CN106443675B - 一种基于压缩感知的层析sar盲信源估计方法 - Google Patents
一种基于压缩感知的层析sar盲信源估计方法 Download PDFInfo
- Publication number
- CN106443675B CN106443675B CN201610860339.8A CN201610860339A CN106443675B CN 106443675 B CN106443675 B CN 106443675B CN 201610860339 A CN201610860339 A CN 201610860339A CN 106443675 B CN106443675 B CN 106443675B
- Authority
- CN
- China
- Prior art keywords
- information
- compressed sensing
- information source
- source
- estimation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
- G01S13/9021—SAR image post-processing techniques
- G01S13/9027—Pattern recognition for feature extraction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/40—Means for monitoring or calibrating
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明公开了一种基于压缩感知的层析SAR盲信源估计方法,涉及信号处理领域,该方法针对散射体信源个数检测不准确时会导致信源信息估计不准确的问题,提出一种盲信源信息估计方法,即同时检测与估计信源。该方法包括步骤一、压缩感知估计信源信息,步骤二、粗检测散射体个数,步骤三、精确估计信源信息,步骤四检验是否存在幅度值较小的信号,排除之输出结果。本发明具有很强的实用性,可以有效检测散射体个数,提高高程估计精度。
Description
技术领域
本发明属于信号处理领域,涉及一种基于压缩感知的层析SAR(SyntheticAperture Radar)盲信源估计方法。
背景技术
合成孔径雷达(SAR)是一种能够全天时、全天候工作的高分辨率微波成像雷达,并且对地表具有一定的穿透能力。在SAR基础上发展起来的层析合成孔径雷达(TomographicSAR,Tomo-SAR)是一种理想的获取复杂地形的三维重构和形变速率估计的技术。自2000年机载Tomo-SAR被验证可行以来,星载Tomo-SAR获得了迅速发展,被广泛应用于灾害监测、环境测量、行星探测、极地研究、三维战场模拟、武器精确打击等领域。
随着对目标高程信息需求的不断提高,高精度的散射体高程信息估计是目前星载层析SAR的主要发展方向。由于星载层析SAR的高程孔径很小,因此高程向分辨率常常比距离与方位向分辨率差几十倍。因为层析SAR高程估计是一个谱估计问题,因此传统的层析SAR高程估计方法分参数方法与非参数方法。参数谱分析方法对于含噪声的高程相位估计较为敏感,且需要提前正确检测出单个分辨单元中信源的个数。非参数谱分析方法受3dB分辨率理论限制,无法实现高程向上的超分辨率。
当前,基于压缩感知(Compressive Sensing,CS)的重构算法因为其对含噪声信号处理的鲁棒性及在高程向上具有超分辨率能力而受到广泛关注。先根据压缩感知理论重构出信源信息和信源高程,然后基于信息论先验并采用信源信息的估计值确定散射信源个数,最后采用非线性最小二乘方法来估计信源信息及信源高程。由于只进行一次检测,信源个数时常出现多检和漏检的情况,从而导致信源高程估计存在偏差,进而影响高程反演结果;但若进行多次估计检测,虽能提高检测正确率,但会带来耗时问题。因此,具有超分辨率能力、高精度、鲁棒性、耗时少的层析SAR高程估计方法具有重要意义。将压缩感知技术应用到层析SAR高程重构中,可以有效解决鲁棒性和高程向超分辨率问题,但还需进一步提高高程的估计精度。
发明内容
本发明的主要目的是为了解决上述问题,针对一次检测出现多检和漏检而多次检测又耗时的矛盾现象,提出了一种基于压缩感知的层析SAR盲信源估计方法,利用本发明可以有效抑制了多检和漏检现象的出现,并提高了信源高程和信源信息的估计精度。
本发明提供了一种基于压缩感知的层析SAR盲信源估计方法,包括以下几个步骤:
步骤一:利用压缩感知模型估计信源信息,输出散射强度归一化后大于0.1的前M(0≤M≤4)个散射系数及其对应的高程值;
步骤二:粗网格搜索,以贝叶斯信息准则(Bayesian information criterion,BIC)为代价函数的先验,输出代价函数最小和次小对应的散射体数目集{M1,M2};
步骤三:以第一步压缩感知估计出的前Mx=max{M1,M2}个信源信息为输入,采用并行操作精确网格搜索最优高程值及其对应的最小二乘估计值;
步骤四:检测归一化后的散射系数是否有小于0.1的数值,若有,则最终散射体个数为Mx减去散射系数有小于0.1对应的信源个数,再重新搜索;否则,输出第三步结果。
本发明基于压缩感知的层析SAR盲信源估计方法的优点在于:
(1)实用性。本发明提出的基于压缩感知的层析SAR盲信源估计方法能够有效抑制多检和漏检现象的出现,并提高了信源高程和信源信息的估计精度。
(2)高效性。本发明提出的基于压缩感知的层析SAR盲信源估计方法通过采用网格搜索,有效提高了信源个数检测的准确性和信源信息的估计精度;而并行计算操作,又弥补了网格搜索带来的计算复杂度,有效提高了估计方法的效率。
(3)通用性。本发明提出的基于压缩感知的层析SAR盲信源估计方法适用于其他检测与估计同时进行的信号处理问题,通用性强。
附图说明
图1是基于压缩感知的层析SAR盲信源估计方法流程图。
图2是信源多检情形下不同算法的重构图,其中,图2(a)是第一步压缩感知下的重构结果与真实值的对比图,图2(b)是第二步最优检测下的重构结果与真实值的对比图,图2(c)是本算法的重构结果与真实值的对比图。
图3是信源漏检情形下不同算法的重构图,其中,图3(a)是第一步压缩感知下的重构结果与真实值的对比图,图3(b)是第二步最优检测下的重构结果与真实值的对比图,图3(c)是本算法的重构结果与真实值的对比图。
图4是高程估计精度不佳的情形下不同算法的重构图,其中,图4(a)是第一步压缩感知下的重构结果与真实值的对比图,图4(b)是第二步最优检测下的重构结果与真实值的对比图,图4(c)是本算法的重构结果与真实值的对比图。
具体实施方式
下面将结合附图和实施例对本发明作进一步的详细说明。
本发明是一种基于压缩感知的层析SAR盲信源估计方法,方法流程图如图1所示,具体包括以下步骤:
步骤一:利用压缩感知模型估计信源信息,输出散射强度归一化后大于0.1的前M(0≤M≤4)个散射系数及其对应的高程值;
步骤二:以第一步输出的前m(0≤m≤M)个高程值和散射系数为输入,建立高程粗网格,以BIC为代价函数的先验,采用并行操作搜索最优高程值其对应的最小二乘估计值,输出代价函数最小和次小对应的散射体数目集SM={M1,M2};
步骤三:精确搜索:
1.若SM个数为1,以第一步压缩感知估计出的前M1个信源信息为输入,采用并行操作精确网格搜索最优高程值及其对应的最小二乘估计值。
2.若SM个数为2,以第一步压缩感知估计出的前Mx=max{M1,M2}个信源信息为输入,采用并行操作精确网格搜索最优高程值及其对应的最小二乘估计值。
步骤四:若归一化后的散射系数有小于0.1的数值,则最终散射体个数为Mx减去散射系数有小于0.1对应的信源个数,再重新搜索最优高程值及其对应的最小二乘估计值;否则输出第三步结果。
实施例:
为说明本发明的有效性,进行如下点目标堆栈数据的验证实验,实例的仿真参数如表1所示,重构结果如图2~图4所示,图2、3、4分别给出了(a)第一步压缩感知估计的信源幅度图,(b)在最优散射体个数下估计的信源的幅度图和(c)本算法输出的信源幅度图。
表1实施实例的部分仿真参数
从表2时间比较中,可以看出本发明第三、四步精确估计的耗时较短;从图2(a)、图2(b)、图2(c)的比较中,可以看出本发明可以有效排除多检的噪声信号;从图3(a)、图3(b)、图3(c)的比较中,可以看出本发明可以有效防止信源漏检的情况;从图4(a)、图4(b)、图4(c)的比较中,可以看出本发明可以有效提高信源高程和信息的估计精度。上述仿真结果有效地证明了本发明的基于压缩感知的层析SAR盲信源估计方法的有效性及实用性,能够有效地提高信源信息的估计精度并实现高程向上的超分辨率。
表2关于基于压缩感知的层析SAR盲信源估计方法的耗时表
Claims (1)
1.一种基于压缩感知的层析SAR盲信源估计方法,其特征在于:包括以下几个步骤:
步骤一:利用压缩感知模型估计信源信息,输出散射强度归一化后大于0.1的前M个散射系数及其对应的高程值,其中,0≤M≤4;
步骤二:粗网格搜索,以贝叶斯信息准则(Bayesian information criterion,BIC)为代价函数的先验,输出代价函数最小和次小对应的散射体数目集{M1,M2};
步骤三:以第一步压缩感知估计出的前Mx=max{M1,M2}个信源信息为输入,采用并行操作精确网格搜索最优高程值及其对应的最小二乘估计值;
步骤四:检测归一化后的散射系数是否有小于0.1的数值,若有,则最终散射体个数为Mx减去散射系数有小于0.1对应的信源个数,再重新搜索;否则,输出第三步结果。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610860339.8A CN106443675B (zh) | 2016-09-28 | 2016-09-28 | 一种基于压缩感知的层析sar盲信源估计方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610860339.8A CN106443675B (zh) | 2016-09-28 | 2016-09-28 | 一种基于压缩感知的层析sar盲信源估计方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106443675A CN106443675A (zh) | 2017-02-22 |
CN106443675B true CN106443675B (zh) | 2018-12-25 |
Family
ID=58170825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610860339.8A Active CN106443675B (zh) | 2016-09-28 | 2016-09-28 | 一种基于压缩感知的层析sar盲信源估计方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106443675B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109212529B (zh) * | 2018-11-02 | 2021-06-22 | 国网四川省电力公司电力应急中心 | 一种输电铁塔监测方法与装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103135100A (zh) * | 2013-01-31 | 2013-06-05 | 西安电子科技大学 | 同轨双基sar的动目标参数估计方法 |
US8570208B2 (en) * | 2010-07-16 | 2013-10-29 | Sony Corporation | Radar tomography apparatus and method |
CN103456015A (zh) * | 2013-09-06 | 2013-12-18 | 电子科技大学 | 基于最优分数域Gabor谱特征的SAR目标检测方法 |
CN103713288A (zh) * | 2013-12-31 | 2014-04-09 | 电子科技大学 | 基于迭代最小化稀疏贝叶斯重构线阵sar成像方法 |
-
2016
- 2016-09-28 CN CN201610860339.8A patent/CN106443675B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8570208B2 (en) * | 2010-07-16 | 2013-10-29 | Sony Corporation | Radar tomography apparatus and method |
CN103135100A (zh) * | 2013-01-31 | 2013-06-05 | 西安电子科技大学 | 同轨双基sar的动目标参数估计方法 |
CN103456015A (zh) * | 2013-09-06 | 2013-12-18 | 电子科技大学 | 基于最优分数域Gabor谱特征的SAR目标检测方法 |
CN103713288A (zh) * | 2013-12-31 | 2014-04-09 | 电子科技大学 | 基于迭代最小化稀疏贝叶斯重构线阵sar成像方法 |
Non-Patent Citations (4)
Title |
---|
Bo Yang等.The Hybrid Cram'er-Rao Bounds on Elevation in Compressive Sensing SAR Tomography.《4th Int. Workshop on Compressed Sensing on Radar, Sonar, and Remote Sensing》.2016, * |
Super-Resolution Power and Robustness of Compressive Sensing for Spectral Estimation With Application to Spaceborne Tomographic SAR;Xiao Xiang Zhu;《IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING》;20120131;第50卷(第1期);第247-258页 * |
利用压缩感知方法的高分辨率三维层析SAR研究;刘康等;《武汉大学学报-信息科学版》;20121231;第37卷(第12期);第1456-1459页 * |
压缩感知在城区高分辨率SAR层析成像中的应用;廖明生等;《雷达学报》;20150430;第4卷(第2期);第123-129页 * |
Also Published As
Publication number | Publication date |
---|---|
CN106443675A (zh) | 2017-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hou et al. | Improved Mask R-CNN with distance guided intersection over union for GPR signature detection and segmentation | |
Liu et al. | Deformation responses of landslides to seasonal rainfall based on InSAR and wavelet analysis | |
Boudevillain et al. | The Cévennes‐Vivarais Mediterranean Hydrometeorological Observatory database | |
Dukhovskoy et al. | Characterization of the uncertainty of loop current metrics using a multidecadal numerical simulation and altimeter observations | |
Wangchuk et al. | Towards automated mapping and monitoring of potentially dangerous glacial lakes in Bhutan Himalaya using Sentinel-1 Synthetic Aperture Radar data | |
Bignami et al. | Pyroclastic density current volume estimation after the 2010 Merapi volcano eruption using X-band SAR | |
CN107230197B (zh) | 基于卫星云图和rvm的热带气旋客观定强方法 | |
CN102073873B (zh) | 一种基于支持向量机的sar景象匹配区选取方法 | |
Jiménez-Teja et al. | Disentangling the ICL with the CHEFs: Abell 2744 as a Case Study | |
CN109388887A (zh) | 一种地面沉降影响因素定量分析方法及系统 | |
Huang et al. | An Improved Adaptive Template Size Pixel‐Tracking Method for Monitoring Large‐Gradient Mining Subsidence | |
CN103400137A (zh) | 一种sar图像的建筑物几何参数提取方法 | |
Medvedev et al. | A statistical study of internal gravity wave characteristics using the combined Irkutsk Incoherent Scatter Radar and Digisonde data | |
Vaccari et al. | Detection of geophysical features in InSAR point cloud data sets using spatiotemporal models | |
CN106443675B (zh) | 一种基于压缩感知的层析sar盲信源估计方法 | |
Lyubushin | Global coherence of GPS-measured high-frequency surface tremor motions | |
Ma | Combination of horizontal gradient ratio and Euler methods for the interpretation of potential field data | |
Ferro et al. | A novel approach to the automatic detection of subsurface features in planetary radar sounder signals | |
Plomerová et al. | Seismic anisotropy—a key to resolve fabrics of mantle lithosphere of Fennoscandia | |
CN112166688B (zh) | 基于小卫星的沙漠与沙漠化土地监测方法 | |
Xiong et al. | Automatic defect detection in operational high-speed railway tunnels guided by train-mounted ground penetrating radar data | |
Fang et al. | Gaussian convolution decomposition for non-Gaussian shaped pulsed LiDAR waveform | |
Yin et al. | Research on interference signal recognition in p wave pickup and magnitude estimation | |
Shi et al. | Application and comparing of IDW and Kriging interpolation in spatial rainfall information | |
CN104992159A (zh) | 基于高斯函数拟合海杂波的sar图像船只检测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |