CN106434842B - 一种共增菌培养基ses - Google Patents
一种共增菌培养基ses Download PDFInfo
- Publication number
- CN106434842B CN106434842B CN201611045897.5A CN201611045897A CN106434842B CN 106434842 B CN106434842 B CN 106434842B CN 201611045897 A CN201611045897 A CN 201611045897A CN 106434842 B CN106434842 B CN 106434842B
- Authority
- CN
- China
- Prior art keywords
- ses
- bacterium
- parts
- escherichia coli
- kinds
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
- C12Q1/04—Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
- C12Q1/10—Enterobacteria
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Analytical Chemistry (AREA)
- Toxicology (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明提供了一种共增菌培养基,其由基础培养基、抑制剂和水组成。本发明的共增菌培养基可同时富集肠炎沙门氏菌、大肠杆菌O157:H7和福氏志贺氏菌三种菌,达到同时检测多种致病菌的目的。
Description
技术领域
本发明涉及农产品检测领域,具体地说是涉及一种可以同时富集肠炎沙门氏菌、大肠杆菌O157:H7和福氏志贺氏菌的共增菌培养基SES。
背景技术
沙门氏菌(Salmonella,SM)、大肠杆菌(Escherichia coli,EC)和志贺氏菌菌(Shigella,SH)是常见的食源性致病菌。国内外曾多次暴发由这些致病菌引起的食物中毒事件,例如2006年美国26个州因食用被大肠杆菌O157:H7污染的菠菜暴发食源性疾病疫情导致199人患病3人死亡;2007年欧洲及澳大利亚因食用被志贺氏菌污染的胡萝卜而导致230人患病;2012年美国多个州又因食用被沙门氏菌污染的哈密瓜而导致261人患病3人死亡。这三种致病菌广泛分布于自然界,污染食品的风险具有不确定性和难控制性,因此相应快速检测技术的开发,对于及时有效控制疾病传播,预防食物中毒具有重要作用。
检测食源性致病菌,首先要选用合适的增菌液对样品进行16-24h的增菌培养,该过程不仅可以选择性地富集待检致病菌抑制背景微生物的生长,还可以使受损的细胞复苏,进而使样品中的病原菌浓度达到检测限,从而提高检出率,避免漏检和错检。因此,增菌培养是微生物检测中必不可少的一步,现有的各种微生物快速检测新技术,例如各种聚合酶链式反应(PCR)、基因芯片、酶联免疫吸附(ELISA)等方法因自身检测能力的限制(检测限102~104)及背景微生物的干扰都不能绕过增菌这一富集过程。并且,针对不同的待检致病菌,样品所用的增菌液和选择性培养基也不同,这种只针对某一特定菌种富集的增菌液很大程度上限制了高通量检测技术(例如多重PCR和基因芯片检测技术)的应用,导致了高通量检测方法难以用于实际样品的检测。因此,开发能选择性富集多种目标致病菌的共增菌培养基,是实现快速高效的共检技术的关键。
发明内容
本发明的目的在于提供一种共增菌培养基SES,其特征在于其由基础培养基、抑制剂和水组成,各组分的配比和组成如下:
(1)基础培养基:胰蛋白胨15~25份,葡萄糖0.5~2份,NaCl 4~6份,磷酸氢二钾3~5份,磷酸二氢钾1~3份;
(2)抑制剂:3号胆盐0.6~1.2份,新生霉素钠盐5~25份,氯化锂0.5~2份,亚碲酸钾0.1~0.6份;
(3)水,1000份。
优选的一种共增菌培养基SES,其特征在于其由基础培养基、抑制剂和水组成,各组分的配比和组成如下:
(1)基础培养基:胰蛋白胨20份,葡萄糖1份,NaCl 5份,磷酸氢二钾4份,磷酸二氢钾1.5份;
(2)抑制剂:3号胆盐1.2份,新生霉素钠盐20份,氯化锂0.5份,亚碲酸钾0.1份;
(3)水,1000份。
其中上述所述的份数均为重量份数。
本发明的上述共增菌培养基SES是通过如下方法制备的:
分别称取胰蛋白胨,葡萄糖,NaCl,磷酸氢二钾,磷酸二氢钾,3号胆盐,氯化锂,加水搅拌均匀;
121℃高压灭菌,冷却至室温;
在上述混合液中,无菌添加新生霉素钠盐,亚碲酸钾,混匀,即制成所需的共增菌培养基(SES),该培养基可立即使用或2~8℃保存。
制备好的共增菌培养基,可将检测样品按照1:100左右的重量或体积比例接入SES培养基中,36℃过夜培养16~24h(视样品污染程度或菌液混浊程度),即可用于后续进一步检测。
本发明以肠炎沙门氏菌、大肠杆菌O157:H7和福氏志贺氏菌3种菌为目标菌,研制出可以同时富集这3种菌的选择性培养基,填补了目前共增菌选择性培养基在此方面的空白,构建了样品处理与后续多菌种同时检测之间的桥梁。
与特异性的选择性增菌液相比,本发明的共增菌培养基可同时富集肠炎沙门氏菌、大肠杆菌O157:H7和福氏志贺氏菌3种菌,有望于高通量检测技术联用,达到同时检测多种致病菌的目的;与广谱性增菌液相比,本发明的选择性增菌液在基础培养基的基础上添加了抑菌剂,更好地抑制了非目的菌的生长(单增李斯特菌、金黄色葡萄球菌、枯草芽孢杆菌、副溶血弧菌、杨酸杆菌等经测试均不生长),避免了杂菌的干扰;同时,该培养基对冷损伤的菌株有一定的修复能力,可以避免亚致死状态下目标菌的漏检。
总的来说,本发明共增菌培养基的优点是:
1、可以进行多种致病菌的共培养。
2、理论上不受检测灵敏度限制。
3、节省待检样本数量,并省时省力。
4、检测样本广泛。
附图说明
图1为SES与商业化增菌液分别对3种目标菌的增菌效果比较。
其中3种商业化增菌液分别为:沙门氏菌RV(1-A)(广东环凯微生物科技有限公司)、大肠杆菌O157:H7mEC+n(1-B)(广东环凯微生物科技有限公司)和志贺氏菌GN(1-C)(北京陆桥技术股份有限公司)。
图2为3种目标菌按不同比例接入SES后,SES对3种菌的富集效果。肠炎沙门氏菌(简称SM)、大肠杆菌O157:H7(简称EC)和福氏志贺氏菌(简称SH)的复合接菌比例分别为:1:1:1(2-A)、1:10:100(2-B)、10:100:1(2-C)和100:1:10(2-D)。
图3SES对冷冻猪肉中的目标菌修复能力测定。
图4多重PCR检测样品中的肠炎沙门氏菌、大肠杆菌O157:H7和福氏志贺氏菌。泳道M:DNA Ladder;泳道1:待检样品;泳道2:空白对照。其中620bp、429bp、252bp对应的分别是福氏志贺氏菌、肠炎沙门氏菌和大肠杆菌O157:H7。
具体实施方式
以下实例部分结合附图对本发明做进一步说明。
原料来源:
胰蛋白胨(美国Oxford),葡萄糖(国药集团),NaCl(上海凌峰),磷酸氢二钾(国药集团),磷酸二氢钾(国药集团),3号胆盐(广东环凯),新生霉素钠盐(美国Sigma),氯化锂(美国Sigma),亚碲酸钾(美国Sigma);
3种目标菌的商业化选择性增菌液和选择性平皿分别为:沙门氏菌RV(1-A)和BS(广东环凯);大肠杆菌O157:H7mEC(1-B)和CT-SMAC(广东环凯);志贺氏菌GN(1-C)和志贺氏菌选择性平皿(广东环凯);
三种目标菌:肠炎沙门氏菌菌株编号ATCC 13076;大肠杆菌O157:H7菌株编号NCTC12900;福氏志贺氏菌菌株编号CMCC 51572,均购自广东环凯微生物科技有限公司。
实施例一:SES单增菌效果鉴定
SES培养基的制备:(1)基础培养基:胰蛋白胨20份,葡萄糖1份,NaCl 5份,磷酸氢二钾4份,磷酸二氢钾1.5份;(2)抑制剂:3号胆盐1.2份,新生霉素钠盐20份,氯化锂0.5份,亚碲酸钾0.1份;(3)蒸馏水,1000份。分别称取胰蛋白胨,葡萄糖,NaCl,磷酸氢二钾,磷酸二氢钾,3号胆盐,氯化锂,加水搅拌均匀,121℃高压灭菌,冷却至室温,在上述混合液中,无菌添加新生霉素钠盐,亚碲酸钾,混匀,即制成所需的共增菌培养基(SES)。
SES单增菌培养:取肠炎沙门氏菌(RV)、大肠杆菌(mEC)O157:H7和福氏志贺氏菌(GN)过夜培养的新鲜菌液分别接于100ml SES和各自的商业化增菌液中(沙门氏菌为RV,大肠杆菌O157:H7为mEC,志贺氏菌为GN),菌液的初始接菌量均为10CFU/ml左右,36℃180rpm/min培养24h,每4h取样进行菌落计数。
SES单增菌效果鉴定:根据各时间段的菌落计数结果绘制生长曲线(图1),比较不同增菌液中目标菌的生长能力可以看出,SES与三种商业化增菌液对目标菌的最终富集浓度无显著差异(p<0.05),两者进入对数期的时间也相近,甚至肠炎沙门氏菌在SES中要比商业化的RV更早于进入快速增殖期,表明SES可以满足上述3种目标菌的富集培养。
实施例二:SES复合增菌效果鉴定
SES培养基的制备:参照实施例一。
SES复合增菌培养:将肠炎沙门氏菌、大肠杆菌O157:H7和福氏志贺氏菌3种目的菌分别按不同的浓度比例接入到SES中,上述3种菌的复合接菌比例分别为:1:1:1、1:10:100、10:100:1和100:1:10。36℃180rpm/min培养24h,每4h取样进行菌落计数。各目标菌的计数培养基分别选用各自的选择性平皿:肠炎沙门氏菌为BS、大肠杆菌O157:H7为CT-SMAC、福氏志贺氏菌为志贺氏菌选择性平皿。
SES复合增菌效果鉴定:根据各时间段的菌落计数结果绘制生长曲线(图2),比较不同浓度比例的目标菌在SES中的生长能力可以看出,3种目标菌同时在SES中富集时,均可以正常生长,即便某种目标菌的接菌比例较低时,其最终生长浓度也可以达到107的数量级,可以满足致病菌鉴定检测限(一般为103~105的数量级)的需求。
实施例三:SES结合多重PCR检测冷冻猪肉中的3种食源性致病菌
SES培养基的制备:参照实施例一。
待检样品的处理:取市售生猪肉10g,猪肉经酒精浸泡消毒风干后,分别接种肠炎沙门氏菌、大肠杆菌O157:H7和福氏志贺氏菌,终浓度均为10CFU/g左右,风干至菌液完全吸收,置均质袋中于-20℃保存7天。
SES增菌培养与效果鉴定:将人工污染的猪肉样品10g置于90mlSES中,36℃静置培养24h,从12h开始每4h取增菌液进行上述3种目标菌的活菌计数,鉴定SES的增菌效果(图3)。3种目标菌在猪肉中经-20℃冷冻7天后,仍可被SES富集,富集终浓度最低可达到107的数量级,可以满足致病菌鉴定检测限(一般为103~105的数量级)的需求,表明SES可用于猪肉中上述3种致病菌的检测,并对冷损伤的菌株有一定修复能力。
多重PCR检测模板的准备:取1ml上述24h SES增菌液,利用细菌基因组DNA提取试剂盒(北京全式金)进行增菌液总DNA的提取,提取的DNA可置于-20℃保存。
多重PCR检测:参照文献合成沙门氏菌、大肠杆菌O157:H7和志贺氏菌的多重PCR引物(上海生工),引物信息分别为:
AGCCAACCATTGCTAAATTGGCGCA与
GGTAGAAATTCCCAGCGGGTACTG(沙门氏菌,产物429bp)、
GCGAAAACTGTGGAATTGGG与TGATGCTCCATCACTTCCTG(大肠杆菌O157:H7,产物252bp)、
GTTCCTTGACCGCCTTTCCGATACCGTC与
GCCGGTCAGCCACCCTCTGAGAGTAC(志贺氏菌,产物620bp)。PCR扩增体系为50μl,包含2×Taq PCR MasterMix 25μL(北京全式金),上下游引物0.2M(沙门氏菌)、0.2M(大肠杆菌)和0.05M(志贺氏菌),DNA模板3μL,加dd H2O补足至50μL。反应条件如下:94℃4min,94℃45s,60℃1.5min,72℃1min,扩增30循环;72℃延伸7min。PCR产物用2.0%琼脂糖进行电泳,结果显示SES可联合多重PCR用于多种菌的快速高效检测(图4)。
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有更改和变化。凡在本发明的精神和原则之内,所作的任何修改、改进等,均应包括在本发明的保护范围之内。
Claims (1)
1.一种共增菌培养基SES,其特征在于其由基础培养基、抑制剂和水组成,各组分的配比和组成如下:
(1)基础培养基:胰蛋白胨20份,葡萄糖1份,NaCl 5份,磷酸氢二钾4份,磷酸二氢钾1.5份;
(2)抑制剂:3号胆盐1.2份,新生霉素钠盐20份,氯化锂0.5份,亚碲酸钾0.1份;
(3)水,1000份。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611045897.5A CN106434842B (zh) | 2016-11-22 | 2016-11-22 | 一种共增菌培养基ses |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611045897.5A CN106434842B (zh) | 2016-11-22 | 2016-11-22 | 一种共增菌培养基ses |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106434842A CN106434842A (zh) | 2017-02-22 |
CN106434842B true CN106434842B (zh) | 2019-09-27 |
Family
ID=58218072
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611045897.5A Active CN106434842B (zh) | 2016-11-22 | 2016-11-22 | 一种共增菌培养基ses |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106434842B (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101827945A (zh) * | 2007-10-17 | 2010-09-08 | 3M创新有限公司 | 微生物的快速检测 |
CN102660474A (zh) * | 2012-05-05 | 2012-09-12 | 西南民族大学 | 一种同时富集五种食源性病原菌的培养基及制备方法 |
CN102827795A (zh) * | 2012-08-29 | 2012-12-19 | 华南理工大学 | 用于沙门氏菌、志贺氏菌和金黄色葡萄球菌复合增菌的培养基及制备方法 |
CN105861623A (zh) * | 2016-04-25 | 2016-08-17 | 无锡市赛微生物技术有限公司 | 一种用于检测阪崎肠杆菌的显色培养基 |
-
2016
- 2016-11-22 CN CN201611045897.5A patent/CN106434842B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101827945A (zh) * | 2007-10-17 | 2010-09-08 | 3M创新有限公司 | 微生物的快速检测 |
CN102660474A (zh) * | 2012-05-05 | 2012-09-12 | 西南民族大学 | 一种同时富集五种食源性病原菌的培养基及制备方法 |
CN102827795A (zh) * | 2012-08-29 | 2012-12-19 | 华南理工大学 | 用于沙门氏菌、志贺氏菌和金黄色葡萄球菌复合增菌的培养基及制备方法 |
CN105861623A (zh) * | 2016-04-25 | 2016-08-17 | 无锡市赛微生物技术有限公司 | 一种用于检测阪崎肠杆菌的显色培养基 |
Also Published As
Publication number | Publication date |
---|---|
CN106434842A (zh) | 2017-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dong et al. | Induction, detection, formation, and resuscitation of viable but non‐culturable state microorganisms | |
Zhang et al. | Development of a multiplex real-time PCR method for simultaneous detection of Vibrio parahaemolyticus, Listeria monocytogenes and Salmonella spp. in raw shrimp | |
Greenwood et al. | Rapid and definitive detection of Salmonella in foods by PCR | |
Delbès et al. | Monitoring bacterial communities in raw milk and cheese by culture-dependent and-independent 16S rRNA gene-based analyses | |
Domig et al. | Methods used for the isolation, enumeration, characterisation and identification of Enterococcus spp.: 1. Media for isolation and enumeration | |
US6136554A (en) | Microbiological media for isolation and indentification of enteric pathogens such as E. coli and salmonella | |
Igbinosa et al. | Pathogenic potentials of Aeromonas species isolated from aquaculture and abattoir environments | |
Rivas et al. | A comparative study of biofilm formation by Shiga toxigenic Escherichia coli using epifluorescence microscopy on stainless steel and a microtitre plate method | |
Yu et al. | A multipathogen selective enrichment broth for simultaneous growth of Salmonella enterica serovar Enteritidis, Staphylococcus aureus, and Listeria monocytogenes | |
Byakika et al. | Antimicrobial Activity of Lactic Acid Bacteria Starters against Acid Tolerant, Antibiotic Resistant, and Potentially Virulent E. coli Isolated from a Fermented Sorghum‐Millet Beverage | |
Azinheiro et al. | Next-day detection of viable Listeria monocytogenes by multiplex reverse transcriptase real-time PCR | |
Wang et al. | Formation of viable, but putatively non-culturable (VPNC) cells of beer-spoilage lactobacilli growing in biofilms | |
Böhnlein et al. | Fitness of enterohemorrhagic Escherichia coli (EHEC)/enteroaggregative E. coli O104: H4 in comparison to that of EHEC O157: survival studies in food and in vitro | |
Chen et al. | An automated fluorescent PCR method for detection of shiga toxin-producing Escherichia coli in foods | |
Chon et al. | Development of a selective enrichment broth supplemented with bacteriological charcoal and a high concentration of polymyxin B for the detection of Campylobacter jejuni and Campylobacter coli in chicken carcass rinses | |
CN106434842B (zh) | 一种共增菌培养基ses | |
Kim et al. | Rapid detection of Escherichia coli O157: H7 in fresh-cut cabbage by real-time polymerase chain reaction | |
Wang et al. | Detection of viable Salmonella in ice cream by TaqMan real-time polymerase chain reaction assay combining propidium monoazide | |
Suo et al. | A multipathogen selective enrichment broth for simultaneous growth of Salmonella enteria, Escherichia coli O157: H7, and Shigella flexneri | |
Ali et al. | Isolation and molecular identification of Yersinia enterocolitica in locally produced raw milk in Iraq. | |
Cui et al. | An improved method for rapid isolation of Salmonella against Proteus in chicken carcasses | |
Hu et al. | Construction and optimization of a multiplex PMAxx-qPCR assay for viable Bacillus cereus and development of a detection kit | |
Flores et al. | The prevalence of Escherichia coli O157: H7 and other verotoxin-producing E. coli in raw, ground beef samples from wet markets in Laguna, Philippines | |
Bhattarai et al. | Prevalence of Thermophilic Campylobacter Isolated from Water Used in Slaughter House of Kathmandu and Ruphendehi District, Nepal | |
Rolon et al. | Context matters: environmental microbiota from ice cream processing facilities affected the inhibitory performance of two lactic acid bacteria strains against Listeria monocytogenes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |