y轴方向上的数据按照步骤4进行训练,得到y轴方向上的最佳权重值,代入步骤5-1中的起点和终点值,计算出y方向上通过动态运动基元模型学习后的位移、速度和加速度;Step 5-3: Train the data in the y-axis direction according to step 4 to obtain the optimal weight value in the y-axis direction, substitute the starting point and end point values in step 5-1, and calculate the dynamic motion basis in the y-direction Displacement, velocity and acceleration after meta-model learning;
步骤5-4:读入步骤5-2和步骤5-3中得到的数据,分别得到x轴和y轴两个方向的运动数据,在二维平面上输出运动的轨迹仿真图,即完成基于动态运动基元学习模型对移动机器人的路径规划。Step 5-4: Read in the data obtained in step 5-2 and step 5-3, obtain the motion data in the x-axis and y-axis directions respectively, and output the motion trajectory simulation diagram on the two-dimensional plane, that is, complete the Path Planning for Mobile Robots by Learning Models of Dynamic Motion Primitives.
上述技术方案中,步骤6中所加入的障碍物是以(0.4,0.4)为圆心坐标,半径为0.1m的圆。In the above technical solution, the obstacle added in step 6 is a circle with (0.4,0.4) as the center coordinates and a radius of 0.1m.
本发明的方法开始以简单的线性动态系统(一组微分方程)开始研究,通过转换系统将简单的线性动态系统转换成非线性系统,并且通过吸引子来形成任意复杂的运动,这样就能较简单的对非线性系统进行研究。其中,用微分方程来表示的优点在于误差可以自动的被校正,而且微分方程都是以固定的格式形成的,按照这个固定的格式仅仅只需要简单的改变一个目标参数,就能适应新的环境,即可以对新目标进行泛化;基于动态运动基元学习的方法是在线学习的,对于新的情形不用重新学习,能实时的跟踪目标位置。因而,在避障方面上,通过构建带避障功能的动力学系统实现自主避障,并且动态运动基元模型的在线学习特征和其自主避障功能相结合提高了路径规划的效率。The method of the present invention begins to study with a simple linear dynamic system (a group of differential equations), converts the simple linear dynamic system into a nonlinear system through the conversion system, and forms any complex motion through the attractor, so that it can be compared Simple study of nonlinear systems. Among them, the advantage of using differential equations is that the error can be automatically corrected, and the differential equations are formed in a fixed format. According to this fixed format, only a simple change of a target parameter is required to adapt to the new environment. , that is, it can generalize new targets; the method based on dynamic motion primitive learning is online learning, and can track the target position in real time without re-learning for new situations. Therefore, in terms of obstacle avoidance, autonomous obstacle avoidance is realized by constructing a dynamic system with obstacle avoidance function, and the combination of online learning features of the dynamic motion primitive model and its autonomous obstacle avoidance function improves the efficiency of path planning.
与现有技术相比,本发明的有益效果是:Compared with prior art, the beneficial effect of the present invention is:
(1)本发明提出一种基于动态运动基元学习模型的移动机器人路径规划方法,该学习模型具有泛化推广能力,机器人在完成新的任务时,可以不用重新训练样本而保持原来样本轨迹的特性到达新的目标位置。(1) The present invention proposes a mobile robot path planning method based on a dynamic motion primitive learning model. The learning model has the ability of generalization. When the robot completes a new task, it can keep the original sample track without retraining the sample. The feature reaches the new target location.
(2)本发明提出的路径规划模型在搜索路径时是实时的,与其自主避障功能结合起来能有效地提高路径规划的效率。(2) The path planning model proposed by the present invention is real-time when searching for a path, and combining with its autonomous obstacle avoidance function can effectively improve the efficiency of path planning.
附图说明Description of drawings
图1是本发明基于动态运动基元学习模型的移动机器人路径规划过程示意图;Fig. 1 is the schematic diagram of the path planning process of the mobile robot based on the dynamic motion primitive learning model of the present invention;
图2是本发明中模拟机器人运动的二维环境;其中直线型轨迹代表样本轨迹;各种形状的图形(如矩形、圆形、椭圆形)表示二维环境中的障碍物;Fig. 2 is the two-dimensional environment of simulating robot motion among the present invention; Wherein the linear track represents the sample track; Graphics of various shapes (such as rectangle, circle, ellipse) represent the obstacle in the two-dimensional environment;
图3是本发明中动态运动基元学习模型的自主避障仿真图;Fig. 3 is the simulation diagram of autonomous obstacle avoidance of dynamic motion primitive learning model among the present invention;
图4是本发明中动态运动基元学习模型所具有泛化推广能力的仿真图;Fig. 4 is the emulation diagram of the generalization promotion ability that dynamic motion primitive learning model has among the present invention;
图5是训练的样本轨迹与通过动态运动基元模型学习后的轨迹对比图。Fig. 5 is a comparison diagram of the training sample trajectory and the trajectory learned by the dynamic motion primitive model.
具体实施方式detailed description
为了进一步说明本发明的技术方案,下面结合附图1-5对本发明进行详细的说明。In order to further illustrate the technical solution of the present invention, the present invention will be described in detail below in conjunction with accompanying drawings 1-5.
步骤1:模拟机器人运动的二维环境界面,其界面上机器人用小实心圆来代替,障碍物为各种平面图形;设置机器人运动的二维环境界面为正方形(长和宽都为1m),机器人用一个直径为5mm的小实心圆来代替。Step 1: Simulate the two-dimensional environment interface of the robot movement, the robot on the interface is replaced by a small solid circle, and the obstacles are various plane figures; set the two-dimensional environment interface of the robot movement as a square (both length and width are 1m), The robot is replaced by a small solid circle with a diameter of 5mm.
步骤2:利用OPENCV(Open Source Computer Vision Library)实现手柄对机器人的操控,使机器人能从起点避免与障碍物碰撞到达目标点;Step 2: Use OPENCV (Open Source Computer Vision Library) to realize the control of the robot by the handle, so that the robot can avoid collision with obstacles from the starting point to reach the target point;
步骤2-1:基于MFC(Microsoft Foundation Classes)界面编写一个上位机软件,该软件可以读取机器人手柄的数据,当手柄向上下或左右推动时,该界面可以实时的显示机器人在建模环境中运动的位移、速度和加速度;Step 2-1: Write a host computer software based on the MFC (Microsoft Foundation Classes) interface. This software can read the data of the robot handle. When the handle is pushed up and down or left and right, the interface can display the robot in the modeling environment in real time. Movement displacement, velocity and acceleration;
步骤2-2:遥控手柄,人为的规划出一条机器人能从起始点到达终点的最优路径,考虑到机器人一般只能前后和左右运动,因此规划出来的路径也是前后或者左右运动的路径,规划出来的轨迹也叫做样本轨迹;Step 2-2: Remote control handle, artificially plan an optimal path for the robot to reach the end point from the starting point. Considering that the robot can only move back and forth and left and right, the planned path is also the path of front and back or left and right movement. Planning The resulting trajectory is also called the sample trajectory;
步骤2-3:在规划路径时,要避开障碍物,并且用数据保存的方法将样本轨迹的位移、速度和加速度的值记录下来,并作为样本数据;Step 2-3: When planning the path, avoid obstacles, and use the method of data saving to record the displacement, velocity and acceleration of the sample trajectory, and use it as sample data;
步骤2中使用的是基于MFC编写的上位机软件,通过对手柄的操控就能实现对机器人的控制。其中设置手柄推杆的位移为机器人运动时的速度大小,其中控制机器人运动速度的范围为-5mm/s~5mm/s。In step 2, the upper computer software based on MFC is used, and the robot can be controlled by manipulating the handle. The displacement of the push rod of the handle is set as the speed of the robot when it is moving, and the range of controlling the moving speed of the robot is -5mm/s~5mm/s.
步骤3:在步骤2进行的过程中,采集机器人运动轨迹数据作为动态运动基元学习模型的样本点,其中机器人运动轨迹数据包括其位移、速度和加速度值的大小;Step 3: During the process of step 2, collect the robot motion trajectory data as the sample points of the dynamic motion primitive learning model, wherein the robot motion trajectory data includes the size of its displacement, velocity and acceleration values;
步骤4:根据步骤3得到的机器人运动轨迹时的位移、速度和加速度,将这些数据作为DMP学习模型的训练样本,通过对样本的训练得到机器人运动轨迹所对应的最佳权重值;Step 4: According to the displacement, velocity and acceleration of the robot trajectory obtained in step 3, these data are used as the training samples of the DMP learning model, and the optimal weight value corresponding to the robot trajectory is obtained by training the samples;
步骤4-1:建立动态运动基元的数学模型。动态运动基元一般用来形成离散的运动,对于单一的自由度位移y,引入带有恒定系数线性微分方程并称之为动力学系统,此系统作为对运动学习的基础:Step 4-1: Establish a mathematical model of dynamic motion primitives. Dynamic motion primitives are generally used to form discrete motions. For a single degree of freedom displacement y, a linear differential equation with a constant coefficient is introduced and called a dynamic system. This system serves as the basis for motion learning:
式中:In the formula:
x和v分别是系统的位移和速度;x0和g分别是初始位置和目标位置;τ是时间伸缩因子;K是弹簧的弹性系数;D是系统处于临界状态下的阻尼系数;f是非线性函数,用于生成任意复杂的运动;x and v are the displacement and velocity of the system, respectively; x 0 and g are the initial position and target position, respectively; τ is the time stretch factor; K is the elastic coefficient of the spring; D is the damping coefficient of the system in a critical state; f is the nonlinearity functions for generating arbitrarily complex movements;
步骤4-2:设置初始参数,机器人运动的起始点x0和目标点g,时间常数τ,弹簧的弹性系数K,系统处于临界状态下的阻尼系数D;非线性函数f用于形成任意复杂的运动,定义为:Step 4-2: Set the initial parameters, the starting point x 0 and the target point g of the robot movement, the time constant τ, the elastic coefficient K of the spring, and the damping coefficient D when the system is in a critical state; the nonlinear function f is used to form any complex The motion of is defined as:
式中:In the formula:
ψi(s)是径向基核函数,i表示第i个径向基核函数ψi(s),其取值范围是1到N,其中N表示径向基核函数的个数;径向基核函数定义为:ψ i (s) is a radial basis kernel function, i represents the i-th radial basis kernel function ψ i (s), and its value ranges from 1 to N, where N represents the number of radial basis kernel functions; The basic kernel function is defined as:
ψi(s)=exp(-hi(s-ci)2) (4)ψ i (s)=exp(-h i (sc i ) 2 ) (4)
式中:In the formula:
ci是径向基核函数的中心,hi>0且决定核函数的宽;其中 hN=hN-1,i=1,...N,α为任意正常数;c i is the center of the radial basis kernel function, h i >0 and determines the width of the kernel function; where h N =h N-1 , i=1,...N, α is any normal constant;
公式(3)中的函数f并不取决于时间参数,而是取决于相位变量s,s的表达形式为:The function f in formula (3) does not depend on the time parameter, but on the phase variable s, the expression of s is:
式中:In the formula:
s是关于时间t的函数,α为任意正常数,τ是时间伸缩因子;由方程(5)可知s是由1到0单调递减的,因此方程(5)称为正则系统;s is a function of time t, α is any normal constant, and τ is a time expansion factor; from equation (5), it can be seen that s is monotonically decreasing from 1 to 0, so equation (5) is called a regular system;
步骤4-3:将步骤3中得到的样本数据代入上述公式中,因为正则系统是可积分的,即s可以根据参数τ计算出来,所以训练样本中的非线性扰动f′(s)可以表示成:Step 4-3: Substitute the sample data obtained in step 3 into the above formula, because the regular system is integrable, that is, s can be calculated according to the parameter τ, so the nonlinear disturbance f'(s) in the training sample can be expressed as become:
根据最小误差准则函数J来求解最佳权重值wi,其中最小误差准则函数的表达式为:According to the minimum error criterion function J to solve the optimal weight value w i , where the expression of the minimum error criterion function is:
J=∑s(f′(s)-f(s))2 (7)J=∑s (f′( s )-f(s)) 2 (7)
当J取最小时的wi就是最佳的权重值;When J takes the minimum, wi is the best weight value;
步骤5:针对特定任务设置初始参数(机器人运动的起点和终点),根据步骤4得到的最佳权重值,规划出通过动态运动基元模型学习后的路径,该路径具有原样本轨迹的特性;Step 5: Set the initial parameters (starting point and end point of the robot motion) for a specific task, and plan the path learned by the dynamic motion primitive model according to the optimal weight value obtained in step 4, which has the characteristics of the original sample trajectory;
步骤5-1:当机器人执行指定的任务时,设置机器人的起点位置与终点位置;Step 5-1: When the robot performs the specified task, set the start position and end position of the robot;
步骤5-2:样本数据是二维的(x轴方向上的数据和y轴方向上的数据),将x轴方向上的数据按照步骤4进行训练,得到x轴方向上的最佳权重值,代入步骤5-1中的起点和终点值,就可以计算出x方向上通过动态运动基元模型学习后的位移、速度和加速度;Step 5-2: The sample data is two-dimensional (data in the x-axis direction and data in the y-axis direction), and the data in the x-axis direction is trained according to step 4 to obtain the optimal weight value in the x-axis direction , by substituting the start and end values in step 5-1, the displacement, velocity and acceleration in the x direction after learning through the dynamic motion primitive model can be calculated;
步骤5-3:将y轴方向上的数据按照步骤4进行训练,得到y轴方向上的最佳权重值,代入步骤5-1中的起点和终点值,就可以计算出y方向上通过动态运动基元模型学习后的位移、速度和加速度;Step 5-3: Train the data in the y-axis direction according to step 4 to obtain the optimal weight value in the y-axis direction, and substitute the starting point and end point values in step 5-1 to calculate the dynamic weight in the y-axis direction. Displacement, velocity and acceleration after learning the motion primitive model;
步骤5-4:将步骤5-2和步骤5-3中得到的数据通过MATLAB读入,得到x轴和y轴两个方向的运动数据,在二维平面上输出运动的轨迹仿真图,即完成基于动态运动基元学习模型对移动机器人的路径规划。Step 5-4: Read the data obtained in step 5-2 and step 5-3 into MATLAB to obtain the motion data in the directions of x-axis and y-axis, and output the motion trajectory simulation diagram on the two-dimensional plane, namely Complete the path planning of the mobile robot based on the dynamic motion primitive learning model.
步骤6:在步骤5的基础上,加入圆形障碍物,并且在原有的动力学方程中加入耦合项,从而构建带有避障功能的动力学系统,实现了动态运动基元学习模型的自主避障功能;Step 6: On the basis of step 5, add circular obstacles, and add coupling terms to the original dynamic equation, so as to construct a dynamic system with obstacle avoidance function, and realize the autonomy of the dynamic motion primitive learning model Obstacle avoidance function;
步骤6-1:在步骤5-4的基础上,加入圆形障碍物,其中障碍物是以(0.4,0.4)为圆心坐标,半径为0.1m的圆;Step 6-1: On the basis of step 5-4, add a circular obstacle, where the obstacle is a circle with (0.4,0.4) as the center coordinates and a radius of 0.1m;
步骤6-2:在步骤4-1给出的动力学系统方程的基础上加入耦合项P(x,v)来构建带有避障功能的动力学系统,其中耦合项P(x,v)的表达式为:Step 6-2: On the basis of the dynamic system equation given in step 4-1, add the coupling item P(x,v) to construct a dynamic system with obstacle avoidance function, where the coupling item P(x,v) The expression is:
式中:In the formula:
是以为轴,为旋转角的旋转矩阵,矢量是障碍物的位置,γ与β是常量,θ是轨迹上的点与障碍物的距离矢量与轨迹上那一点的相对速度之间的夹角; so for the axis, is the rotation matrix for the rotation angle, vector is the position of the obstacle, γ and β are constants, θ is the angle between the distance vector between the point on the trajectory and the obstacle and the relative velocity of that point on the trajectory;
步骤6-3:给定耦合项P(x,v)公式中的常数项初值,其中γ=8,旋转矩阵R表示成:Step 6-3: Given the initial value of the constant term in the coupling term P(x, v) formula, where γ=8, The rotation matrix R is expressed as:
步骤6-4:通过构建带有避障功能的动力学系统,加入步骤6-1中所述的障碍物,机器人仍能避开障碍物到达目标点,其中带有避障功能的动力学系统的数学表达式为:Step 6-4: By building a dynamic system with obstacle avoidance function and adding the obstacles described in step 6-1, the robot can still avoid obstacles to reach the target point, and the dynamic system with obstacle avoidance function The mathematical expression of is:
由图3可以看出,动态运动基元模型具有自主避障的功能;It can be seen from Figure 3 that the dynamic motion primitive model has the function of autonomous obstacle avoidance;
步骤7:在步骤5的基础上,改变机器人运动的目标位置,在不重新训练样本的前提下,仅仅改变目标位置的参数,机器人仍能自主的到达新的目标点位置,即机器人可以完成不针对某一指定任务,而对于其他的任务也具有泛化推广的能力。Step 7: On the basis of step 5, change the target position of the robot movement, and only change the parameters of the target position without retraining samples, the robot can still reach the new target point position autonomously, that is, the robot can complete different For a specific task, it also has the ability to generalize to other tasks.
步骤7-1:在步骤5-4的基础上,改变机器人目标点的位置为(0.5,0.5),代入步骤4,得到在不重新训练样本的前提下,动态运动基元模型学习后的轨迹;Step 7-1: On the basis of step 5-4, change the position of the robot target point to (0.5,0.5), substitute into step 4, and obtain the trajectory after learning the dynamic motion primitive model without retraining samples ;
步骤7-2:在步骤5-4的基础上,改变机器人目标点的位置为(0.8,0.8),代入步骤4,得到在不重新训练样本的前提下,动态运动基元模型学习后的轨迹;Step 7-2: On the basis of step 5-4, change the position of the robot target point to (0.8,0.8), and substitute it into step 4 to obtain the trajectory after learning the dynamic motion primitive model without retraining samples ;
步骤7-3:由图4可知,在步骤7-1和步骤7-2中,机器人可以到达新的目标位置,并且保持原样本轨迹的特性,因此证明了动态运动基元学习模型所具有的泛化推广能力;Step 7-3: As can be seen from Figure 4, in steps 7-1 and 7-2, the robot can reach the new target position and maintain the characteristics of the original sample trajectory, thus proving that the dynamic motion primitive learning model has Generalization ability;
综上,本发明基于动态运动基元学习模型实现对机器人的路径规划,该学习模型的在线学习特征和其自主避障功能相结合提高了路径规划的效率,并且该模型具有泛化推广能力。本发明的提出,提高了移动机器人的智能性,为移动机器人在路径规划、避障与导航等相关领域提供了参考。In summary, the present invention implements path planning for robots based on a dynamic motion primitive learning model. The combination of online learning features of the learning model and its autonomous obstacle avoidance function improves the efficiency of path planning, and the model has generalization capabilities. The proposal of the present invention improves the intelligence of the mobile robot, and provides reference for the mobile robot in related fields such as path planning, obstacle avoidance and navigation.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610348356.3A CN106444738B (en) | 2016-05-24 | 2016-05-24 | Path Planning Method of Mobile Robot Based on Dynamic Motion Primitive Learning Model |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610348356.3A CN106444738B (en) | 2016-05-24 | 2016-05-24 | Path Planning Method of Mobile Robot Based on Dynamic Motion Primitive Learning Model |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106444738A true CN106444738A (en) | 2017-02-22 |
CN106444738B CN106444738B (en) | 2019-04-09 |
Family
ID=58183456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610348356.3A Active CN106444738B (en) | 2016-05-24 | 2016-05-24 | Path Planning Method of Mobile Robot Based on Dynamic Motion Primitive Learning Model |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106444738B (en) |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107368076A (en) * | 2017-07-31 | 2017-11-21 | 中南大学 | Robot motion's pathdepth learns controlling planning method under a kind of intelligent environment |
CN107436604A (en) * | 2017-07-31 | 2017-12-05 | 中南大学 | Controlling planning method is intelligently decomposed in carrying robot path under a kind of intelligent environment |
CN107450535A (en) * | 2017-07-31 | 2017-12-08 | 中南大学 | A kind of intelligent carrying robot optimal path combination chart discusses controlling planning method |
CN108255182A (en) * | 2018-01-30 | 2018-07-06 | 上海交通大学 | A kind of service robot pedestrian based on deeply study perceives barrier-avoiding method |
CN108469732A (en) * | 2018-03-13 | 2018-08-31 | 同济大学 | Robot working space's adaptability traveling control system based on DMP and method |
CN108582072A (en) * | 2018-04-28 | 2018-09-28 | 北京邮电大学 | A kind of space manipulator mission planning method based on improvement figure planning algorithm |
CN108692734A (en) * | 2017-04-07 | 2018-10-23 | 北京图森未来科技有限公司 | A kind of paths planning method and device |
CN108919794A (en) * | 2018-06-01 | 2018-11-30 | 广州视源电子科技股份有限公司 | Global path planning method and device for double-wheel differential mobile robot |
CN109108942A (en) * | 2018-09-11 | 2019-01-01 | 武汉科技大学 | The mechanical arm motion control method and system of the real-time teaching of view-based access control model and adaptive DMPS |
CN109313036A (en) * | 2017-04-27 | 2019-02-05 | 北京嘀嘀无限科技发展有限公司 | The system and method for route planning |
CN109940619A (en) * | 2019-04-09 | 2019-06-28 | 深圳前海达闼云端智能科技有限公司 | Trajectory planning method, electronic device and storage medium |
CN110315544A (en) * | 2019-06-24 | 2019-10-11 | 南京邮电大学 | A kind of robot manipulation's learning method based on video image demonstration |
CN110789530A (en) * | 2019-11-19 | 2020-02-14 | 中国科学院深圳先进技术研究院 | Four-wheel independent steering-independent driving vehicle trajectory tracking method and system |
CN111108457A (en) * | 2017-09-29 | 2020-05-05 | 罗伯特·博世有限公司 | Method, device and computer program for operating a robot control system |
US10670412B2 (en) | 2018-02-20 | 2020-06-02 | Veoneer Us, Inc. | System and method for generating a target path for a vehicle |
CN111319044A (en) * | 2020-03-04 | 2020-06-23 | 达闼科技(北京)有限公司 | Article grabbing method and device, readable storage medium and grabbing robot |
CN111633646A (en) * | 2020-05-22 | 2020-09-08 | 北京理工大学 | Robot motion planning method based on DMPs and modified obstacle avoidance algorithm |
CN111699079A (en) * | 2018-02-15 | 2020-09-22 | 罗伯特·博世有限公司 | Coordination system, operating device and method |
CN112180726A (en) * | 2020-09-29 | 2021-01-05 | 北京航空航天大学 | A meta-learning-based approach to planning the relative motion trajectory of spacecraft |
CN112207835A (en) * | 2020-09-18 | 2021-01-12 | 浙江大学 | Method for realizing double-arm cooperative work task based on teaching learning |
CN112549028A (en) * | 2020-12-02 | 2021-03-26 | 中国科学院自动化研究所 | Double-arm robot track planning method based on dynamic motion primitives and artificial potential field |
CN112631269A (en) * | 2019-10-08 | 2021-04-09 | 国立大学法人静冈大学 | Autonomous mobile robot and control program for autonomous mobile robot |
CN112959330A (en) * | 2021-02-02 | 2021-06-15 | 浙江大学 | Robot double-arm motion man-machine corresponding device and method based on master-slave dynamic motion elements |
CN112975986A (en) * | 2021-03-25 | 2021-06-18 | 珞石(北京)科技有限公司 | Mechanical arm point-to-point trajectory planning method and device based on radial basis function |
CN113043251A (en) * | 2021-04-23 | 2021-06-29 | 江苏理工学院 | Robot teaching reproduction track learning method |
CN114186662A (en) * | 2020-09-14 | 2022-03-15 | 英业达科技有限公司 | Method for training a motion controller of a machine animal |
CN114378791A (en) * | 2022-01-13 | 2022-04-22 | 中国科学技术大学 | A robot task execution method, device, device and readable storage medium |
CN114571458A (en) * | 2022-03-21 | 2022-06-03 | 苏州大学 | Micro-nano robot assembly track learning method based on dynamic motion primitives |
CN115488881A (en) * | 2022-08-30 | 2022-12-20 | 华中科技大学 | Man-machine sharing autonomous teleoperation method and system based on multi-motor skill prior |
CN115657664A (en) * | 2022-09-30 | 2023-01-31 | 华南农业大学 | Path planning method, system, equipment and medium based on human teaching learning |
CN116901055A (en) * | 2023-05-19 | 2023-10-20 | 兰州大学 | Human-simulated interaction control method and device, electronic equipment and storage medium |
CN118003325A (en) * | 2024-02-28 | 2024-05-10 | 北京中科慧灵机器人技术有限公司 | Target track data information determining method, device, equipment and storage medium |
CN118238132A (en) * | 2024-03-04 | 2024-06-25 | 北京中科慧灵机器人技术有限公司 | Track obstacle avoidance training method and device, electronic equipment and storage medium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010058260A (en) * | 2008-09-01 | 2010-03-18 | Korea Advanced Inst Of Sci Technol | Method for controlling motion of robot based on evolutionary algorithm and imitation learning |
US8843236B2 (en) * | 2012-03-15 | 2014-09-23 | GM Global Technology Operations LLC | Method and system for training a robot using human-assisted task demonstration |
CN105045260A (en) * | 2015-05-25 | 2015-11-11 | 湖南大学 | Mobile robot path planning method in unknown dynamic environment |
CN105137967A (en) * | 2015-07-16 | 2015-12-09 | 北京工业大学 | Mobile robot path planning method with combination of depth automatic encoder and Q-learning algorithm |
-
2016
- 2016-05-24 CN CN201610348356.3A patent/CN106444738B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010058260A (en) * | 2008-09-01 | 2010-03-18 | Korea Advanced Inst Of Sci Technol | Method for controlling motion of robot based on evolutionary algorithm and imitation learning |
US8843236B2 (en) * | 2012-03-15 | 2014-09-23 | GM Global Technology Operations LLC | Method and system for training a robot using human-assisted task demonstration |
CN105045260A (en) * | 2015-05-25 | 2015-11-11 | 湖南大学 | Mobile robot path planning method in unknown dynamic environment |
CN105137967A (en) * | 2015-07-16 | 2015-12-09 | 北京工业大学 | Mobile robot path planning method with combination of depth automatic encoder and Q-learning algorithm |
Non-Patent Citations (1)
Title |
---|
陈鹏震等: "基于动态运动基元的微小型四旋翼无人机路径规划", 《高技术通讯》 * |
Cited By (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108692734B (en) * | 2017-04-07 | 2020-07-07 | 北京图森未来科技有限公司 | A path planning method and device |
CN108692734A (en) * | 2017-04-07 | 2018-10-23 | 北京图森未来科技有限公司 | A kind of paths planning method and device |
CN109313036A (en) * | 2017-04-27 | 2019-02-05 | 北京嘀嘀无限科技发展有限公司 | The system and method for route planning |
CN109313036B (en) * | 2017-04-27 | 2022-04-15 | 北京嘀嘀无限科技发展有限公司 | Route planning system and method |
CN107436604A (en) * | 2017-07-31 | 2017-12-05 | 中南大学 | Controlling planning method is intelligently decomposed in carrying robot path under a kind of intelligent environment |
CN107450535A (en) * | 2017-07-31 | 2017-12-08 | 中南大学 | A kind of intelligent carrying robot optimal path combination chart discusses controlling planning method |
CN107368076B (en) * | 2017-07-31 | 2018-03-27 | 中南大学 | Robot motion's pathdepth learns controlling planning method under a kind of intelligent environment |
CN107368076A (en) * | 2017-07-31 | 2017-11-21 | 中南大学 | Robot motion's pathdepth learns controlling planning method under a kind of intelligent environment |
CN111108457A (en) * | 2017-09-29 | 2020-05-05 | 罗伯特·博世有限公司 | Method, device and computer program for operating a robot control system |
CN111108457B (en) * | 2017-09-29 | 2024-03-29 | 罗伯特·博世有限公司 | Method, device and computer program for operating a robot control system |
CN108255182A (en) * | 2018-01-30 | 2018-07-06 | 上海交通大学 | A kind of service robot pedestrian based on deeply study perceives barrier-avoiding method |
CN111699079A (en) * | 2018-02-15 | 2020-09-22 | 罗伯特·博世有限公司 | Coordination system, operating device and method |
US11992956B2 (en) | 2018-02-15 | 2024-05-28 | Robert Bosch Gmbh | Coordination system, handling device, and method |
CN111699079B (en) * | 2018-02-15 | 2023-09-29 | 罗伯特·博世有限公司 | Coordination system, operation device and method |
US10670412B2 (en) | 2018-02-20 | 2020-06-02 | Veoneer Us, Inc. | System and method for generating a target path for a vehicle |
CN108469732A (en) * | 2018-03-13 | 2018-08-31 | 同济大学 | Robot working space's adaptability traveling control system based on DMP and method |
CN108582072A (en) * | 2018-04-28 | 2018-09-28 | 北京邮电大学 | A kind of space manipulator mission planning method based on improvement figure planning algorithm |
CN108919794A (en) * | 2018-06-01 | 2018-11-30 | 广州视源电子科技股份有限公司 | Global path planning method and device for double-wheel differential mobile robot |
CN109108942A (en) * | 2018-09-11 | 2019-01-01 | 武汉科技大学 | The mechanical arm motion control method and system of the real-time teaching of view-based access control model and adaptive DMPS |
CN109940619A (en) * | 2019-04-09 | 2019-06-28 | 深圳前海达闼云端智能科技有限公司 | Trajectory planning method, electronic device and storage medium |
CN110315544A (en) * | 2019-06-24 | 2019-10-11 | 南京邮电大学 | A kind of robot manipulation's learning method based on video image demonstration |
CN112631269A (en) * | 2019-10-08 | 2021-04-09 | 国立大学法人静冈大学 | Autonomous mobile robot and control program for autonomous mobile robot |
CN112631269B (en) * | 2019-10-08 | 2024-06-11 | 国立大学法人静冈大学 | Autonomous mobile robot and control program of autonomous mobile robot |
CN110789530A (en) * | 2019-11-19 | 2020-02-14 | 中国科学院深圳先进技术研究院 | Four-wheel independent steering-independent driving vehicle trajectory tracking method and system |
CN111319044A (en) * | 2020-03-04 | 2020-06-23 | 达闼科技(北京)有限公司 | Article grabbing method and device, readable storage medium and grabbing robot |
CN111633646A (en) * | 2020-05-22 | 2020-09-08 | 北京理工大学 | Robot motion planning method based on DMPs and modified obstacle avoidance algorithm |
CN111633646B (en) * | 2020-05-22 | 2021-08-27 | 北京理工大学 | Robot motion planning method based on DMPs and modified obstacle avoidance algorithm |
CN114186662B (en) * | 2020-09-14 | 2025-04-18 | 英业达科技有限公司 | Method for training motion controller of robot animal |
CN114186662A (en) * | 2020-09-14 | 2022-03-15 | 英业达科技有限公司 | Method for training a motion controller of a machine animal |
CN112207835A (en) * | 2020-09-18 | 2021-01-12 | 浙江大学 | Method for realizing double-arm cooperative work task based on teaching learning |
CN112180726A (en) * | 2020-09-29 | 2021-01-05 | 北京航空航天大学 | A meta-learning-based approach to planning the relative motion trajectory of spacecraft |
CN112549028A (en) * | 2020-12-02 | 2021-03-26 | 中国科学院自动化研究所 | Double-arm robot track planning method based on dynamic motion primitives and artificial potential field |
CN112959330A (en) * | 2021-02-02 | 2021-06-15 | 浙江大学 | Robot double-arm motion man-machine corresponding device and method based on master-slave dynamic motion elements |
CN112975986A (en) * | 2021-03-25 | 2021-06-18 | 珞石(北京)科技有限公司 | Mechanical arm point-to-point trajectory planning method and device based on radial basis function |
CN113043251A (en) * | 2021-04-23 | 2021-06-29 | 江苏理工学院 | Robot teaching reproduction track learning method |
CN114378791B (en) * | 2022-01-13 | 2023-09-01 | 中国科学技术大学 | Robot task execution method, device, equipment and readable storage medium |
CN114378791A (en) * | 2022-01-13 | 2022-04-22 | 中国科学技术大学 | A robot task execution method, device, device and readable storage medium |
CN114571458A (en) * | 2022-03-21 | 2022-06-03 | 苏州大学 | Micro-nano robot assembly track learning method based on dynamic motion primitives |
CN114571458B (en) * | 2022-03-21 | 2022-11-15 | 苏州大学 | Micro-nano robot assembly track learning method based on dynamic motion elements |
CN115488881A (en) * | 2022-08-30 | 2022-12-20 | 华中科技大学 | Man-machine sharing autonomous teleoperation method and system based on multi-motor skill prior |
CN115657664A (en) * | 2022-09-30 | 2023-01-31 | 华南农业大学 | Path planning method, system, equipment and medium based on human teaching learning |
CN116901055A (en) * | 2023-05-19 | 2023-10-20 | 兰州大学 | Human-simulated interaction control method and device, electronic equipment and storage medium |
CN116901055B (en) * | 2023-05-19 | 2024-04-19 | 兰州大学 | Human-hand-simulated interactive control method and device, electronic device and storage medium |
CN118003325A (en) * | 2024-02-28 | 2024-05-10 | 北京中科慧灵机器人技术有限公司 | Target track data information determining method, device, equipment and storage medium |
CN118003325B (en) * | 2024-02-28 | 2024-07-23 | 北京中科慧灵机器人技术有限公司 | Target track data information determining method, device, equipment and storage medium |
CN118238132A (en) * | 2024-03-04 | 2024-06-25 | 北京中科慧灵机器人技术有限公司 | Track obstacle avoidance training method and device, electronic equipment and storage medium |
CN118238132B (en) * | 2024-03-04 | 2024-10-29 | 北京中科慧灵机器人技术有限公司 | Track obstacle avoidance training method and device, electronic equipment and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN106444738B (en) | 2019-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106444738A (en) | Mobile robot path planning method based on dynamic motion primitive learning model | |
Chen et al. | Stabilization approaches for reinforcement learning-based end-to-end autonomous driving | |
CN106096729B (en) | A kind of depth-size strategy learning method towards complex task in extensive environment | |
CN111580544A (en) | Unmanned aerial vehicle target tracking control method based on reinforcement learning PPO algorithm | |
CN116679719A (en) | Adaptive path planning method for unmanned vehicles based on dynamic window method and proximal strategy | |
CN102819264A (en) | Path planning Q-learning initial method of mobile robot | |
CN114609925B (en) | Training method of underwater exploration strategy model and underwater exploration method of bionic machine fish | |
CN114396949A (en) | Mobile robot no-priori map navigation decision-making method based on DDPG | |
CN115542733A (en) | Adaptive Dynamic Window Method Based on Deep Reinforcement Learning | |
Liu | Implementation of SLAM and path planning for mobile robots under ROS framework | |
Yuan et al. | Hierarchical dynamic movement primitive for the smooth movement of robots based on deep reinforcement learning | |
CN114089751A (en) | A Path Planning Method for Mobile Robots Based on Improved DDPG Algorithm | |
CN117232522A (en) | Robot crowd navigation method and system based on space-time interaction diagram and dangerous area | |
CN116578080A (en) | Local path planning method based on deep reinforcement learning | |
Zou et al. | A neurobiologically inspired mapping and navigating framework for mobile robots | |
Salimpour et al. | Sim-to-Real Transfer for Mobile Robots with Reinforcement Learning: from NVIDIA Isaac Sim to Gazebo and Real ROS 2 Robots | |
CN114905505A (en) | A navigation control method, system and storage medium for a mobile robot | |
CN117850218A (en) | Path tracking control method for amphibious unmanned platform based on DDPG | |
CN113353289B (en) | Autonomous driving and separating method and device for space game and storage medium | |
Xu et al. | UPEGSim: An RL-Enabled Simulator for Unmanned Underwater Vehicles Dedicated in the Underwater Pursuit-Evasion Game | |
Metoyer et al. | Animating athletic motion planning by example | |
CN115686076A (en) | Unmanned aerial vehicle path planning method based on incremental development depth reinforcement learning | |
Tang et al. | Reinforcement learning for robots path planning with rule-based shallow-trial | |
Behnke et al. | Learning to play soccer using imitative reinforcement | |
Fang et al. | Learning from wearable-based teleoperation demonstration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |