CN106408456B - Evaluation method of encirclement resource quantity - Google Patents

Evaluation method of encirclement resource quantity Download PDF

Info

Publication number
CN106408456B
CN106408456B CN201610973699.9A CN201610973699A CN106408456B CN 106408456 B CN106408456 B CN 106408456B CN 201610973699 A CN201610973699 A CN 201610973699A CN 106408456 B CN106408456 B CN 106408456B
Authority
CN
China
Prior art keywords
trap
evaluated
area
oil
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610973699.9A
Other languages
Chinese (zh)
Other versions
CN106408456A (en
Inventor
齐仁理
任萍
徐田武
高秋灵
徐深谋
赵余乐
万龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Exploration and Development Research Institute of Sinopec Zhongyuan Oilfield Co
Original Assignee
China Petroleum and Chemical Corp
Exploration and Development Research Institute of Sinopec Zhongyuan Oilfield Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Exploration and Development Research Institute of Sinopec Zhongyuan Oilfield Co filed Critical China Petroleum and Chemical Corp
Priority to CN201610973699.9A priority Critical patent/CN106408456B/en
Publication of CN106408456A publication Critical patent/CN106408456A/en
Application granted granted Critical
Publication of CN106408456B publication Critical patent/CN106408456B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Landscapes

  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention relates to an evaluation method of a closure resource amount, and belongs to the field of oil-gas exploration. And acquiring the effective volume and the crude oil density of the trap in the area to be evaluated by using the geological data of the area to be evaluated. And establishing a mathematical model for representing the oil content weight of the trap in the area to be evaluated according to the corresponding relation between the surface adsorption hydrocarbon value and the microorganism abnormal value of the oil-gas trap, the non-oil-gas trap and the trap in the area to be evaluated, and determining the resource content of the trap in the area to be evaluated. The method weakens the influence of subjective human factors to the maximum extent, and can determine that the area is less than 0.5km2And the resource scale of the trap of the well drilling does not exist, so that a reliable basis is provided for the drilling of an oil company in the trap of the area to be evaluated.

Description

Evaluation method of encirclement resource quantity
Technical Field
The invention relates to the field of oil and gas exploration, in particular to an evaluation method of a closure resource amount.
Background
Oil and gas are all in underground traps, and the traps with large sizes and small sizes are identified by means of drilling, earthquake and the like after years of oil exploration. In which theWhen large traps have been drilled, considerable residual resources remain to be present in areas less than 0.5km2Among the small traps, whether the resource scale of the small traps is worth drilling or not becomes a practical problem to be solved urgently by oil companies. Chinese patent No. 201410410322.3 discloses a method for screening traps, which analyzes from the trapped elements, and utilizes the geological risk threshold to collect the probabilities of trapping, filling, storing and storing four main factors, so as to realize a uniform trap screening method, which is more suitable for traps with large trap area and relatively perfect geological data, but less than 0.5km for the area2And as far as no trap of a well is available, probability collection of four main factors of the patent is difficult and unsuitable for operation. Before drilling, oil companies focused on the oil-bearing nature of the traps, which, if oil-bearing, increased the free hydrocarbon content between surface soil particles and adsorbed hydrocarbon content between soil mineral lattices, and abnormal microbial development in the surface soil directly above the traps, based on hydrocarbon microleakage theory and vertical migration theory. The trapped oil-bearing capacity can therefore be judged by measuring surface adsorbed hydrocarbons and microbial anomalies. Chinese patent No. 201510288035.4 discloses a method and apparatus for predicting soil light hydrocarbon index, which provides a method for measuring the content of hydrocarbons adsorbed on the earth's surface. Further, the probability of the factor of the hydrocarbons adsorbed on the surface may be influenced by human activities and environmental pollution, which may cause an abnormality, and if the size of the trap resource is estimated by using the hydrocarbons adsorbed on the surface alone, the evaluation accuracy of the trap resource amount is low.
Disclosure of Invention
The invention aims to provide an evaluation method of the trap resource amount, and overcomes the defects that in the prior art, the trap resource amount evaluation has more selection factors and is difficult to obtain, and the factors of surface adsorption of hydrocarbon are independently adopted for calculation, so that the risk is higher, the parameters are inaccurate, the uncertainty is higher, and the precision of the trap resource amount evaluation is low.
In order to achieve the purpose, the technical scheme adopted by the evaluation method of the entrapment resource content is that geological data of a to-be-evaluated area is utilized to obtain the effective volume and the crude oil density of the entrapment in the to-be-evaluated area, a mathematical model for representing the oil content weight of the entrapment in the to-be-evaluated area is established according to the corresponding relation between the surface adsorption hydrocarbon value and the microorganism abnormal value of the oil-gas entrapment, the non-oil-gas entrapment and the entrapment in the to-be-evaluated area in the area where the entrapment in the to-be-evaluated area is located, and the entrapment resource content in the to-be-evaluated area is determined.
The invention comprises the following steps:
1. determining the effective volume of the trap in the area to be evaluated according to the geological data of the area to be evaluated:
collecting geological data of an area where a trap in an area to be evaluated is located, which specifically comprises the following steps: the top surface structure diagram of the region where the trap in the region to be evaluated is located, the effective thickness and the effective porosity of the reservoir of the trap in the region to be evaluated, and the effective volume V of the trap in the region to be evaluated are determinede
2. The method for establishing the mathematical model for representing the oil content weight of the trap in the area to be evaluated according to the corresponding relation between the surface adsorption hydrocarbon value and the microorganism abnormal value of the oil-gas trap, the non-oil-gas trap and the trap in the area to be evaluated, wherein the trap is located in the area to be evaluated, and the mathematical model comprises the following steps:
(1) screening drilled oil-gas-containing traps and non-oil-gas-containing traps in the region where the traps in the region to be evaluated are located, sampling at the high points of the respective traps, and measuring the surface adsorption hydrocarbon value K of the drilled oil-gas-containing traps1And microbial anomaly value M1(ii) a Hydrocarbon value K of non-oil-gas-containing trap surface adsorption2And microbial anomaly value M2
(2) Setting a surface adsorption hydrocarbon value K and a microorganism abnormal value M which are sampled and measured at a trap high point in an area to be evaluated;
(3) establishing a mathematical model of the oil-containing weight P of the trap in the area to be evaluated according to the corresponding relation between the earth surface adsorption hydrocarbon value K and the microorganism abnormal value M measured by the trap in the area to be evaluated, wherein P ═ P (P ═ P)1+P2)/2;
Wherein: p1=(K-K2)/(K1-K2)*100%;
P2=(M-M2)/(M1-M2)*100%;
P1The weight of the oil content is measured by the hydrocarbon adsorption value on the earth surface;
P2the weight of the oiliness is measured by the abnormal value of the microorganism.
