CN106423269B - Unsaturated acetic acid ester catalyst and preparation method thereof - Google Patents

Unsaturated acetic acid ester catalyst and preparation method thereof Download PDF

Info

Publication number
CN106423269B
CN106423269B CN201510493332.2A CN201510493332A CN106423269B CN 106423269 B CN106423269 B CN 106423269B CN 201510493332 A CN201510493332 A CN 201510493332A CN 106423269 B CN106423269 B CN 106423269B
Authority
CN
China
Prior art keywords
catalyst
compound
acetic acid
content
palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510493332.2A
Other languages
Chinese (zh)
Other versions
CN106423269A (en
Inventor
刘军晓
杨运信
张丽斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Original Assignee
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Shanghai Research Institute of Petrochemical Technology filed Critical China Petroleum and Chemical Corp
Priority to CN201510493332.2A priority Critical patent/CN106423269B/en
Publication of CN106423269A publication Critical patent/CN106423269A/en
Application granted granted Critical
Publication of CN106423269B publication Critical patent/CN106423269B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The present invention relates to unsaturated acetic acid ester catalyst and preparation method thereof, mainly solve the problems, such as that the activity and selectivity of existing unsaturated acetic acid ester catalyst is low.The present invention is by using unsaturated acetic acid ester catalyst, with SiO2、Al2O3Or mixtures thereof be carrier, load active component includes Metal Palladium, metallic gold, alkali metal acetate and at least one of the compound 1 being shown below and compound 2 dendrimer compound, the content of palladium is 1~12g/L in catalyst, the content of gold is 0.1~10g/L, the content of alkali metal acetate is 10~100g/L, dendrimer compound content is 0.1~2.0g/L, wherein Et1~Et16It is independently selected from C1~C3Alkyl technical solution, preferably resolve the problem, can be used in the production of unsaturated acetate commercial plant.Compound 1

Description

Unsaturated acetic acid ester catalyst and preparation method thereof
Technical field
The present invention relates to unsaturated acetic acid ester catalysts and preparation method thereof.
Background technique
Common unsaturated acetate is vinyl acetate and allyl acetate.
Unsaturated acetate is important industrial chemicals, especially vinyl acetate.For example, vinyl acetate is widely used in manufacture Polyvinyl alcohol, vinyl copolymer resin, binder, coating, textile processing, paper coating etc..The production of vinyl acetate Process route mainly has ethylene process and two kinds of acetylene method, wherein ethylene process due to craftsmanship, good economy performance and occupy leading ground Position, accounts for the 82% of total productive capacity using the vinyl acetate production ability of this method.The U.S. completes in nineteen eighty-three and all adopts With the conversion of ethylene process route.Currently, the method that most countries increase vinyl acetate yield is to carry out reorganization and expansion to original device And the update of catalyst, the development trend of ethylene process route have been summed up several aspects: (1) process units scale becomes To enlargement.If USI company, U.S. the seventies initial stage process units scale is ten thousand tons/year of 13.6-15.9, nineteen ninety device rule Mould reaches 360,000 tons/year, and there are also the expansion energy of the above Hoechst company VAC device;(2) although ethylene process VAC process compares Maturation, but still improving, to reduce unit consumption and energy consumption;Current state-of-the-art ethylene process technique is the Leap technique of Amoco company With the Vantage technique of Celanese company.Acetylene method process unit high investment, environmentally friendly difficulty is larger, but with crude oil price Lattice it is high, comparable competitive advantage will be kept over a period to come, and directly facilitate the research and development of C1 chemical method.
It is using ethylene, oxygen and acetic acid as raw material, with palladium-gold-vinegar that the main method of vinyl acetate is produced in the world today Sour potassium/silica makees catalyst, is produced by gas phase catalytic reaction, generates vinyl acetate, water and by-product carbon dioxide, Also generate micro ethyl acetate, acetaldehyde and other acetoxylation product.The temperature of the reactor shell-side of the reaction can be About 100 to about 180 DEG C, and reaction pressure is about 0.5-1.0MPa, gas volume air speed is about 500 to about 3000hr-1
The patent of Hanchester rayon Co., Ltd (CN1226188A is used to prepare the palladium-gold catalyst of vinyl acetate) A kind of catalyst for preparing load and having major catalyst noble metal, promoter metal and alkali or alkaline earth metal compound is provided Preparation method.The catalyst activity and selectivity that this method obtains is all relatively low.
Summary of the invention
The first technical problem to be solved by the present invention is unsaturated acetate catalyst activity and selection in the prior art Property low problem, provide a kind of unsaturated acetic acid ester catalyst, the feature that the catalyst is active and selectivity is high.
The second technical problem to be solved by the present invention is to provide the system of catalyst described in a kind of one of above-mentioned technical problem Preparation Method.
The third technical problem to be solved by the present invention is to provide a kind of using catalyst described in one of above-mentioned technical problem Unsaturated acetate synthetic method.
One of to solve above-mentioned technical problem, technical scheme is as follows: unsaturated acetic acid ester catalyst, with SiO2、Al2O3Or mixtures thereof be carrier, load active component includes Metal Palladium, metallic gold, alkali metal acetate and as follows At least one of formula compound represented 1 and compound 2 dendrimer compound, in catalyst the content of palladium be 1~ 12g/L, golden content are 0.1~10g/L, the content of alkali metal acetate is 10~100g/L, dendrimer compound Content is 0.1~2.0g/L;
Compound 1;
Compound 2;
Wherein Et1~Et16It is independently selected from C1~C3Alkyl.
The dendrimer compound is published in J.Phys.Chem.B according to Robert W.J.Scott et al. The synthesis of method provided by article gained in (109 phase P692-704 in 2005).
In above-mentioned technical proposal, Et1~Et16Methyl, ethyl, n-propyl, isopropyl can be independently selected from.The present invention is specific Et in embodiment1~Et16For ethyl.
In above-mentioned technical proposal, the dendritic macromole preferably includes compound 1 and compound 2, and the two is urged in raising There is synergistic effect in terms of the activity and selectivity of agent.The mass ratio of more preferable compound 1 and compound 2 be 1:(0.05~ 20)。
In above-mentioned technical proposal, the alkali metal acetate is preferably potassium acetate.
To solve above-mentioned technical problem two, The technical solution adopted by the invention is as follows: the skill of one of above-mentioned technical problem The preparation method of catalyst described in any one of art scheme, comprising the following steps:
(a) in the solution dissolved with containing palladium compound and gold-containing compound, dendrimer compound, which is added, to be soaked Stain liquid;
(b) in above-mentioned maceration extract, carrier impregnation is added, catalyst precarsor I is made;
(c) catalyst precarsor II is obtained with alkaline compound solution processing catalytic precursor I;
(d) palladium of compound state in catalyst precarsor II and the gold of compound state are reduced to simple substance with reducing agent, are catalyzed Agent precursor II I;
(e) alkali metal acetate solution impregnation catalyst precursor I V is used, the catalyst is made after dry.
In above-mentioned technical proposal, the containing palladium compound is preferably chlorine palladium acid or chloropalladate, gold-containing compound are preferably Gold chloride or chloroaurate;The alkali compounds is preferably the silicate or hydroxide of alkali metal;The reducing agent is preferred For hydrazine hydrate or hydrogen;When the reducing agent is hydrogen, reduction temperature is preferably 100~300 DEG C.
To solve above-mentioned technical problem three, technical solution of the present invention is as follows: the synthetic method of unsaturated acetate, upper In the presence of stating catalyst described in any one of technical solution of one of technical problem, oxygen is become with molar ratio computing unstripped gas group: C2~C3Alkene: nitrogen: acetic acid=1:(5~7): (4~8): (1~2), reaction pressure are 0.5~0.9MPa, and reaction temperature is 130~200 DEG C, feed gas volume air speed is 1600~3000hr-1.Work as C2~C3It is corresponding unsaturated when alkene uses ethylene Acetate is vinyl acetate;Work as C2~C3When alkene uses propylene, corresponding unsaturation acetate is allyl acetate.
Catalyst causes catalyst activity and selectivity insufficient in industrial application because noble metal crystal grain activity point is very few, adopts With the vinyl acetate catalyst of the method for the present invention, modified in noble metal grain surface using dendrimer compound, Can increase the active point of noble metal crystal grain, and by modification after, the selectivity of catalyst is also improved.Experimental result table Bright, reaction pressure 0.7MPa, 140 DEG C of reaction temperature, reaction gas is with molar ratio computing oxygen: ethylene: nitrogen: acetic acid=1: When 6.8:7.2:1.7, the comparison prior art catalyst space time yield of catalyst of the invention is increased to 416g/L by 315g/L, Selectivity is increased to 96.8% by 93.5%, achieves preferable technical effect.
Specific embodiment
[embodiment 1]
(1) catalyst preparation
Step (a): taking chlorine palladium acid gold chloride mixed aqueous solution 1200ml, and wherein the content of palladium is 2.75g/L, gold in solution Content be 0.625g/L, in the above solution be added quality be 0.36g compound 1, be prepared into maceration extract;
It is the preparing spherical SiO 2 carrier that 1100ml diameter is 4~6mm that volume, which is added, in step (b) in above-mentioned maceration extract, Obtain catalyst precarsor I;
Step (c): being made into 100ml aqueous solution for 27.5g sodium silicate nanahydrate and be added in catalyst precarsor I, is uniformly mixed, R for 24 hours is stood, then in 80 DEG C of dry 8hr, catalyst precarsor II is made;
Step (d): catalyst precarsor II is restored in hydrogen atmosphere, hydrogen flow rate 0.2ml/min, and pressure is 0.5MPa, reduction temperature are 200 DEG C, obtain catalyst precarsor III;
Step (e): dipping acetic acid aqueous solutions of potassium makes acetic acid potassium content 30g/L, dry finished product catalyst.
For the ease of comparing, the preparation condition of catalyst is listed in table 1.
(2) catalyst characterization
Using the content of each metallic element in inductively coupled plasma spectrum generator (ICP) measurement catalyst, penetrated using X The content of dendritic macromole, income analysis characterize data are listed in table 2 in line fluorescence spectrum (XRF) analysis of catalyst.
(3) evaluating catalyst
It is evaluated with fixed bed reactors, actual conditions are as follows:
Catalyst packing volume: 400ml;
Reaction raw materials form (with molar ratio computing): oxygen: ethylene: nitrogen: acetic acid=1:6.8:7.2:1.7;
Reaction raw materials Feed space velocities: 2000hr-1
Reaction pressure: 0.7MPa;
Reaction temperature: 140 DEG C;
Reaction time: 500hr;
With the content of each component in gas chromatography analysis reaction product, catalysts towards ethylene selectivity, institute are then calculated It obtains test data and is listed in table 2.
[embodiment 2]
(1) catalyst preparation
Step (a): taking chlorine palladium acid gold chloride mixed aqueous solution 1200ml, and wherein the content of palladium is 2.75g/L, gold in solution Content be 0.625g/L, in the above solution be added quality be 0.36g attached drawing shown in compound 2, be prepared into maceration extract;
It is the preparing spherical SiO 2 carrier that 1100ml diameter is 4~6mm that volume, which is added, in step (b) in above-mentioned maceration extract, Obtain catalyst precarsor I;
Step (c): being made into 100ml aqueous solution for 27.5g sodium silicate nanahydrate and be added in catalyst precarsor I, is uniformly mixed, R for 24 hours is stood, then in 80 DEG C of dry 8hr, catalyst precarsor II is made;
Step (d): catalyst precarsor II is restored in hydrogen atmosphere, hydrogen flow rate 0.2ml/min, and pressure is 0.5MPa, reduction temperature are 200 DEG C, obtain catalyst precarsor III;
Step (e): dipping acetic acid aqueous solutions of potassium makes acetic acid potassium content 30g/L, dry finished product catalyst.
Catalyst characterization and evaluation condition are same as Example 1, for the ease of comparing the preparation condition of catalyst, catalysis Physical data, the catalysts towards ethylene of agent are selectively listed in Tables 1 and 2.
[embodiment 3]
(1) catalyst preparation
Step (a): taking chlorine palladium acid gold chloride mixed aqueous solution 1200ml, and wherein the content of palladium is 2.75g/L, gold in solution Content be 0.625g/L, in the above solution be added quality be 0.36g attached drawing shown in compound 1 and 2 mixture, wherein The mass ratio of compound 1 and 2 is 1:1, is prepared into maceration extract;
It is the preparing spherical SiO 2 carrier that 1100ml diameter is 4~6mm that volume, which is added, in step (b) in above-mentioned maceration extract, Obtain catalyst precarsor I;
Step (c): being made into 100ml aqueous solution for 27.5g sodium silicate nanahydrate and be added in catalyst precarsor I, is uniformly mixed, R for 24 hours is stood, then in 80 DEG C of dry 8hr, catalyst precarsor II is made;
Step (d): catalyst precarsor II is restored in hydrogen atmosphere, hydrogen flow rate 0.2ml/min, and pressure is 0.5MPa, reduction temperature are 200 DEG C, obtain catalyst precarsor III;
Step (e): dipping acetic acid aqueous solutions of potassium makes acetic acid potassium content 30g/L, dry finished product catalyst.
Catalyst characterization and evaluation condition are same as Example 1, for the ease of comparing the preparation condition of catalyst, catalysis Physical data, the catalysts towards ethylene of agent are selectively listed in Tables 1 and 2.
[embodiment 4]
(1) catalyst preparation
Step (a): taking chlorine palladium acid gold chloride mixed aqueous solution 1200ml, and wherein the content of palladium is 2.75g/L, gold in solution Content be 0.625g/L, in the above solution be added quality be 0.36g attached drawing shown in compound 1 and 2 mixture, wherein The mass ratio of compound 1 and 2 is 1:0.05, is prepared into maceration extract;
It is the preparing spherical SiO 2 carrier that 1100ml diameter is 4~6mm that volume, which is added, in step (b) in above-mentioned maceration extract, Obtain catalyst precarsor I;
Step (c): being made into 100ml aqueous solution for 27.5g sodium silicate nanahydrate and be added in catalyst precarsor I, is uniformly mixed, R for 24 hours is stood, then in 80 DEG C of dry 8hr, catalyst precarsor II is made;
Step (d): catalyst precarsor II is restored in hydrogen atmosphere, hydrogen flow rate 0.2ml/min, and pressure is 0.5MPa, reduction temperature are 200 DEG C, obtain catalyst precarsor III;
Step (e): dipping acetic acid aqueous solutions of potassium makes acetic acid potassium content 30g/L, dry finished product catalyst.
Catalyst characterization and evaluation condition are same as Example 1, for the ease of comparing the preparation condition of catalyst, catalysis Physical data, the catalysts towards ethylene of agent are selectively listed in Tables 1 and 2.
[embodiment 5]
(1) catalyst preparation
Step (a): taking chlorine palladium acid gold chloride mixed aqueous solution 1200ml, and wherein the content of palladium is 2.75g/L, gold in solution Content be 0.625g/L, in the above solution be added quality be 0.36g attached drawing shown in compound 1 and 2 mixture, wherein The mass ratio of compound 1 and 2 is 1:20, is prepared into maceration extract;
It is the preparing spherical SiO 2 carrier that 1100ml diameter is 4~6mm that volume, which is added, in step (b) in above-mentioned maceration extract, Obtain catalyst precarsor I;
Step (c): being made into 100ml aqueous solution for 27.5g sodium silicate nanahydrate and be added in catalyst precarsor I, is uniformly mixed, R for 24 hours is stood, then in 80 DEG C of dry 8hr, catalyst precarsor II is made;
Step (d): catalyst precarsor II is restored in hydrogen atmosphere, hydrogen flow rate 0.2ml/min, and pressure is 0.5MPa, reduction temperature are 200 DEG C, obtain catalyst precarsor III;
Step (e): dipping acetic acid aqueous solutions of potassium makes acetic acid potassium content 30g/L, dry finished product catalyst.
Catalyst characterization and evaluation condition are same as Example 1, for the ease of comparing the preparation condition of catalyst, catalysis Physical data, the catalysts towards ethylene of agent are selectively listed in Tables 1 and 2.
[embodiment 6]
(1) catalyst preparation
Step (a): taking chlorine palladium acid gold chloride mixed aqueous solution 1200ml, and wherein the content of palladium is 0.92g/L, gold in solution Content be 0.105g/L, in the above solution be added quality be 0.092g attached drawing shown in compound 1 and 2 mixture, The mass ratio of middle compound 1 and 2 is 1:1, is prepared into maceration extract;
It is the preparing spherical SiO 2 carrier that 1100ml diameter is 4~6mm that volume, which is added, in step (b) in above-mentioned maceration extract, Obtain catalyst precarsor I;
Step (c): being made into 100ml aqueous solution for 27.5g sodium silicate nanahydrate and be added in catalyst precarsor I, is uniformly mixed, R for 24 hours is stood, then in 80 DEG C of dry 8hr, catalyst precarsor II is made;
Step (d): catalyst precarsor II is restored in hydrogen atmosphere, hydrogen flow rate 0.2ml/min, and pressure is 0.5MPa, reduction temperature are 200 DEG C, obtain catalyst precarsor III;
Step (e): dipping acetic acid aqueous solutions of potassium makes acetic acid potassium content 30g/L, dry finished product catalyst.
Catalyst characterization and evaluation condition are same as Example 1, for the ease of comparing the preparation condition of catalyst, catalysis Physical data, the catalysts towards ethylene of agent are selectively listed in Tables 1 and 2.
[embodiment 7]
(1) catalyst preparation
Step (a): taking chlorine palladium acid gold chloride mixed aqueous solution 1200ml, and wherein the content of palladium is 11g/L in solution, golden Content is 10.5g/L, the mixture of compound 1 and 2 shown in the attached drawing that quality is 1.84g is added in the above solution, wherein changing The mass ratio for closing object 1 and 2 is 1:1, is prepared into maceration extract;
It is the preparing spherical SiO 2 carrier that 1100ml diameter is 4~6mm that volume, which is added, in step (b) in above-mentioned maceration extract, Obtain catalyst precarsor I;
Step (c): being made into 100ml aqueous solution for 27.5g sodium silicate nanahydrate and be added in catalyst precarsor I, is uniformly mixed, R for 24 hours is stood, then in 80 DEG C of dry 8hr, catalyst precarsor II is made;
Step (d): catalyst precarsor II is restored in hydrogen atmosphere, hydrogen flow rate 0.2ml/min, and pressure is 0.5MPa, reduction temperature are 200 DEG C, obtain catalyst precarsor III;
Step (e): dipping acetic acid aqueous solutions of potassium makes acetic acid potassium content 30g/L, dry finished product catalyst.
Catalyst characterization and evaluation condition are same as Example 1, for the ease of comparing the preparation condition of catalyst, catalysis Physical data, the catalysts towards ethylene of agent are selectively listed in Tables 1 and 2.
[embodiment 8]
(1) catalyst preparation
Step (a): taking chlorine palladium acid gold chloride mixed aqueous solution 1200ml, and wherein the content of palladium is 2.75g/L, gold in solution Content be 0.625g/L, in the above solution be added quality be 0.36g attached drawing shown in compound 1 and 2 mixture, wherein The mass ratio of compound 1 and 2 is 1:1, is prepared into maceration extract;
It is the preparing spherical SiO 2 carrier that 1100ml diameter is 4~6mm that volume, which is added, in step (b) in above-mentioned maceration extract, Obtain catalyst precarsor I;
Step (c): being made into 100ml aqueous solution for 27.5g sodium hydroxide and be added in catalyst precarsor I, is uniformly mixed, and stands Catalyst precarsor II is made then in 80 DEG C of dry 8hr in r for 24 hours;
Step (d): catalyst precarsor II is restored in hydrazine hydrate solution, and the concentration of hydrazine hydrate solution is 450g/L, is obtained To catalyst precarsor III;
Step (e): dipping acetic acid aqueous solutions of potassium makes acetic acid potassium content 30g/L, dry finished product catalyst.
Catalyst characterization and evaluation condition are same as Example 1, for the ease of comparing the preparation condition of catalyst, catalysis Physical data, the catalysts towards ethylene of agent are selectively listed in Tables 1 and 2.
[embodiment 9]
(1) catalyst preparation
Step (a): taking chlorine palladium acid gold chloride mixed aqueous solution 1200ml, and wherein the content of palladium is 2.75g/L, gold in solution Content be 0.625g/L, in the above solution be added quality be 0.36g attached drawing shown in compound 1 and 2 mixture, wherein The mass ratio of compound 1 and 2 is 1:1, is prepared into maceration extract;
It is the preparing spherical SiO 2 carrier that 1100ml diameter is 4~6mm that volume, which is added, in step (b) in above-mentioned maceration extract, Obtain catalyst precarsor I;
Step (c): being made into 100ml aqueous solution for 27.5g sodium silicate nanahydrate and be added in catalyst precarsor I, is uniformly mixed, R for 24 hours is stood, then in 80 DEG C of dry 8hr, catalyst precarsor II is made;
Step (d): catalyst precarsor II is restored in hydrogen atmosphere, hydrogen flow rate 0.2ml/min, and pressure is 0.5MPa, reduction temperature are 100 DEG C, obtain catalyst precarsor III;
Step (e): dipping acetic acid aqueous solutions of potassium makes acetic acid potassium content 30g/L, dry finished product catalyst.
Catalyst characterization and evaluation condition are same as Example 1, for the ease of comparing the preparation condition of catalyst, catalysis Physical data, the catalysts towards ethylene of agent are selectively listed in Tables 1 and 2.
[embodiment 10]
(1) catalyst preparation
Step (a): taking chlorine palladium acid gold chloride mixed aqueous solution 1200ml, and wherein the content of palladium is 2.75g/L, gold in solution Content be 0.625g/L, in the above solution be added quality be 0.36g attached drawing shown in compound 1 and 2 mixture, wherein The mass ratio of compound 1 and 2 is 1:1, is prepared into maceration extract;
It is the preparing spherical SiO 2 carrier that 1100ml diameter is 4~6mm that volume, which is added, in step (b) in above-mentioned maceration extract, Obtain catalyst precarsor I;
Step (c): being made into 100ml aqueous solution for 27.5g sodium silicate nanahydrate and be added in catalyst precarsor I, is uniformly mixed, R for 24 hours is stood, then in 80 DEG C of dry 8hr, catalyst precarsor II is made;
Step (d): catalyst precarsor II is restored in hydrogen atmosphere, hydrogen flow rate 0.2ml/min, and pressure is 0.5MPa, reduction temperature are 300 DEG C, obtain catalyst precarsor III;
Step (e): dipping acetic acid aqueous solutions of potassium makes acetic acid potassium content 30g/L, dry finished product catalyst.
Catalyst characterization and evaluation condition are same as Example 1, for the ease of comparing the preparation condition of catalyst, catalysis Physical data, the catalysts towards ethylene of agent are selectively listed in Tables 1 and 2.
[embodiment 11]
(1) catalyst preparation
Step (a): the solution 1200ml containing potassium chloropalladate and potassium chloroaurate is taken, wherein the content of palladium is in solution 2.75g/L, golden content are 0.625g/L, and compound 1 and 2 shown in the attached drawing that quality is 0.36g is added in the above solution Mixture, wherein the mass ratio of compound 1 and 2 is 1:1, is prepared into maceration extract;
It is the preparing spherical SiO 2 carrier that 1100ml diameter is 4~6mm that volume, which is added, in step (b) in above-mentioned maceration extract, Obtain catalyst precarsor I;
Step (c): being made into 100ml aqueous solution for 27.5g sodium silicate nanahydrate and be added in catalyst precarsor I, is uniformly mixed, R for 24 hours is stood, then in 80 DEG C of dry 8hr, catalyst precarsor II is made;
Step (d): catalyst precarsor II is restored in hydrogen atmosphere, hydrogen flow rate 0.2ml/min, and pressure is 0.5MPa, reduction temperature are 200 DEG C, obtain catalyst precarsor III;
Step (e): dipping acetic acid aqueous solutions of potassium makes acetic acid potassium content 30g/L, dry finished product catalyst.
Catalyst characterization and evaluation condition are same as Example 1, for the ease of comparing the preparation condition of catalyst, catalysis Physical data, the catalysts towards ethylene of agent are selectively listed in Tables 1 and 2.
[comparative example 1]
(1) catalyst preparation
Step (a): taking chlorine palladium acid gold chloride mixed aqueous solution 1200ml, and wherein the content of palladium is 2.75g/L, gold in solution Content be 0.625g/L, dipping volume is preparing spherical SiO 2 carrier that 1100ml diameter is 4~6mm, before obtaining catalyst Body I;
Step (b): being made into 100ml aqueous solution for 27.5g sodium silicate nanahydrate and be added in catalyst precarsor I, is uniformly mixed, R for 24 hours is stood, then in 80 DEG C of dry 8hr, catalyst precarsor II is made;
Step (c): catalyst precarsor II is restored in hydrogen atmosphere, hydrogen flow rate 0.2ml/min, and pressure is 0.5MPa, reduction temperature are 200 DEG C, obtain catalyst precarsor III;
Step (d): dipping acetic acid aqueous solutions of potassium makes acetic acid potassium content 30g/L, dry finished product catalyst.
Catalyst characterization and evaluation condition are same as Example 1, for the ease of comparing the preparation condition of catalyst, catalysis Physical data, the catalysts towards ethylene of agent are selectively listed in Tables 1 and 2.
Through the foregoing embodiment and comparative example, discovery use the mixture and palladium of dendritic macromole 1 and 2 shown in the drawings Dipping co-precipitation can preferably improve the activity and selectivity of catalyst to gold together.
1. catalyst preparation conditions of table
2 catalyst physical property of table and evaluation data

Claims (8)

1. unsaturated acetic acid ester catalyst, with SiO2、Al2O3Or mixtures thereof be carrier, load active component include Metal Palladium, The dendrimer compound of metallic gold, alkali metal acetate and the compound 1 and compound 2 that are shown below, chemical combination The mass ratio of object 1 and compound 2 is 1:(0.05~20), in catalyst the content of palladium be 1~12g/L, the content of gold be 0.1~ 10g/L, alkali metal acetate content be 10~100g/L, dendrimer compound content is 0.1~2.0g/L;
Wherein Et1~Et16It is independently selected from C1~C3Alkyl.
2. unsaturated acetic acid ester catalyst according to claim 1, it is characterised in that Et1~Et16For ethyl.
3. unsaturated acetic acid ester catalyst according to claim 1, it is characterised in that the alkali metal acetate is potassium acetate.
4. the preparation method of catalyst described in any one of claims 1 to 3, comprising the following steps:
(a) in the solution dissolved with containing palladium compound and gold-containing compound, dendrimer compound is added and obtains maceration extract;
(b) in above-mentioned maceration extract, carrier impregnation is added, catalyst precarsor I is made;
(c) catalyst precarsor II is obtained with alkaline compound solution processing catalyst precarsor I;
(d) palladium of compound state in catalyst precarsor II and the gold of compound state are reduced to simple substance with reducing agent, before obtaining catalyst Body III;
(e) alkali metal acetate solution impregnation catalyst precursor I V is used, the catalyst is made after dry.
5. the preparation method according to claim 4, it is characterised in that the containing palladium compound be chlorine palladium acid or chloropalladate, Gold-containing compound is gold chloride or chloroaurate.
6. the preparation method according to claim 4, it is characterised in that the reducing agent is hydrazine hydrate or hydrogen.
7. the preparation method according to claim 4, it is characterised in that when the reducing agent is hydrogen, reduction temperature 100 ~300 DEG C.
8. the synthetic method of unsaturated acetate, in the presence of the catalyst as described in any one of claims 1 to 3, with mole Become oxygen: C2~C3 alkene: nitrogen: acetic acid=1:(5~7 than meter unstripped gas group): (4~8): (1~2), reaction pressure are 0.5~0.9MPa, reaction temperature are 130~200 DEG C, and feed gas volume air speed is 1600~3000hr-1, react and obtain unsaturation Acetate.
CN201510493332.2A 2015-08-12 2015-08-12 Unsaturated acetic acid ester catalyst and preparation method thereof Active CN106423269B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510493332.2A CN106423269B (en) 2015-08-12 2015-08-12 Unsaturated acetic acid ester catalyst and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510493332.2A CN106423269B (en) 2015-08-12 2015-08-12 Unsaturated acetic acid ester catalyst and preparation method thereof

Publications (2)

Publication Number Publication Date
CN106423269A CN106423269A (en) 2017-02-22
CN106423269B true CN106423269B (en) 2019-06-11

Family

ID=58092562

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510493332.2A Active CN106423269B (en) 2015-08-12 2015-08-12 Unsaturated acetic acid ester catalyst and preparation method thereof

Country Status (1)

Country Link
CN (1) CN106423269B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11202001163UA (en) 2017-08-30 2020-03-30 Ecolab Usa Inc Molecules having one hydrophobic group and two identical hydrophilic ionic groups and compositions thereof
US11292734B2 (en) 2018-08-29 2022-04-05 Ecolab Usa Inc. Use of multiple charged ionic compounds derived from poly amines for waste water clarification
WO2020047015A1 (en) 2018-08-29 2020-03-05 Ecolab Usa Inc. Use of multiple charged cationic compounds derived from primary amines or polyamines for microbial fouling control in a water system
EP3843870A1 (en) 2018-08-29 2021-07-07 Ecolab USA Inc. Multiple charged ionic compounds derived from polyamines and compositions thereof and methods of preparation thereof
US11084974B2 (en) 2018-08-29 2021-08-10 Championx Usa Inc. Use of multiple charged cationic compounds derived from polyamines for clay stabilization in oil and gas operations
WO2020047188A1 (en) 2018-08-29 2020-03-05 Ecolab Usa Inc. Multiple charged ionic compounds derived from polyamines and compositions thereof and use thereof as reverse emulsion breakers in oil and gas operations
EP3956496A1 (en) 2019-04-16 2022-02-23 Ecolab USA Inc. Use of multiple charged cationic compounds derived from polyamines and compositions thereof for corrosion inhibition in a water system
CN116550383B (en) * 2023-07-12 2023-10-31 中国天辰工程有限公司 Preparation method of unsaturated acetate and catalyst thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693586A (en) * 1996-06-28 1997-12-02 Hoechst Celanese Corporation Palladium-gold catalyst for vinyl acetate production
CN103878023A (en) * 2012-12-19 2014-06-25 中国石油化工股份有限公司 Preparation method of catalyst for synthesizing vinyl acetate
CN104437648A (en) * 2013-09-24 2015-03-25 中国石油化工股份有限公司 Vinyl acetate catalyst, preparation method and vinyl acetate synthesis method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693586A (en) * 1996-06-28 1997-12-02 Hoechst Celanese Corporation Palladium-gold catalyst for vinyl acetate production
CN103878023A (en) * 2012-12-19 2014-06-25 中国石油化工股份有限公司 Preparation method of catalyst for synthesizing vinyl acetate
CN104437648A (en) * 2013-09-24 2015-03-25 中国石油化工股份有限公司 Vinyl acetate catalyst, preparation method and vinyl acetate synthesis method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Synthesis, Characterization, and Applications of Dendrimer-Encapsulated Nanoparticles";Robert W. J. Scott, et al.;《J. Phys. Chem. B》;20041207;第109卷(第2期);第692-704页

Also Published As

Publication number Publication date
CN106423269A (en) 2017-02-22

Similar Documents

Publication Publication Date Title
CN106423269B (en) Unsaturated acetic acid ester catalyst and preparation method thereof
CN106423284B (en) Vinyl acetate catalyst and preparation method thereof
CN104437648B (en) Vinyl acetate catalyst, preparation method and vinyl acetate synthesis method
CN104437654B (en) Vinyl acetate catalyst and its preparation method
CN103694116B (en) Method for synthesizing methyl formate by gas-phase carbonylation of methyl alcohol
CN103121952B (en) Vinyl acetate preparation method
CN103120958B (en) Vinyl acetate catalyst and preparation method thereof
CN103691451A (en) Catalyst for synthesizing methyl formate by virtue of gas-phase methanol carbonylation as well as preparation method and application of catalyst
CN102001944A (en) Method for preparing glycolate by catalyzing oxalate under action of hydrogenation
CN103878023B (en) The preparation method of catalyzer for synthesizing vinyl acetate
CN101279257B (en) Catalyst for synthesizing oxalic ester and preparation method and application thereof
CN105435779B (en) Carbon monoxide vapor- phase synthesis oxalate catalyst
CN107866277B (en) Preparation method of vinyl acetate catalyst
CN108187682B (en) Solid base catalyst for synthesizing 4-hydroxybutyl vinyl ether and preparation method and application thereof
CN107445833A (en) The method of ethyl glycolate oxidation synthesis glyoxylate ester
CN105478127B (en) Ethylidene diacetate prepares used catalyst
CN107754802A (en) A kind of catalyst and preparation method and application for ethylene carbonate ester through hydrogenation
CN103934037A (en) Regeneration method of catalyst for vinyl acetate
CN103657735B (en) The renovation process of allyl acetate commercial plant decaying catalyst
CN112517063B (en) Preparation method of vinyl acetate catalyst
CN113751077A (en) Vinyl acetate catalyst by ethylene method and preparation method thereof
CN105396584B (en) CO couplings catalyst for synthesizing oxalic ester, preparation method and its usage
CN106607024B (en) Catalyst for synthesizing oxalate by CO gas phase, preparation method and application
CN106423221B (en) Produce catalyst used in acetylene method vinyl acetate
CN105585496B (en) Method for synthesizing vinyl acetate

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant