CN106444378A - Plant culture method and system based on IoT (Internet of things) big data analysis - Google Patents
Plant culture method and system based on IoT (Internet of things) big data analysis Download PDFInfo
- Publication number
- CN106444378A CN106444378A CN201610883950.2A CN201610883950A CN106444378A CN 106444378 A CN106444378 A CN 106444378A CN 201610883950 A CN201610883950 A CN 201610883950A CN 106444378 A CN106444378 A CN 106444378A
- Authority
- CN
- China
- Prior art keywords
- plant
- population
- individuality
- individual
- soil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007405 data analysis Methods 0.000 title claims abstract description 21
- 238000012136 culture method Methods 0.000 title 1
- 239000002689 soil Substances 0.000 claims abstract description 32
- 238000000034 method Methods 0.000 claims abstract description 22
- 230000036541 health Effects 0.000 claims abstract description 20
- 238000013528 artificial neural network Methods 0.000 claims abstract description 17
- 239000011159 matrix material Substances 0.000 claims abstract description 16
- 230000002068 genetic effect Effects 0.000 claims description 19
- 230000008569 process Effects 0.000 claims description 10
- 230000006870 function Effects 0.000 claims description 8
- 230000012010 growth Effects 0.000 claims description 8
- 210000002569 neuron Anatomy 0.000 claims description 7
- 230000035772 mutation Effects 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 5
- 230000007613 environmental effect Effects 0.000 claims description 4
- 238000012549 training Methods 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 2
- 210000000349 chromosome Anatomy 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 239000003337 fertilizer Substances 0.000 claims 4
- 238000005286 illumination Methods 0.000 claims 4
- 230000002262 irrigation Effects 0.000 claims 3
- 238000003973 irrigation Methods 0.000 claims 3
- 230000007935 neutral effect Effects 0.000 claims 2
- 230000009191 jumping Effects 0.000 claims 1
- 230000009897 systematic effect Effects 0.000 claims 1
- 230000004720 fertilization Effects 0.000 abstract description 37
- 238000012364 cultivation method Methods 0.000 abstract description 9
- 241000196324 Embryophyta Species 0.000 description 91
- 238000010586 diagram Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000003976 plant breeding Methods 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003062 neural network model Methods 0.000 description 1
- 230000008635 plant growth Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明提供了一种基于物联网大数据分析的植物培育方法及系统,其中的方法包括:采集植物的种类、土壤湿度、土壤pH值、光照强度、环境温度、环境湿度、图像、浇水量、施肥量、施肥类型并构成影响因素矩阵X,并上传至服务器;其中,浇水量、施肥量和施肥类型构成决策变量;在服务器内利用Elman神经网络建立植物各影响因素矩阵X与植物健康指数之间的复杂非线性关系,获得植物培育模型;利用NSGA‑Ⅱ算法对植物培育模型进行优化,获得决策变量的一组最优解;将决策变量的该组最优解作为植物的推荐决策X*通过服务器下发至用户的终端设备进行显示;用户根据终端设备显示的推荐决策培育植物。利用本发明能够确定最优的植物培育方案,为植物营造了更好的生活环境。
The present invention provides a plant cultivation method and system based on the big data analysis of the Internet of Things, wherein the method includes: collecting plant types, soil humidity, soil pH value, light intensity, ambient temperature, ambient humidity, images, watering amount , fertilization amount, and fertilization type constitute the influencing factor matrix X, and upload it to the server; among them, the watering amount, fertilization amount, and fertilization type constitute decision variables; the Elman neural network is used in the server to establish the plant influencing factor matrix X and plant health The complex nonlinear relationship between the indices is used to obtain the plant cultivation model; the NSGA‑Ⅱ algorithm is used to optimize the plant cultivation model to obtain a set of optimal solutions of decision variables; the optimal solution of the decision variables is used as the recommended decision for plants X * is sent to the user's terminal device by the server for display; the user cultivates plants according to the recommended decision displayed by the terminal device. Utilizing the invention can determine the optimal plant cultivation scheme, and create a better living environment for the plants.
Description
技术领域technical field
本发明涉及植物智能培育领域,具体涉及一种基于物联网大数据分析的植物培育方法及系统。The invention relates to the field of plant intelligent cultivation, in particular to a plant cultivation method and system based on big data analysis of the Internet of Things.
背景技术Background technique
随着国民经济的快速发展,盆栽植物作为一种增加居住舒适度的方式进入了千家万户。但由于大多数植物主人缺乏种植植物经验,使植物长期生长在亚健康的环境。另一方面,由于室内空间有限,植物主人会根据自身情况要求植物有不同的茂密程度,避免空间浪费。With the rapid development of the national economy, potted plants have entered thousands of households as a way to increase living comfort. But because most plant owners lack experience in planting plants, the plants grow in a sub-healthy environment for a long time. On the other hand, due to limited indoor space, plant owners will require plants to have different degrees of denseness according to their own conditions, so as to avoid space waste.
目前,亟需解决的问题是建立一套全面的植物培育模型,并将植物健康指标反馈给用户,让用户能及时对植物培育方案做出调整。影响植物健康程度的各个因素之间往往体现出高度的复杂性和非线性,采用常规预测、分析方法存在一定难度。At present, the problem that needs to be solved urgently is to establish a comprehensive plant cultivation model and feed back the plant health indicators to users, so that users can make timely adjustments to the plant cultivation plan. The various factors affecting the health of plants often reflect a high degree of complexity and nonlinearity, and it is difficult to use conventional prediction and analysis methods.
发明内容Contents of the invention
本发明通过提供一种基于物联网大数据分析的植物培育方法及系统,以解决现有技术中植物培育过程中因无法为植物提供适宜的生长环境,而导致植物生长情况偏离预期指标的问题。The present invention provides a plant cultivation method and system based on big data analysis of the Internet of Things to solve the problem in the prior art that the plant growth condition deviates from the expected index due to the inability to provide a suitable growth environment for the plant during the plant cultivation process.
为解决上述问题,本发明采用以下技术方案予以实现:In order to solve the above problems, the present invention adopts the following technical solutions to achieve:
一方面,本发明提供的基于物联网大数据分析的植物培育方法,包括:On the one hand, the plant cultivation method based on the big data analysis of the Internet of Things provided by the present invention includes:
步骤S1:采集植物的种类、土壤湿度、土壤pH值、光照强度、环境温度、环境湿度、图像、浇水量、施肥量、施肥类型并构成影响因素矩阵X,并上传至服务器;其中,浇水量、施肥量和施肥类型构成决策变量;Step S1: Collect plant types, soil moisture, soil pH, light intensity, ambient temperature, ambient humidity, images, watering amount, fertilization amount, and fertilization type to form an influencing factor matrix X, and upload it to the server; among them, watering The amount of water, the amount of fertilization and the type of fertilization constitute the decision variables;
步骤S2:在服务器内利用Elman神经网络建立植物各影响因素矩阵X与植物健康指数之间的复杂非线性关系,获得植物培育模型;Step S2: use the Elman neural network in the server to establish a complex nonlinear relationship between the plant influencing factor matrix X and the plant health index, and obtain a plant cultivation model;
步骤S3:利用NSGA-Ⅱ算法对植物培育模型进行优化,获得决策变量的一组最优解;Step S3: using the NSGA-II algorithm to optimize the plant cultivation model to obtain a set of optimal solutions for the decision variables;
步骤S4:将决策变量的该组最优解作为植物的推荐决策X*通过服务器下发至用户的终端设备进行显示;Step S4: The optimal solution of the group of decision variables is used as the recommended decision X * of the plant and sent to the user's terminal device through the server for display;
步骤S5:用户根据终端设备显示的推荐决策培育植物。Step S5: The user cultivates plants according to the recommended decision displayed on the terminal device.
另一方面,本发明提供的基于物联网大数据分析的植物培育系统,包括:On the other hand, the plant cultivation system based on the big data analysis of the Internet of Things provided by the present invention includes:
数据采集单元,用于采集植物的种类、生长时期、土壤湿度、土壤pH值、光照强度、环境温度、环境湿度、图像、浇水量、施肥量、施肥类型并构成影响因素矩阵X,并上传至服务器;其中,浇水量、施肥量和所述施肥类型构成决策变量;The data acquisition unit is used to collect plant types, growth periods, soil humidity, soil pH, light intensity, ambient temperature, ambient humidity, images, watering amount, fertilization amount, and fertilization type to form an influencing factor matrix X, and upload to the server; wherein, the amount of watering, the amount of fertilization and the type of fertilization constitute decision variables;
植物培育模型建立单元,用于在服务器内利用Elman神经网络建立植物各影响因素矩阵X与植物健康指数之间的复杂非线性关系,获得植物培育模型;The plant cultivation model building unit is used to use the Elman neural network in the server to establish the complex nonlinear relationship between the matrix X of the various influencing factors of the plant and the plant health index, and obtain the plant cultivation model;
决策变量最优解获取单元,用于利用NSGA-Ⅱ算法对植物培育模型进行优化,获得决策变量的一组最优解,并将决策变量的该组最优解作为植物的推荐决策X*;The decision variable optimal solution acquisition unit is used to optimize the plant cultivation model by using the NSGA-II algorithm to obtain a group of optimal solutions of the decision variables, and use this group of optimal solutions of the decision variables as the recommended decision X * for the plant;
推荐决策下发单元,用于通过服务器将植物的推荐决策X*下发至用户的终端设备进行显示。The recommended decision delivery unit is configured to deliver the recommended decision X * of the plant to the user's terminal device for display through the server.
与现有技术相比,本发明提供的基于物联网大数据分析的植物培育方法及系统的优点是:利用Elman神经网络建立植物培育模型,再利用NSGA-Ⅱ算法优化植物培育模型,确定了植物的浇水量、施肥量、施肥种类的最优值,并即时反馈给用户,让用户随时随地都能了解植物当前状况,实现智能培育。Compared with the prior art, the advantages of the plant cultivation method and system based on the big data analysis of the Internet of Things provided by the present invention are: using the Elman neural network to establish a plant cultivation model, and then using the NSGA-II algorithm to optimize the plant cultivation model, and determine the plant cultivation model. The optimal value of the amount of watering, fertilization, and fertilization types, and instant feedback to the user, so that the user can understand the current status of the plant anytime, anywhere, and realize intelligent cultivation.
附图说明Description of drawings
图1为根据本发明实施例的基于物联网大数据分析的植物培育方法的流程示意图;Fig. 1 is the schematic flow chart of the plant cultivation method based on big data analysis of the Internet of Things according to an embodiment of the present invention;
图2为根据本发明实施例的健康指数预测结果图;Fig. 2 is a health index prediction result diagram according to an embodiment of the present invention;
图3为根据本发明实施例的健康指数预测误差图;Fig. 3 is a health index prediction error diagram according to an embodiment of the present invention;
图4为根据本发明实施例的用户界面示意图。Fig. 4 is a schematic diagram of a user interface according to an embodiment of the present invention.
具体实施方式detailed description
图1示出了根据本发明实施例的基于物联网大数据分析的植物培育方法的流程。FIG. 1 shows the flow of a plant cultivation method based on big data analysis of the Internet of Things according to an embodiment of the present invention.
如图1所示,本发明的基于物联网大数据分析的植物培育方法,包括:As shown in Figure 1, the plant cultivation method based on the big data analysis of the Internet of Things of the present invention comprises:
步骤S1:采集植物的种类、生长时期、土壤湿度、土壤pH值、光照强度、环境温度、环境湿度、图像、浇水量、施肥量、施肥类型并构成影响因素矩阵X,并上传至服务器;其中,浇水量、施肥量和施肥类型构成决策变量。Step S1: Collect plant species, growth period, soil humidity, soil pH, light intensity, ambient temperature, ambient humidity, images, watering amount, fertilization amount, and fertilization type to form an influencing factor matrix X, and upload it to the server; Among them, watering amount, fertilization amount and fertilization type constitute decision variables.
通过统计得到对植物的健康指数y1影响最大的变量为:植物种类x1、生长时期x2、土壤湿度x3、土壤pH值x4、光照强度x5、环境温度x6、环境湿度x7、图像x8、浇水量x9、施肥量x10、施肥类型x11,共11个变量;其中,土壤湿度x3、土壤pH值x4、光照强度x5、环境温度x6、环境湿度x7、图像x8由对应的传感器测量数据,植物种类、生长时期为固有属性,由用户输入,浇水量、施肥量、施肥类型为决策变量。Through statistics, the variables that have the greatest impact on the plant health index y 1 are: plant species x 1 , growth period x 2 , soil moisture x 3 , soil pH x 4 , light intensity x 5 , ambient temperature x 6 , and ambient humidity x 7 , image x 8 , watering amount x 9 , fertilization amount x 10 , fertilization type x 11 , a total of 11 variables; among them, soil moisture x 3 , soil pH x 4 , light intensity x 5 , ambient temperature x 6 , Environmental humidity x 7 and image x 8 are measured by corresponding sensors. Plant species and growth periods are inherent attributes, which are input by users. Watering amount, fertilization amount, and fertilization type are decision variables.
植物的环境温度x6通过温度传感器采集获得;植物的土壤湿度x3与环境湿度x7通过湿度传感器采集获得;植物的光照强度x5通过光照度传感器采集获得;植物的土壤pH值x4通过土壤pH计采集获得;利用采样电路分别与温度传感器、湿度传感器、光照度传感器、土壤pH计进行连接,并将温度传感器、湿度传感器、光照度传感器、土壤pH计分别采集到的环境温度、环境湿度、土壤湿度、光照强度、土壤PH值转换成数字信号。The environmental temperature of plants x 6 is obtained by collecting temperature sensors; the soil humidity of plants x 3 and environmental humidity x 7 are obtained by collecting humidity sensors; the light intensity of plants x 5 is obtained by collecting illuminance sensors; the soil pH of plants x 4 is obtained by soil The pH meter is collected; the sampling circuit is connected to the temperature sensor, humidity sensor, illuminance sensor, and soil pH meter respectively, and the ambient temperature, ambient humidity, and soil pH meter are respectively collected by the temperature sensor, humidity sensor, illuminance sensor, and soil pH meter. Humidity, light intensity, and soil pH are converted into digital signals.
植物在当前时刻的特征图像通过摄像头采集获得,摄像头将图像信息转换成数字信号。The characteristic image of the plant at the current moment is collected by the camera, and the camera converts the image information into a digital signal.
在本发明中,服务器优选为云服务器。In the present invention, the server is preferably a cloud server.
步骤S2:在服务器内利用Elman神经网络建立植物各影响因素矩阵X与植物健康指数之间的复杂非线性关系,获得植物培育模型。Step S2: Using the Elman neural network in the server to establish a complex nonlinear relationship between the plant influencing factor matrix X and the plant health index to obtain a plant cultivation model.
设置Xk=[xk1,xk2,L,xkM](k=1,2,L,S)为输入矢量,N为训练样本个数,Set X k =[x k1 ,x k2 ,L,x kM ](k=1,2,L,S) as the input vector, N as the number of training samples,
为第g次迭代时输入层M与隐层I之间的权值矢量,WJP(g)为第g次迭代时隐层J与输出层P之间的权值矢量,WJC(g)为第g次迭代时隐层J与承接层C之间的权值矢量Yk(g)=[yk1(g),yk2(g),L,ykP(g)](k=1,2,L,S)为第g次迭代时网络的实际输出,dk=[dk1,dk2,L,dkP](k=1,2,L,S)为期望输出,迭代次数g为500。 is the weight vector between the input layer M and the hidden layer I at the gth iteration, W JP (g) is the weight vector between the hidden layer J and the output layer P at the gth iteration, W JC (g) is the weight vector Y k (g)=[y k1 (g), y k2 (g), L, y kP (g)] (k=1 ,2,L,S) is the actual output of the network at the gth iteration, d k =[d k1 ,d k2 ,L,d kP ](k=1,2,L,S) is the expected output, the number of iterations g is 500.
在服务器内利用Elman神经网络建立植物各影响因素矩阵X与植物健康指数之间的复杂非线性关系,获得植物培育模型,包括:In the server, the Elman neural network is used to establish the complex nonlinear relationship between the matrix X of the plant's various influencing factors and the plant health index, and obtain the plant cultivation model, including:
步骤S21:初始化,设迭代次数g初值为0,分别赋给WMI(0)、WJP(0)、WJC(0)一个(0,1)区间的随机值;Step S21: Initialize, set the initial value of the number of iterations g to 0, and assign W MI (0), W JP (0), W JC (0) a random value in the interval (0,1) respectively;
步骤S22:随机输入样本Xk;Step S22: Randomly input samples X k ;
步骤S23:对输入样本Xk,前向计算Elman神经网络每层神经元的实际输出Yk(g);Step S23: For the input sample X k , forwardly calculate the actual output Y k (g) of neurons in each layer of the Elman neural network;
步骤S24:根据期望输出dk和实际输出Yk(g),计算误差E(g);Step S24: Calculate the error E(g) according to the expected output d k and the actual output Y k (g);
步骤S25:判断误差E(g)是否小于预设的误差值,如果大于或等于,进入步骤S26,如果小于,则进入步骤S29;Step S25: judge whether the error E(g) is less than the preset error value, if it is greater than or equal to it, go to step S26, if it is smaller, go to step S29;
步骤S26:判断迭代次数g+1是否大于最大迭代次数,如果大于,进入步骤S29,否则,进入步骤S27;Step S26: Determine whether the number of iterations g+1 is greater than the maximum number of iterations, if it is greater, go to step S29, otherwise, go to step S27;
步骤S27:对输入样本Xk反向计算Elman神经网络每层神经元的局部梯度δ;Step S27: Reversely calculate the local gradient δ of each layer of neurons in the Elman neural network for the input sample X k ;
步骤S28:计算权值修正量ΔW,并修正权值;令g=g+1,跳转至步骤S23;Step S28: Calculate the weight correction amount ΔW, and correct the weight; let g=g+1, jump to step S23;
其中,ΔWij=η·δij,η为学习效率;Wij(g+1)=Wij(g)+ΔWij(g);Among them, ΔW ij =η·δ ij , η is learning efficiency; W ij (g+1)=W ij (g)+ΔW ij (g);
步骤S29:判断是否完成所有样本的训练;如果是,完成建模;如果否,跳转至步骤S22。Step S29: Determine whether the training of all samples is completed; if yes, complete the modeling; if not, go to step S22.
在Elman神经网络设计中,隐层节点数的多少是决定Elman神经网络模型好坏的关键,也是Elman神经网络设计中的难点,这里采用试凑法来确定隐层的节点数。In the design of Elman neural network, the number of nodes in the hidden layer is the key to determine the quality of the Elman neural network model, and it is also the difficulty in the design of the Elman neural network. Here, the trial and error method is used to determine the number of nodes in the hidden layer.
式中,p为隐层神经元节点数,n为输入层神经元数,m为输出层神经元数,k为1-10之间的常数。Elman神经网络的设置参数如下表2所示。In the formula, p is the number of neuron nodes in the hidden layer, n is the number of neurons in the input layer, m is the number of neurons in the output layer, and k is a constant between 1-10. The setting parameters of the Elman neural network are shown in Table 2 below.
表2Elman神经网络设置参数Table 2 Elman neural network setting parameters
通过上述过程,可得到Elman神经网络预测效果如图2和3所示。智能植物培育的基础是模型的建立,模型精度直接影响输出结果。通过对图2和3分析可知,健康指数预最大测误差为-3.5%,模型预测精度高,满足建模要求。Through the above process, the prediction effect of Elman neural network can be obtained as shown in Figures 2 and 3. The basis of intelligent plant cultivation is the establishment of models, and the accuracy of the models directly affects the output results. Through the analysis of Figures 2 and 3, it can be seen that the maximum prediction error of the health index is -3.5%, and the prediction accuracy of the model is high, which meets the modeling requirements.
步骤S3:利用NSGA-Ⅱ算法(Non-dominated Sorting Genetic Algorithm-Ⅱ,带精英策略的非支配排序的遗传算法)对植物培育模型进行优化,获得决策变量的一组最优解。Step S3: using the NSGA-II algorithm (Non-dominated Sorting Genetic Algorithm-II, non-dominated sorting genetic algorithm with elitist strategy) to optimize the plant breeding model to obtain a set of optimal solutions for decision variables.
获得决策变量的一组最优解,也就是获得植物的浇水量、施肥量、施肥类型的一组最优值。Obtain a set of optimal solutions for decision variables, that is, obtain a set of optimal values for plant watering, fertilization, and fertilization types.
利用NSGA-Ⅱ算法对所述植物培育模型进行优化的步骤包括:The steps of optimizing the plant cultivation model using the NSGA-II algorithm include:
步骤S31:初始化系统参数;其中,所述系统参数包括种群规模N、最大遗传代数G、交叉概率P和变异概率Q。Step S31: Initialize system parameters; wherein, the system parameters include population size N, maximum genetic algebra G, crossover probability P, and mutation probability Q.
步骤S32:将第t代产生的新种群Qt与其父代种群Pt合并组成种群Rt,种群Rt的大小为2N;若是第一代种群,则将第一代种群作为种群Rt。Step S32: Merge the new population Q t generated in generation t with its parent population P t to form population R t . The size of population R t is 2N; if it is the first generation population, use the first generation population as population R t .
步骤S33:对种群Rt进行非支配排序,获得一系列的非支配集Zi,并计算非支配集Zi中每个个体的拥挤度,产生新的父代种群Pt+1。Step S33: Perform non-dominated sorting on the population R t to obtain a series of non-dominated sets Z i , and calculate the crowding degree of each individual in the non-dominated set Z i to generate a new parent population P t+1 .
步骤S33的具体过程如下:The concrete process of step S33 is as follows:
步骤S331:利用适应度函数判断种群Rt中的所有个体之间的相互支配关系;其中,D(i).n表示支配第i个个体的个体数量,D(i).p表示被第i个个体支配的个体集合;若个体i支配j,则将个体j放入D(i).p集合,D(j).n的值加1;依次操作,获得种群Rt中的所有个体D(i).n与D(i).p的信息。Step S331: Use the fitness function to judge the mutual domination relationship among all individuals in the population R t ; where, D(i).n represents the number of individuals dominating the i-th individual, and D(i).p represents the number of individuals dominated by the i-th individual A set of individuals dominated by individuals; if individual i dominates j, put individual j into the D(i).p set, and add 1 to the value of D(j).n; operate sequentially to obtain all individuals D in the population R t (i).n and D(i).p information.
步骤S332:将种群Rt中所有D(i).n值为0的个体,即该类个体不被其他个体支配,放入非支配层的第一层,将D(i).n值为1的个体放入非支配层的第二层,依次操作,直到将所述种群Rt中所有个体放入不同非支配层为止;同一层数内的个体共享相同的虚拟适应度值,级数越小,虚拟适应度值越低,该层内个体越优,将非支配层的层数按从小到大的顺序进行排序。Step S332: Put all the individuals whose D(i).n value is 0 in the population R t , that is, the individuals of this type are not dominated by other individuals, put them into the first layer of the non-dominated layer, and set the D(i).n value to 1 into the second layer of the non-dominated layer, and operate sequentially until all individuals in the population R t are put into different non-dominated layers; individuals in the same layer share the same virtual fitness value, and the level The smaller the value is, the lower the virtual fitness value is, and the better the individual in this layer is, the layers of the non-dominated layer are sorted in ascending order.
步骤S333:由于每一层内所有个体共享同一虚拟适应度值,当需要在同一层内选择更优个体时,计算其拥挤度。Step S333: Since all individuals in each layer share the same virtual fitness value, when it is necessary to select a better individual in the same layer, calculate its degree of congestion.
每个点的拥挤度id初始值置为0;针对每个目标,对所述种群Rt进行非支配排序,令所述种群Rt边界的两个个体的拥挤度为无穷,对所述种群Rt中其他的个体进行拥挤度的计算:The initial value of the crowding degree i d of each point is set to 0; for each target, the population R t is non-dominated sorted, and the crowding degree of the two individuals at the boundary of the population R t is infinite, and the Other individuals in the population R t calculate the degree of crowding:
其中,id表示i点的拥挤度,表示i+1点的第j个目标函数值,表示i-1点的第j个目标函数值。Among them, id represents the congestion degree of point i, Indicates the jth objective function value of point i+1, Indicates the jth objective function value of point i-1.
步骤S334:经过快速非支配排序和拥挤度计算之后,种群Rt中的每个个体i都拥有两个属性:非支配排序决定的非支配序irank和拥挤度id。依据这两个属性,可以定义拥挤度比较算子:个体i与个体j进行比较,如果个体i所处的非支配层优于个体j所处的非支配层,即irank<jrank,或者,个体i与个体j有相同的等级,且个体i比个体j的拥挤距离长,即irank=jrank且id>jd,则个体i获胜。Step S334: After fast non-dominated sorting and congestion degree calculation, each individual i in population R t has two attributes: non-dominated rank i rank determined by non-dominated sorting and congestion degree id . According to these two attributes, a crowding degree comparison operator can be defined: individual i is compared with individual j, if the non-dominated rank of individual i is better than the non-dominated rank of individual j, that is, i rank < j rank , or , individual i has the same rank as individual j, and individual i has a longer crowding distance than individual j, that is, i rank =j rank and i d >j d , then individual i wins.
步骤S335:由于子代种群的个体和父代种群Pt+1的个体都包含在种群Rt中,则经过非支配排序以后的非支配集Z1中包含的个体是Rt中最好的,所以先将非支配集Z1放入父代种群Pt+1;如果父代种群Pt+1的个体数量未超出种群规模N,则将下一级的非支配集Z2放入父代种群Pt+1,直到将非支配集Z3放入父代种群Pt+1时,父代种群Pt+1的个体数量超出种群规模N,对非支配集Z3中的个体使用拥挤度比较算子进行比较,取前{num(Z3)-(num(Pt+1)-N)}个个体,使父代种群Pt+1的个体数量达到种群规模N。Step S335: Since the individuals of the child population and the individuals of the parent population P t+1 are included in the population R t , the individuals contained in the non-dominated set Z 1 after non-dominated sorting are the best in R t , so first put the non-dominated set Z 1 into the parent population P t+1 ; if the number of individuals in the parent population P t+1 does not exceed the population size N, then put the next-level non-dominated set Z 2 into the parent population Generation population P t+1 , until the non-dominated set Z 3 is put into the parent population P t+1 , the number of individuals in the parent population P t+1 exceeds the population size N, and the individuals in the non-dominated set Z 3 are used Comparing with the crowding degree comparison operator, take the first {num(Z 3 )-(num(P t+1 )-N)} individuals, so that the number of individuals in the parent population P t+1 reaches the population size N.
步骤S34:对父代种群Pt+1进行交叉、变异基本遗传操作获得子代种群Qt+1。Step S34: Perform crossover and mutation basic genetic operations on the parent population P t+1 to obtain the offspring population Q t+1 .
对父代种群Pt+1进行交叉遗传操作的过程为:The process of crossover genetic operation on the parent population Pt+1 is:
将父代种群Pt+1内的所有个体随机搭配成对,对每一对个体,生成一个随机数,若某一对个体的随机数小于交叉概率P,则交换该对个体之间的部分染色体。Randomly match all individuals in the parent population P t+1 into pairs, and generate a random number for each pair of individuals. If the random number of a pair of individuals is less than the crossover probability P, exchange the part between the pair of individuals chromosome.
对父代种群Pt+1进行变异基本遗传操作的过程为:The basic genetic operation process of mutation on the parent population P t+1 is as follows:
对父代种群Pt+1中的每一个个体,生成一个随机数,若某个个体的随机数小于变异概率Q,则改变该个体的某一个或某一些基因座上的基因值为其他基因值。For each individual in the parent population P t+1 , generate a random number, if the random number of an individual is less than the mutation probability Q, then change the gene value of one or some loci of the individual to other genes value.
步骤S35:遗传代数加1,判断遗传代数是否达到最大遗传代数G,如果是,输出当前全局最优解;如果否,跳转至步骤S32进行重复计算,直到遗传代数达到最大遗传代数G为止。Step S35: Add 1 to the genetic algebra, determine whether the genetic algebra reaches the maximum genetic algebra G, if yes, output the current global optimal solution; if not, jump to step S32 to repeat the calculation until the genetic algebra reaches the maximum genetic algebra G.
步骤S4:将决策变量的该组最优解作为植物的推荐决策X*通过服务器下发至用户的终端设备进行显示。Step S4: The optimal solution of the group of decision variables is sent to the user's terminal device for display through the server as the recommended decision X * of the plant.
各类传感器每2小时采集一次数据上传至服务器,服务器接数据并通过植物培育模型给出植物当前推荐的浇水量、施肥量和施肥种类。Various sensors collect data every 2 hours and upload it to the server. The server receives the data and gives the current recommended watering amount, fertilization amount and fertilization type for the plant through the plant cultivation model.
步骤S5:用户根据终端设备显示的推荐决策培育植物。Step S5: The user cultivates plants according to the recommended decision displayed on the terminal device.
用户可以在终端设备上打开智能植物培育界面(如图4所示),界面显示该植物的简要信息,植物的简要信息包括植物的图像和当前健康指数,用户可在界面设置植物的理想健康指数、理想,由服务器下发推荐浇水量、施肥量、施肥类型,用户可通过手机远程操作完成自动浇水、施肥。The user can open the intelligent plant cultivation interface (as shown in Figure 4) on the terminal device, and the interface displays the brief information of the plant. The brief information of the plant includes the image of the plant and the current health index. The user can set the ideal health index of the plant on the interface , Ideal, the server sends the recommended watering amount, fertilization amount, and fertilization type, and the user can complete automatic watering and fertilization through remote operations on the mobile phone.
植物的当前健康指数由基于NSGA-Ⅱ算法对植物培育模型进行优化得到,植物的当前健康指数与决策变量的一组最优解相对应。The current health index of the plant is obtained by optimizing the plant breeding model based on the NSGA-Ⅱ algorithm, and the current health index of the plant corresponds to a set of optimal solutions of the decision variables.
本发明提供的基于物联网大数据分析的植物培育方法,首先,利用传感器、摄像头等硬件采集植物指标参数、植物图像、浇水量、施肥量、施肥类型,然后,将采集到的数据上传至服务器进行存储,在服务器内利用Elman神经网络建立影响因素矩阵X与植物健康指数之间的复杂非线性关系,获得植物培育模型,利用NSGA-Ⅱ算法对植物培育模型进行优化,得到各决策变量的一组最优值,并将这组最优解作为推荐决策下发至用户的PC或APP终端,最后,用户可根据推荐决策决定植物的浇水量、施肥量、施肥种类,实现远程自动培育。该方法能够确定最优的植物培育方案,为植物营造了更好的生活环境。The plant cultivation method based on the big data analysis of the Internet of Things provided by the present invention first uses hardware such as sensors and cameras to collect plant index parameters, plant images, watering amount, fertilization amount, and fertilization type, and then uploads the collected data to The server stores it, uses the Elman neural network to establish the complex nonlinear relationship between the influencing factor matrix X and the plant health index in the server, obtains the plant cultivation model, uses the NSGA-Ⅱ algorithm to optimize the plant cultivation model, and obtains the decision variables. A set of optimal values, and send this set of optimal solutions to the user's PC or APP terminal as a recommended decision. Finally, the user can decide the watering amount, fertilization amount, and fertilization type of the plant according to the recommended decision to realize remote automatic cultivation . The method can determine the optimal plant cultivation scheme and create a better living environment for the plants.
与上述方法相对应,本发明还提供一种基于物联网大数据分析的植物培育系统。Corresponding to the above method, the present invention also provides a plant cultivation system based on big data analysis of the Internet of Things.
本发明提供的基于物联网大数据分析的植物培育系统,包括:The plant cultivation system based on the big data analysis of the Internet of Things provided by the present invention includes:
数据采集单元,用于采集植物的种类、生长时期、土壤湿度、土壤pH值、光照强度、环境温度、环境湿度、图像、浇水量、施肥量、施肥类型并构成影响因素矩阵X,并上传至服务器;其中,浇水量、施肥量和施肥类型构成决策变量。数据采集单元采集数据的过程参考上述步骤S1。The data acquisition unit is used to collect plant types, growth periods, soil humidity, soil pH, light intensity, ambient temperature, ambient humidity, images, watering amount, fertilization amount, and fertilization type to form an influencing factor matrix X, and upload to the server; where watering amount, fertilization amount, and fertilization type constitute the decision variables. For the process of collecting data by the data collection unit, refer to the above step S1.
植物培育模型建立单元,用于在服务器内利用Elman神经网络建立植物各影响因素矩阵X与植物健康指数之间的复杂非线性关系,获得植物培育模型。植物培育模型建立单元建立植物培育模型的具体过程参考上述步骤S2。The plant cultivation model building unit is used to establish the complex nonlinear relationship between the plant influencing factor matrix X and the plant health index by using the Elman neural network in the server to obtain the plant cultivation model. For the specific process of establishing the plant cultivation model by the plant cultivation model building unit, refer to the above step S2.
决策变量最优解获取单元,用于利用NSGA-Ⅱ算法对植物培育模型进行优化,获得决策变量的一组最优解,并将决策变量的该组最优解作为植物的推荐决策X*。决策变量最优解获取单元获取决策变量最优解的具体过程参考上述步骤S3。The decision variable optimal solution acquisition unit is used to optimize the plant cultivation model by using the NSGA-II algorithm, obtain a group of optimal solutions of the decision variables, and use the group of optimal solutions of the decision variables as the recommended decision X * for the plant. For the specific process of obtaining the optimal solution of the decision variable by the unit for obtaining the optimal solution of the decision variable, refer to the above step S3.
推荐决策下发单元,用于通过服务器将植物的推荐决策X*下发至用户的终端设备进行显示。The recommended decision delivery unit is configured to deliver the recommended decision X * of the plant to the user's terminal device for display through the server.
用户根据终端设备显示的推荐决策对植物进行培育。The user cultivates the plants according to the recommended decision displayed on the terminal device.
应当指出的是,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的普通技术人员在本发明的实质范围内所做出的变化、改性、添加或替换,也应属于本发明的保护范围。It should be noted that the above description is not intended to limit the present invention, and the present invention is not limited to the above-mentioned examples. Those skilled in the art may make changes, modifications, additions or replacements within the scope of the present invention. It should also belong to the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610883950.2A CN106444378B (en) | 2016-10-10 | 2016-10-10 | Plant cultivating method and system based on Internet of Things big data analysis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610883950.2A CN106444378B (en) | 2016-10-10 | 2016-10-10 | Plant cultivating method and system based on Internet of Things big data analysis |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106444378A true CN106444378A (en) | 2017-02-22 |
CN106444378B CN106444378B (en) | 2019-07-12 |
Family
ID=58173021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610883950.2A Active CN106444378B (en) | 2016-10-10 | 2016-10-10 | Plant cultivating method and system based on Internet of Things big data analysis |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106444378B (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107360775A (en) * | 2017-07-11 | 2017-11-21 | 中工武大设计研究有限公司 | The fertilising accuracy control method and its control system of a kind of water-fertilizer integral equipment |
CN107766938A (en) * | 2017-09-25 | 2018-03-06 | 南京律智诚专利技术开发有限公司 | A kind of plant cover cultivation methods based on BP neural network |
TWI624799B (en) * | 2017-03-13 | 2018-05-21 | 中華大學 | Management system of mushroom intelligent cultivation with internet of things |
CN108074236A (en) * | 2017-12-27 | 2018-05-25 | 广东欧珀移动通信有限公司 | Irrigating plant based reminding method, device, equipment and storage medium |
CN108633697A (en) * | 2018-05-15 | 2018-10-12 | 重庆科技学院 | A kind of foster culture method of the intelligent plant based on the daily data analysis of plant and cloud |
CN108694444A (en) * | 2018-05-15 | 2018-10-23 | 重庆科技学院 | A kind of plant cultivating method based on intelligent data acquisition Yu cloud service technology |
CN109147902A (en) * | 2018-07-19 | 2019-01-04 | 重庆科技学院 | A kind of user's sleep massage method and system based on Internet of Things big data analysis |
CN109874477A (en) * | 2019-01-17 | 2019-06-14 | 北京农业智能装备技术研究中心 | A kind of Agricultural Park fertilizer applicator trustship method and system |
CN112099557A (en) * | 2020-09-24 | 2020-12-18 | 苏州七采蜂数据应用有限公司 | Internet-based household plant planting method and system |
CN112488869A (en) * | 2020-12-03 | 2021-03-12 | 湖北添安农业科技有限公司 | Multi-factor management decision system suitable for agricultural production |
CN112868435A (en) * | 2021-01-14 | 2021-06-01 | 同济大学 | NSGA-II-based blueberry greenhouse light and temperature coordination optimization method |
CN113467238A (en) * | 2021-06-28 | 2021-10-01 | 燕山大学 | Watering control method for intelligent dry snow field |
CN113570240A (en) * | 2021-07-27 | 2021-10-29 | 蒋俊伟 | Wisdom farm platform based on full life cycle management of crops |
CN113627216A (en) * | 2020-05-07 | 2021-11-09 | 杭州睿琪软件有限公司 | Plant state evaluation method, system and computer readable storage medium |
CN114202247A (en) * | 2022-01-13 | 2022-03-18 | 安徽农业大学 | A big data analysis system for crop growth environment |
CN116644575A (en) * | 2023-05-25 | 2023-08-25 | 淮阴工学院 | Intelligent design adjusting equipment for saline-alkali degree of wetland |
CN117829414A (en) * | 2023-12-14 | 2024-04-05 | 巴中秦岭药业有限公司 | Bitter orange seedling cultivation management method, system and electronic equipment |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103646299A (en) * | 2013-12-19 | 2014-03-19 | 浙江省公众信息产业有限公司 | Neural network based crop prediction method and device |
CN105334824A (en) * | 2015-11-06 | 2016-02-17 | 重庆科技学院 | Aluminum electrolysis production optimization method based on NSGA-II algorithm |
CN105389452A (en) * | 2015-12-31 | 2016-03-09 | 西北农林科技大学 | Cucumber whole-course photosynthetic rate prediction model based on neural network, and establishment method |
CN105588930A (en) * | 2015-12-17 | 2016-05-18 | 镇江市高等专科学校 | Method for measuring parameters of soil in greenhouse |
CN105956715A (en) * | 2016-05-20 | 2016-09-21 | 北京邮电大学 | Soil moisture status prediction method and device |
-
2016
- 2016-10-10 CN CN201610883950.2A patent/CN106444378B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103646299A (en) * | 2013-12-19 | 2014-03-19 | 浙江省公众信息产业有限公司 | Neural network based crop prediction method and device |
CN105334824A (en) * | 2015-11-06 | 2016-02-17 | 重庆科技学院 | Aluminum electrolysis production optimization method based on NSGA-II algorithm |
CN105588930A (en) * | 2015-12-17 | 2016-05-18 | 镇江市高等专科学校 | Method for measuring parameters of soil in greenhouse |
CN105389452A (en) * | 2015-12-31 | 2016-03-09 | 西北农林科技大学 | Cucumber whole-course photosynthetic rate prediction model based on neural network, and establishment method |
CN105956715A (en) * | 2016-05-20 | 2016-09-21 | 北京邮电大学 | Soil moisture status prediction method and device |
Non-Patent Citations (1)
Title |
---|
高媛: "非支配排序遗传算法的研究与应用", 《中国优秀硕士学位论文全文数据库》 * |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI624799B (en) * | 2017-03-13 | 2018-05-21 | 中華大學 | Management system of mushroom intelligent cultivation with internet of things |
CN107360775A (en) * | 2017-07-11 | 2017-11-21 | 中工武大设计研究有限公司 | The fertilising accuracy control method and its control system of a kind of water-fertilizer integral equipment |
CN107766938A (en) * | 2017-09-25 | 2018-03-06 | 南京律智诚专利技术开发有限公司 | A kind of plant cover cultivation methods based on BP neural network |
CN108074236A (en) * | 2017-12-27 | 2018-05-25 | 广东欧珀移动通信有限公司 | Irrigating plant based reminding method, device, equipment and storage medium |
CN108074236B (en) * | 2017-12-27 | 2020-05-19 | Oppo广东移动通信有限公司 | Plant watering reminding method, device, equipment and storage medium |
CN108633697A (en) * | 2018-05-15 | 2018-10-12 | 重庆科技学院 | A kind of foster culture method of the intelligent plant based on the daily data analysis of plant and cloud |
CN108694444A (en) * | 2018-05-15 | 2018-10-23 | 重庆科技学院 | A kind of plant cultivating method based on intelligent data acquisition Yu cloud service technology |
CN109147902A (en) * | 2018-07-19 | 2019-01-04 | 重庆科技学院 | A kind of user's sleep massage method and system based on Internet of Things big data analysis |
CN109874477A (en) * | 2019-01-17 | 2019-06-14 | 北京农业智能装备技术研究中心 | A kind of Agricultural Park fertilizer applicator trustship method and system |
CN113627216A (en) * | 2020-05-07 | 2021-11-09 | 杭州睿琪软件有限公司 | Plant state evaluation method, system and computer readable storage medium |
CN113627216B (en) * | 2020-05-07 | 2024-02-27 | 杭州睿琪软件有限公司 | Plant state evaluation method, system and computer readable storage medium |
CN112099557A (en) * | 2020-09-24 | 2020-12-18 | 苏州七采蜂数据应用有限公司 | Internet-based household plant planting method and system |
CN112488869A (en) * | 2020-12-03 | 2021-03-12 | 湖北添安农业科技有限公司 | Multi-factor management decision system suitable for agricultural production |
CN112488869B (en) * | 2020-12-03 | 2023-10-20 | 湖北添安农业科技有限公司 | Multi-factor management decision-making system suitable for agricultural production |
CN112868435B (en) * | 2021-01-14 | 2022-07-05 | 同济大学 | A light-temperature coordination optimization method for blueberry greenhouse based on NSGA-II |
CN112868435A (en) * | 2021-01-14 | 2021-06-01 | 同济大学 | NSGA-II-based blueberry greenhouse light and temperature coordination optimization method |
CN113467238A (en) * | 2021-06-28 | 2021-10-01 | 燕山大学 | Watering control method for intelligent dry snow field |
CN113570240A (en) * | 2021-07-27 | 2021-10-29 | 蒋俊伟 | Wisdom farm platform based on full life cycle management of crops |
CN113570240B (en) * | 2021-07-27 | 2024-02-27 | 蒋俊伟 | Intelligent farm platform based on whole life cycle management of crops |
CN114202247A (en) * | 2022-01-13 | 2022-03-18 | 安徽农业大学 | A big data analysis system for crop growth environment |
CN116644575A (en) * | 2023-05-25 | 2023-08-25 | 淮阴工学院 | Intelligent design adjusting equipment for saline-alkali degree of wetland |
CN116644575B (en) * | 2023-05-25 | 2024-03-26 | 淮阴工学院 | An intelligent design adjustment device for wetland salinity |
CN117829414A (en) * | 2023-12-14 | 2024-04-05 | 巴中秦岭药业有限公司 | Bitter orange seedling cultivation management method, system and electronic equipment |
Also Published As
Publication number | Publication date |
---|---|
CN106444378B (en) | 2019-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106444378A (en) | Plant culture method and system based on IoT (Internet of things) big data analysis | |
CN106650212A (en) | Intelligent plant breeding method and system based on data analysis | |
CN108694444A (en) | A kind of plant cultivating method based on intelligent data acquisition Yu cloud service technology | |
CN102183621B (en) | Method and system for online prediction of dissolved oxygen concentration in aquaculture | |
CN106447117B (en) | Pet feeding method and system based on the daily data analysis of pet | |
CN108633697A (en) | A kind of foster culture method of the intelligent plant based on the daily data analysis of plant and cloud | |
CN107329511B (en) | Method and system for efficient regulation and control of light environment of hydroponic vegetables based on suitable root temperature range | |
CN106472332B (en) | Pet feeding method and system based on dynamic intelligent algorithm | |
CN117036088A (en) | Data acquisition and analysis method for identifying growth situation of greening plants by AI | |
CN106373022B (en) | BP-GA-based greenhouse crop planting efficiency condition optimization method and system | |
Taillandier et al. | A new BDI agent architecture based on the belief theory. Application to the modelling of cropping plan decision-making | |
CN112906298A (en) | Blueberry yield prediction method based on machine learning | |
CN113762603B (en) | Photovoltaic base station short-term photovoltaic power prediction method based on improved sparrow algorithm optimization | |
CN114611804B (en) | Corn yield prediction method based on TSO-GRNN combined model | |
CN115034425B (en) | Coupled water quantity-water quality-aquatic organisms community dynamic simulation, scheduling method and device | |
CN117575094B (en) | Crop yield prediction and optimization method and device based on digital twin | |
CN109472320B (en) | Automatic correction method for model variety parameters of crop growth period under uncertain conditions | |
CN118333579B (en) | Intelligent management method and system based on ecological agriculture | |
CN107145941A (en) | Real-time dynamic acquisition method of light demand based on optimal light quality and photon flux density | |
CN114662742A (en) | Dynamic decision method and device for field irrigation and fertilization system | |
Wang et al. | Functional–structural plant model “GreenLab”: A state-of-the-art review | |
CN105913326B (en) | Optimization method of crop growth period model variety parameters based on constraint knowledge and elite individual strategy genetic algorithm | |
CN109858180A (en) | A kind of area crops water consumption spatial framework optimum design method | |
CN111126827A (en) | Input-output accounting model construction method based on BP artificial neural network | |
CN114859734A (en) | Greenhouse environment parameter optimization decision method based on improved SAC algorithm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20210113 Address after: Room 5-2, No.1-5, Tieshan Road, Biquan street, Bishan District, Chongqing 402760 Patentee after: Chongqing juce Intelligent Technology Research Institute Co.,Ltd. Address before: No. 20, East Road, University City, Chongqing, Shapingba District, Chongqing Patentee before: Chongqing University of Science & Technology |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20211217 Address after: 401320 22-2, unit 2, building 1, No. 18, Xinnong street, Banan District, Chongqing Patentee after: Chongqing Guangbo Technology Co.,Ltd. Address before: Room 5-2, No.1-5, Tieshan Road, Biquan street, Bishan District, Chongqing 402760 Patentee before: Chongqing juce Intelligent Technology Research Institute Co.,Ltd. |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20231019 Address after: No. B221, 2nd Floor, Building 39, Chongqing University of Science and Technology, No. 20 Daxue Cheng East Road, Huxi Street, High tech Zone, Shapingba District, Chongqing, 400000 Patentee after: Chongqing youshuo Technology Co.,Ltd. Address before: 401320 22-2, unit 2, building 1, No. 18, Xinnong street, Banan District, Chongqing Patentee before: Chongqing Guangbo Technology Co.,Ltd. |
|
TR01 | Transfer of patent right |