3. Sampling at a trap high point in a region to be evaluated, measuring a surface adsorption hydrocarbon value K and a microorganism abnormal value M of the sample, and determining an oil content weight P representing the trap resource content in the region to be evaluated; if K2<K<K1The K value is calculated by using the measured value; if K>K1If K is equal to K1(ii) a If K<K2If K is equal to K2(ii) a If M is2<M<M1The M value is calculated by using the measured value; if M is>M1If M is equal to M1(ii) a If M is<M2If M is equal to M2
4. Utilizing the density rho of the trapped crude oil in the area to be evaluated and utilizing the effective volume V of the trap in the area to be evaluated determined in the step 1eAnd 3, determining an oil content weight P representing the trap resource content in the to-be-evaluated area, and determining a trap resource content Z in the to-be-evaluated area;
as shown in formula 1:
trap resource quantity Z ═ P × Veρ. (formula 1)
The method utilizes the earth surface adsorption hydrocarbon content value and the microorganism abnormal value of the area to be evaluated to establish a mathematical model of the oil content weight P of the enclosed area to be evaluated, the obtained oil content weight has high precision, and the area less than 0.5km can be determined by combining with the known geological data2And the resource scale of the trap of the well drilling does not exist, so that the influence of subjective human factors is weakened to the maximum extent, and a reliable basis is provided for the drilling of an oil company in the trap of the area to be evaluated.
Drawings
FIG. 1 is a flow chart of the technical solution of the present invention.
Detailed Description
By enclosure A in the Y basin1Trap A2Trap A3The present invention will be described in detail with reference to resource amount evaluation as an example.
As can be seen from FIG. 1, the specific steps of the present invention are as follows:
1. collecting the trap A to be evaluated in the Y basin (trap A)1Trap A2Trap A3) The geological data of the area specifically includes: trap A1Trap A2Trap A3The top surface structure diagram, the effective thickness and the effective porosity of the reservoir in the area are respectively enclosed in a1Trap A2Trap A3The area of the trap is measured on the top surface structure diagram of (1), and the trap A is calculated1Effective volume V ofA1eTrap A2Effective volume V ofA2eTrap A3Effective volume V ofA3e
Effective thickness of reservoir NA1=13m;NA2=13m;NA3=13m;
Effective porosity parameter QA1=12%;QA2=12%;QA3=12%;
Are respectively at the trap A1Trap A2Trap A3On the top surface structure diagram, the trap overflow point and the closing height are measured and obtained, and the trap area is calculated as SA1=0.45km2,SA2=0.40km2,SA3=0.37km2
Calculating the effective volume V of trapA1e=13*12%*0.45*106=0.702*106m3
Calculating the effective volume V of trapA2e=13*12%*0.40*106=0.624*106m3
Calculating the effective volume V of trapA2e=13*12%*0.37*106=0.577*106m3
2. According to the corresponding relation among the surface hydrocarbon adsorption value and the microorganism abnormal value of the drilled hydrocarbon-containing trap B, the non-hydrocarbon-containing trap C and the trap A to be evaluated in the area where the trap A to be evaluated is located in the Y basin, a mathematical model of the oil-containing weight representing the resource content of the trap A in the Y basin is established:
2.1 oil-gas trap B and non-oil trap B drilled in the area of trap A in basin YDesigning 2 sampling points at the high point of the oil-gas trap C, and measuring the value K of the surface adsorbed hydrocarbon of the drilled oil-gas trap B1And microbial anomaly value M1Surface adsorption of hydrocarbon value K without hydrocarbon trap C2And microbial anomaly value M2
The measured data were: k1=220;K2=35;M1=156;M2=28;
2.2 setting a surface adsorption hydrocarbon value K and a microorganism abnormal value M which are sampled and measured at a high point of a trap A to be evaluated in a basin Y;
2.3 according to the corresponding relation between the surface adsorption hydrocarbon value and the microorganism abnormal value of the drilled oil-gas-containing trap B, the non-oil-gas-containing trap C and the trap A to be evaluated, establishing a mathematical model of the oil-containing weight P of the trap A to be evaluated in the basin Y, wherein P is (P ═ P1+P2)/2;
Wherein: p1=(K-K2)/(K1-K2)*100%=(K-35)/(220-35)*100%;
P2=(M-M2)/(M1-M2)*100%=(M-28)/(156-28)*100%。
3. Traps A in the Y basin respectively1Trap A2Trap A3Sampling at the high point, and determining the surface adsorption hydrocarbon value K and the microorganism abnormal value M of each trap;
the measured data were: kA1=180,MA2=97;KA2=90;MA2=57;KA3=210;MA3=140;
Substituting the measured K and M values into the mathematical model in the step 2.3 to obtain the trap A1P ofA1Trap A2P ofA2Trap A3P ofA3
P1A1=(K-35)/(220-35)*100%=(180-35)/(220-35)*100%=78.38%;
P2A1=(M-28)/(156-28)*100%=(97-28)/(156-28)*100%=53.91%;
PA1=(P1A1+P2A1)/2=(78.38%+53.91%)/2=66.15%;
P1A2=(K-35)/(220-35)*100%=(90-35)/(220-35)*100%=29.73%;
P2A2=(M-28)/(156-28)*100%=(57-28)/(156-28)*100%=22.66%;
PA2=(P1A2+P2A2)/2=(29.73%+22.66%)/2=26.20%;
P1A3=(K-35)/(220-35)*100%=(210-35)/(220-35)*100%=94.59%;
P2A3=(M-28)/(156-28)*100%=(140-28)/(156-28)*100%=87.50%;
PA3=(P1A3+P2A3)/2=(94.59%+87.50%)/2=91.05%。
4. Separately obtain traps A in the Y basin1Trap A2Trap A3Using the effective volume V of the trap A determined in step 1AeAnd 3, determining the oil content weight P of the trap A, and determining the resource quantity Z of the trap AA
Trap A1Crude oil density of [ rho ]A1=0.85g/cm3=0.85*103kg/m3
Trap A2Crude oil density of [ rho ]A2=0.85g/cm3=0.85*103kg/m3
Trap A3Crude oil density of [ rho ]A3=0.85g/cm3=0.85*103kg/m3
Trapped resource amount ZA=P*VAe*ρ;
ZA1=66.15%*0.702*106*0.85*103=0.395*109kg=0.395*106T;
ZA2=26.20%*0.624*106*0.85*103=0.139*109kg=0.139*106T;
ZA3=91.05%*0.577*106*0.85*103=0.447*109kg=0.447*106T;
Trap A1The trap resource amount of (2) is 0.395 x 106Ton, trap A2The trap resource amount of (2) is 0.139 × 106Ton, trap A3The trap resource amount of (2) is 0.447 x 106Ton, thus giving the trap A3The resource amount of (2) is the largest, and the resource size is the largest among 3 traps to be evaluated.

Claims (3)

1. A method for evaluating the amount of enclosed resources is characterized by comprising the following steps: acquiring the effective volume and the crude oil density of the trap in the area to be evaluated by using geological data of the area to be evaluated, establishing a mathematical model representing the oiliness weight of the trap in the area to be evaluated according to the corresponding relation between the surface adsorption hydrocarbon value and the microorganism abnormal value of the oil-gas trap, the non-oil-gas trap and the trap in the area to be evaluated, and determining the resource content of the trap in the area to be evaluated;
the method for establishing the mathematical model for representing the oil content weight of the trap in the to-be-evaluated area comprises the following steps of:
(1) screening drilled oil-gas-containing traps and non-oil-gas-containing traps in the region where the traps in the region to be evaluated are located, sampling at the high points of the respective traps, and measuring the surface adsorption hydrocarbon value K of the drilled oil-gas-containing traps1And microbial anomaly value M1(ii) a Hydrocarbon value K of non-oil-gas-containing trap surface adsorption2And microbial anomaly value M2
(2) Setting a surface adsorption hydrocarbon value K and a microorganism abnormal value M which are sampled and measured at a trap high point in an area to be evaluated;
(3) establishing a mathematical model of the oil-containing weight P of the trap in the area to be evaluated according to the corresponding relation between the earth surface adsorption hydrocarbon value K and the microorganism abnormal value M measured by the trap in the area to be evaluated, wherein P = (P)1+P2)/2;
Wherein: p1=(K-K2)/(K1-K2)*100%;
P2=(M-M2)/(M1-M2)*100%;
P1For oil-containing properties measured by surface adsorption of hydrocarbonsA weight value;
P2the weight of the oiliness is measured by the abnormal value of the microorganism.
2. The method for evaluating the amount of circled resources according to claim 1, wherein: sampling at a trap high point in a region to be evaluated, measuring a surface adsorption hydrocarbon value K and a microorganism abnormal value M of the sample, and determining an oil content weight P representing the trap resource content in the region to be evaluated; if K2<K<K1The K value is calculated by using the measured value; if K>K1Let K = K1(ii) a If K<K2Let K = K2(ii) a If M is2<M<M1The M value is calculated by using the measured value; if M is>M1If M = M, then let M = M1(ii) a If M is<M2If M = M, then let M = M2
3. The method according to claim 1 or 2, wherein: using the density rho, effective volume V of trapped crude oil in the area to be evaluatedeAnd an oil-containing weight P representing the trap resource amount in the to-be-evaluated area, and determining the trap resource amount Z in the to-be-evaluated area: trap resource amount Z = P × Ve*ρ。
CN201610973699.9A 2016-11-03 2016-11-03 Evaluation method of encirclement resource quantity Active CN106408456B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610973699.9A CN106408456B (en) 2016-11-03 2016-11-03 Evaluation method of encirclement resource quantity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610973699.9A CN106408456B (en) 2016-11-03 2016-11-03 Evaluation method of encirclement resource quantity

Publications (2)

Publication Number Publication Date
CN106408456A CN106408456A (en) 2017-02-15
CN106408456B true CN106408456B (en) 2022-02-18

Family

ID=58014983

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610973699.9A Active CN106408456B (en) 2016-11-03 2016-11-03 Evaluation method of encirclement resource quantity

Country Status (1)

Country Link
CN (1) CN106408456B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111257534A (en) * 2020-01-17 2020-06-09 盎亿泰地质微生物技术(北京)有限公司 Comprehensive evaluation method for oil gas storage conditions

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105447607A (en) * 2014-08-19 2016-03-30 中国石油化工股份有限公司 Method for screening traps

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9405291B2 (en) * 2012-07-31 2016-08-02 Fisher-Rosemount Systems, Inc. Systems and methods to monitor an asset in an operating process unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105447607A (en) * 2014-08-19 2016-03-30 中国石油化工股份有限公司 Method for screening traps

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
微生物地球化学勘探技术在白云凹陷深水区油气勘探中的应用;颜承志;《中国海上油气》;20140831;第15-19页 *
油气有利聚集圈闭的最优化决策模型研究;曾刚;《中国优秀硕士学位论文全文数据库 基础科学辑》;20150615;第43页 *
颜承志.微生物地球化学勘探技术在白云凹陷深水区油气勘探中的应用.《中国海上油气》.2014, *

Also Published As

Publication number Publication date
CN106408456A (en) 2017-02-15

Similar Documents

Publication Publication Date Title
CN111441758B (en) Shale oil gas dessert area prediction method and device
Pittman Relationship of porosity and permeability to various parameters derived from mercury injection-capillary pressure curves for sandstone (1)
Vienken et al. Field evaluation of methods for determining hydraulic conductivity from grain size data
CN107657365B (en) Geological resource exploitation value evaluation method and device
Michael et al. Determination of in-situ hydrocarbon volumes in liquid rich shale plays
KR101826132B1 (en) Prediction apparatus and the method of desorbed gas volume of shale using geophysical logging data
CN107907461B (en) Research method for main occurrence pore diameter range of shale oil
CN103869052A (en) Method for quantitatively expressing diagenetic logging facies of sandstone reservoir
Mirzaei-Paiaman et al. A new framework for selection of representative samples for special core analysis
CN104655826A (en) Method and device for detecting adsorption parameters of tight reservoir adsorbed state crude oil
CN106408456B (en) Evaluation method of encirclement resource quantity
Chang et al. A new alternative for estimation of geotechnical engineering parameters in reclaimed clays by using shear wave velocity
CN106907140B (en) Method for determining high-yield stratum level of hydrodynamic enclosed coal bed gas based on logging information
CN111691878B (en) Lithofacies quality grading evaluation method and device for shale
WO2018085669A1 (en) Methods and systems for quantification of napl transmissivity
CN110930020B (en) Method for determining economic recoverable resource amount of unconventional oil and gas resources
CN113534248A (en) Method, device and system for quantitatively analyzing closure of trap fault
CN108240999A (en) A kind of recognition methods of clastic rock lithology
Ciurleo et al. A method to evaluate debris flow triggering and propagation by numerical analyses
Salimifard et al. A study of mercury intrusion on Montney Formation rocks and how it relates to permeability
CN112012727A (en) Method for obtaining gas phase effective permeability and prediction method of reservoir productivity
Taboada et al. Normalized Modulus Reduction and Material Damping Ratio Curves for Bay of Campeche Sand
Thokchom et al. Geotechnical investigations in the southern part of Ahmedabad district, Gujarat, India
Vienken Critical evaluation of vertical high resolution methods for determining hydraulic conductivity
CN107451310B (en) Classification evaluation method and device based on shale source-storage correlation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant