CN106407887B - Method and device for obtaining step size of candidate frame search - Google Patents
Method and device for obtaining step size of candidate frame search Download PDFInfo
- Publication number
- CN106407887B CN106407887B CN201610716184.0A CN201610716184A CN106407887B CN 106407887 B CN106407887 B CN 106407887B CN 201610716184 A CN201610716184 A CN 201610716184A CN 106407887 B CN106407887 B CN 106407887B
- Authority
- CN
- China
- Prior art keywords
- partition
- step size
- search
- original
- original partition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 51
- 238000005192 partition Methods 0.000 claims abstract description 151
- 238000009826 distribution Methods 0.000 claims abstract description 62
- 238000005315 distribution function Methods 0.000 claims abstract description 29
- 238000001514 detection method Methods 0.000 abstract description 29
- 230000008569 process Effects 0.000 abstract description 13
- 238000012544 monitoring process Methods 0.000 abstract description 5
- 238000003909 pattern recognition Methods 0.000 abstract description 3
- 230000003068 static effect Effects 0.000 abstract description 3
- 230000000694 effects Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000011478 gradient descent method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/40—Scenes; Scene-specific elements in video content
- G06V20/41—Higher-level, semantic clustering, classification or understanding of video scenes, e.g. detection, labelling or Markovian modelling of sport events or news items
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/94—Hardware or software architectures specially adapted for image or video understanding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/07—Target detection
Landscapes
- Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Computational Linguistics (AREA)
- Image Analysis (AREA)
Abstract
Description
【技术领域】【Technical field】
本发明涉及计算机视觉及模式识别中的目标检测领域,尤其涉及一种候选框搜索步长的获取方法及装置。The invention relates to the field of target detection in computer vision and pattern recognition, in particular to a method and device for obtaining a candidate frame search step size.
【背景技术】【Background technique】
随着计算机图像处理技术的迅速发展和广泛应用,对于目标检测技术的需求也逐渐上升。目标检测已经成为计算机视觉和模式识别领域的基本问题,而检测目标的候选框搜索步长的确定是目标识别分类的一项重要的前期工作。目前现有的生成目标候选框的方法一般是滑动窗搜索方式,滑动窗搜索方式在进行目标搜索时,候选框在整个扫描窗口以固定的长度步进。With the rapid development and wide application of computer image processing technology, the demand for target detection technology is gradually rising. Object detection has become a basic problem in the field of computer vision and pattern recognition, and the determination of the search step size of candidate boxes for detecting objects is an important preliminary work in object recognition and classification. At present, the existing method for generating target candidate frames is generally a sliding window search method. When a target search method is performed in the sliding window search method, the candidate frame steps by a fixed length in the entire scanning window.
在实现本发明过程中,发明人发现现有技术中至少存在如下问题:In the process of realizing the present invention, the inventor found that there are at least the following problems in the prior art:
按照现有的目标搜索方法,在对目标进行搜索的过程中,候选框在整个扫描窗口以固定的长度步进,在搜索目标个数不同的区域内都以固定的长度步进搜索可能会出现漏检,搜索结果不是全局最优的。According to the existing target search method, in the process of searching for the target, the candidate frame is stepped by a fixed length in the entire scanning window, and the search by a fixed length in the area with different number of search targets may appear. Missing detection, the search results are not globally optimal.
【发明内容】[Content of the invention]
有鉴于此,本发明实施例提供了一种候选框搜索步长的获取方法及装置,可以根据搜索目标在区域内出现的频率和密度信息确定候选框搜索步长。In view of this, the embodiments of the present invention provide a method and device for obtaining a search step size of a candidate frame, which can determine the search step size of a candidate frame according to the frequency and density information of search targets appearing in an area.
一方面,本发明实施例提供了一种候选框搜索步长的获取方法,所述方法包括:On the one hand, an embodiment of the present invention provides a method for obtaining a search step size of a candidate frame, the method comprising:
获取待搜索图像;Get the image to be searched;
获取所述待搜索图像中各个原始分区的图像信息以及各个原始分区各自对应的泊松分布函数;Obtain the image information of each original partition in the to-be-searched image and the Poisson distribution function corresponding to each original partition;
根据每个原始分区的图像信息和泊松分布函数,确定每个原始分区的分区类型;Determine the partition type of each original partition according to the image information and Poisson distribution function of each original partition;
根据所述分区类型,确定在每个原始分区中的候选框搜索步长。According to the partition type, the candidate box search step size in each original partition is determined.
另一方面,本发明实施例提供了一种候选框搜索步长的获取装置,所述装置包括:On the other hand, an embodiment of the present invention provides a device for obtaining a search step size of a candidate frame, and the device includes:
第一获取单元,用于获取待搜索图像;a first acquisition unit, used to acquire the image to be searched;
第二获取单元,用于获取所述待搜索图像中各个原始分区的图像信息以及各个原始分区各自对应的泊松分布函数;a second acquiring unit, configured to acquire the image information of each original partition in the image to be searched and the Poisson distribution function corresponding to each original partition;
第一确定单元,用于根据每个原始分区的图像信息和泊松分布函数,确定每个原始分区的分区类型;a first determining unit, configured to determine the partition type of each original partition according to the image information and Poisson distribution function of each original partition;
第二确定单元,用于根据所述分区类型,确定在每个原始分区中的候选框搜索步长。The second determining unit is configured to determine, according to the partition type, the search step size of the candidate frame in each original partition.
本发明实施例提供的一种候选框搜索步长的获取方法及装置,通过分区建立泊松模型并不断学习更新得到的特定搜索目标的位置信息,可以调整每帧图像中每块区域的候选框搜索步长,约束目标候选框的数量,从而针对不同的区域对搜索目标进行检测。这种方法及装置提升了检测效果,可以获得较高的检出率。The embodiment of the present invention provides a method and device for obtaining a search step size of a candidate frame. By establishing a Poisson model by partition and continuously learning and updating the position information of a specific search target, the candidate frame of each area in each frame of image can be adjusted. The search step size constrains the number of target candidate boxes, so as to detect the search target for different regions. The method and device improve the detection effect, and can obtain a higher detection rate.
【附图说明】【Description of drawings】
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。In order to illustrate the technical solutions of the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the embodiments. Obviously, the drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without any creative effort.
图1是本发明实施例提供的一种候选框搜索步长的获取方法流程图;1 is a flowchart of a method for obtaining a candidate frame search step size provided by an embodiment of the present invention;
图2是本发明实施例提供的另一种候选框搜索步长的获取方法流程图;2 is a flowchart of another method for obtaining a candidate frame search step size provided by an embodiment of the present invention;
图3是本发明实施例提供的另一种候选框搜索步长的获取方法流程图;3 is a flowchart of another method for obtaining a candidate frame search step size provided by an embodiment of the present invention;
图4是本发明实施例提供的另一种候选框搜索步长的获取方法流程图;4 is a flowchart of another method for obtaining a candidate frame search step size provided by an embodiment of the present invention;
图5是本发明实施例提供的一种候选框搜索步长的获取装置的组成框图;5 is a block diagram of an apparatus for obtaining a candidate frame search step size provided by an embodiment of the present invention;
图6是本发明实施例提供的另一种候选框搜索步长的获取装置的组成框图;6 is a block diagram of an apparatus for obtaining another candidate frame search step size provided by an embodiment of the present invention;
图7是本发明实施例提供的另一种候选框搜索步长的获取装置的组成框图;FIG. 7 is a block diagram of an apparatus for obtaining another candidate frame search step size provided by an embodiment of the present invention;
图8是本发明实施例提供的另一种候选框搜索步长的获取装置的组成框图。FIG. 8 is a block diagram of another device for obtaining a search step size of a candidate frame provided by an embodiment of the present invention.
【具体实施方式】【Detailed ways】
为了更好的理解本发明的技术方案,下面结合附图对本发明实施例进行详细描述。In order to better understand the technical solutions of the present invention, the embodiments of the present invention are described in detail below with reference to the accompanying drawings.
应当明确,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。It should be understood that the described embodiments are only some, but not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。The terms used in the embodiments of the present invention are only for the purpose of describing specific embodiments, and are not intended to limit the present invention. As used in the embodiments of the present invention and the appended claims, the singular forms "a," "the," and "the" are intended to include the plural forms as well, unless the context clearly dictates otherwise.
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。It should be understood that the term "and/or" used in this document is only an association relationship to describe the associated objects, indicating that there may be three kinds of relationships, for example, A and/or B, which may indicate that A exists alone, and A and B exist at the same time. B, there are three cases of B alone. In addition, the character "/" in this document generally indicates that the related objects are an "or" relationship.
取决于语境,如在此所使用的词语“如果”可以被解释成为“在......时”或“当......时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。Depending on the context, the word "if" as used herein can be interpreted as "at the time of" or "when" or "in response to determining" or "in response to detection". Similarly, the phrases "if determined" or "if detected (the stated condition or event)" can be interpreted as "when determined" or "in response to determining" or "when detected (the stated condition or event)," depending on the context )" or "in response to detection (a stated condition or event)".
本发明实施例提供了一种候选框搜索步长的获取方法,能够适用于包括静态监控视频、车载监控视频等场景中行人检测、车辆检测等目标检测过程中,如图1所示,所述方法包括:An embodiment of the present invention provides a method for obtaining a candidate frame search step size, which can be applied to target detection processes such as pedestrian detection and vehicle detection in scenes including static surveillance video and vehicle surveillance video. As shown in FIG. 1 , the Methods include:
101、获取待搜索图像。101. Acquire an image to be searched.
其中,所述待搜索图像指的是目标检测过程中的所有待检测图像。Wherein, the to-be-searched images refer to all the to-be-detected images in the target detection process.
102、获取所述待搜索图像中各个原始分区的图像信息以及各个原始分区各自对应的泊松分布函数。102. Acquire image information of each original partition in the to-be-searched image and a Poisson distribution function corresponding to each original partition.
其中,需要说明的是,本发明实施例针对静态监控视频以及车载监控视频等场景监控,图像中搜索目标出现在某块区域的频率和分布密度服从泊松分布。Among them, it should be noted that the embodiment of the present invention is aimed at scene monitoring such as static monitoring video and vehicle monitoring video, and the frequency and distribution density of the search target appearing in a certain area in the image obey Poisson distribution.
其中,所述各个原始分区指的是对检测区域进行分块后的各个区域。Wherein, each original partition refers to each area after the detection area is divided into blocks.
其中,所述各个原始分区的图像信息包括搜索目标在每块区域出现的频率信息以及搜索目标分布的密度信息。Wherein, the image information of each original partition includes frequency information of the search target appearing in each area and density information of the distribution of the search target.
其中,所述搜索目标指的是目标检测过程中的待检测对象,比如人、车辆和物体等。The search target refers to objects to be detected in the target detection process, such as people, vehicles, and objects.
其中,所述泊松分布函数基于数学泊松模型建立的函数,适用于描述单位时间内随机事件发生的次数。The Poisson distribution function is a function established based on a mathematical Poisson model, and is suitable for describing the number of random events occurring per unit time.
103、根据每个原始分区的图像信息和泊松分布函数,确定每个原始分区的分区类型。103. Determine the partition type of each original partition according to the image information of each original partition and the Poisson distribution function.
其中,所述分区类型由原始分区中搜索目标个数的多少确定。Wherein, the partition type is determined by the number of search targets in the original partition.
其中,所述搜索目标个数指的是单位时间内搜索目标分布的数量,与搜索目标出现的频率信息和分布的密度信息相关。The number of search targets refers to the number of search target distributions per unit time, and is related to the frequency information of the search targets and the density information of the distribution.
104、根据所述分区类型,确定在每个原始分区中的候选框搜索步长。104. Determine, according to the partition type, a search step size of the candidate frame in each original partition.
本发明实施例提供的一种候选框搜索步长的获取方法,通过分区建立泊松模型并不断学习更新得到的特定目标的位置信息,可以调整每帧图像中每块区域的候选框搜索步长,约束目标候选框的数量,从而针对不同的区域对目标进行检测。这种方法提升了检测效果,可以获得较高的检出率。A method for obtaining a candidate frame search step size provided by an embodiment of the present invention can adjust the candidate frame search step size of each area in each frame of image by establishing a Poisson model by partition and continuously learning and updating the position information of a specific target. , which constrains the number of target candidate boxes to detect targets for different regions. This method improves the detection effect and can obtain a higher detection rate.
进一步来说,结合前述方法流程,在本发明实施例的另一种可能的实现方式中,针对步骤103根据每个原始分区的图像信息和泊松分布函数,确定每个原始分区的分区类型的实现提供了以下具体流程,如图2所示,包括:Further, in combination with the foregoing method flow, in another possible implementation manner of the embodiment of the present invention, for
201、根据每个原始分区的图像信息和泊松分布函数,确定每个原始分区中搜索目标的个数。201. Determine the number of search targets in each original partition according to the image information of each original partition and the Poisson distribution function.
其中,所述泊松分布函数在连续分布时有两个参数,一个是时域上随机事件发生的频率,另一个是空间域上随机事件的分布密度,在本发明实施例中,所述时域上随机事件发生的频率指的是搜索目标在每个原始分区中出现的频率,所述空间域上随机事件的分布密度指的是搜索目标分布的密度。Among them, the Poisson distribution function has two parameters in the continuous distribution, one is the frequency of random events in the time domain, and the other is the distribution density of random events in the space domain. In this embodiment of the present invention, the time The frequency of occurrence of random events on the domain refers to the frequency of the search target appearing in each original partition, and the distribution density of random events on the spatial domain refers to the density of the search target distribution.
其中,所述泊松分布函数在对搜索目标进行检测的过程中进行训练,在学习过程中动态获取搜索目标在每块区域出现的频率信息和搜索目标的分布密度信息。The Poisson distribution function is trained in the process of detecting the search target, and dynamically obtains frequency information of the search target in each area and distribution density information of the search target during the learning process.
其中,当对搜索目标进行检测时,对每一帧待搜索图像进行检测,泊松分布函数变为离散型分布,确定了时间,搜索目标的个数即是单位时间内搜索目标分布的密度。Among them, when the search target is detected, each frame of the image to be searched is detected, the Poisson distribution function becomes a discrete distribution, and the time is determined, and the number of search targets is the density of the search target distribution per unit time.
202、当所述搜索目标的个数在第一阈值范围内时,则将搜索目标的个数在第一阈值范围内的原始分区的分区类型确定为目标稀疏分布区域。202. When the number of the search targets is within the first threshold range, determine the partition type of the original partition where the number of the search targets is within the first threshold range as the target sparse distribution area.
其中,所述第一阈值范围指的搜索目标个数比较少的一个数目范围,记为[L,Lmin)。Wherein, the first threshold range refers to a number range in which the number of search targets is relatively small, and is denoted as [L, Lmin).
其中,所述L为大于0的整数。Wherein, the L is an integer greater than 0.
其中,所述Lmin为大于L的整数。Wherein, the Lmin is an integer greater than L.
203、当所述搜索目标的个数在第二阈值范围内时,则将搜索目标的个数在第二阈值范围内的原始分区的分区类型确定为目标中等分布区域。203. When the number of the search targets is within the second threshold range, determine the partition type of the original partition with the number of the search targets within the second threshold range as the target medium distribution area.
其中,所述第二阈值范围指的是搜索目标个数大于第一阈值范围的一个数目范围,记为[Lmin,Lmax]。The second threshold range refers to a number range in which the number of search targets is greater than the first threshold range, which is denoted as [Lmin, Lmax].
其中,所述Lmax为大于Lmin的整数。Wherein, the Lmax is an integer greater than Lmin.
204、当所述搜索目标的个数在第三阈值范围内时,则将搜索目标的个数在第三阈值范围内的原始分区的分区类型确定为目标密集分布区域。204. When the number of the search targets is within the third threshold range, determine the partition type of the original partition with the number of the search targets within the third threshold range as the target dense distribution area.
其中,所述第三阈值范围指的是搜索目标个数大于第二阈值范围的一个数目范围,记为[Lmax,+∝)。Wherein, the third threshold range refers to a number range in which the number of search targets is greater than the second threshold range, denoted as [Lmax, +∝).
其中,当所述原始分区的搜索目标个数大于Lmin时,原始分区视为目标出现较多的区域。Wherein, when the number of search targets in the original partition is greater than Lmin, the original partition is regarded as an area with more targets.
其中,当所述原始分区的搜索目标个数小于L时,原始分区视为目标出现较少的区域。Wherein, when the number of search targets in the original partition is less than L, the original partition is regarded as an area with fewer targets.
其中,对于搜索目标出现较多的区域确定分区类型,对于搜索目标出现较少的区域直接根据搜索目标的个数确定候选框的搜索步长。Among them, the partition type is determined for the area with more search targets, and the search step size of the candidate frame is directly determined according to the number of search targets for the area with few search targets.
进一步来说,结合前述方法流程,在本发明实施例的另一种可能的实现方式提供了如何根据所述分区类型,确定在每个原始分区中的候选框搜索步长的具体步骤,针对步骤104的实现提供了以下具体流程,如图3所示,包括:Further, in combination with the foregoing method flow, another possible implementation manner of the embodiment of the present invention provides specific steps of how to determine the search step size of candidate boxes in each original partition according to the partition type. The implementation of 104 provides the following specific processes, as shown in FIG. 3 , including:
301、将所述分区类型为目标稀疏分布区域的原始分区中的候选框搜索步长设置为第一步长。301. Set the search step size of the candidate frame in the original partition where the partition type is the target sparse distribution area to the first step size.
其中,所述第一步长可根据所述目标稀疏分布区域的搜索目标分布情况自行定义长短。Wherein, the length of the first step can be defined by itself according to the distribution of the search targets in the target sparse distribution area.
302、将所述分区类型为目标中等分布区域的原始分区中的候选框搜索步长设置为第二步长。302. Set the search step size of the candidate frame in the original partition where the partition type is the target medium distribution area as the second step size.
其中,所述第二步长可根据所述目标中等分布区域的搜索目标分布情况自行定义长短。Wherein, the length of the second step can be defined by itself according to the distribution of the search targets in the target medium distribution area.
其中,所述第二步长小于所述第一步长。Wherein, the second step size is smaller than the first step size.
303、将所述分区类型为目标密集分布区域的原始分区中的候选框搜索步长设置为第三步长。303. Set the search step size of the candidate frame in the original partition where the partition type is the target dense distribution area to the third step size.
其中,所述第三步长可根据所述目标密集分布区域的搜索目标分布情况自行定义长短。Wherein, the length of the third step can be defined by itself according to the distribution of the search targets in the dense target distribution area.
其中,所述第三步长小于所述第二步长。Wherein, the third step size is smaller than the second step size.
需要说明的是,当原始分区属于搜索目标出现较少的区域时,根据搜索目标出现的个数直接确定步长,所述步长不小于所述第一步长。It should be noted that, when the original partition belongs to an area with few search targets, the step size is directly determined according to the number of search targets, and the step size is not less than the first step size.
进一步来说,结合前述方法流程,本发明实施例提供了另一种可能的实现方式,如图4所示,在所述获取待搜索图像之前,还包括:Further, in combination with the foregoing method flow, the embodiment of the present invention provides another possible implementation manner. As shown in FIG. 4 , before acquiring the image to be searched, the method further includes:
401、获取原始图像内的原始分区。401. Obtain the original partition in the original image.
其中,所述原始图像指的是检测区域内的n帧图像。Wherein, the original image refers to n frames of images in the detection area.
其中,所述n是大于0的整数。Wherein, the n is an integer greater than 0.
其中,所述原始分区根据检测区域大小和特征进行分块。Wherein, the original partition is divided into blocks according to the size and characteristics of the detection area.
其中,所述原始分区数目越多时,函数越能准确的反应分区内目标出现的频率和分布密度信息,每个原始分区内部的统计分布可认为基本一致。Wherein, when the number of the original partitions is larger, the function can more accurately reflect the frequency and distribution density information of the targets in the partitions, and the statistical distribution inside each original partition can be considered to be basically the same.
其中,所述原始分区的数目越多时,需要计算的数据越多,从计算方法的复杂程度和准确程度两方面考虑,所述原始分区的数目根据搜索区域的大小和特征来确定。Wherein, the larger the number of the original partitions, the more data needs to be calculated. Considering the complexity and accuracy of the calculation method, the number of the original partitions is determined according to the size and characteristics of the search area.
402、采集所述原始分区内搜索目标的出现频率和分布密度。402. Collect the occurrence frequency and distribution density of the search targets in the original partition.
其中,所述采集所述原始分区内搜索目标的出现频率和分布密度指的是采集所述n帧图像各个原始分区搜索目标的出现频率和分布密度。The collecting the occurrence frequency and distribution density of the search targets in the original partition refers to the occurrence frequency and distribution density of each original partition search target collected from the n frames of images.
403、根据所述搜索目标的出现频率和密度,确定所述原始分区的泊松分布函数。403. Determine a Poisson distribution function of the original partition according to the occurrence frequency and density of the search target.
其中,所述泊松分布函数通过采集所述n帧图像内搜索目标的出现频率和密度信息进行参数估计得到初始值。Wherein, the initial value of the Poisson distribution function is obtained through parameter estimation by collecting information on the occurrence frequency and density of the search target in the n frames of images.
本发明实施例提供的一种候选框搜索步长的获取方法,通过分区建立泊松模型并不断学习更新得到的特定搜索目标的位置信息,可以调整每帧图像中每块区域的候选框搜索步长,约束目标候选框的数量,从而针对不同的区域对搜索目标进行检测。这种方法提升了检测效果,可以获得较高的检出率。A method for obtaining a candidate frame search step size provided by an embodiment of the present invention can adjust the candidate frame search step of each area in each frame of image by establishing a Poisson model by partition and continuously learning and updating the position information of a specific search target. long, constrain the number of target candidate boxes, so as to detect the search target for different regions. This method improves the detection effect and can obtain a higher detection rate.
为了更好的理解本技术方案,本发明实施例提供了更加具体的实施方式,需要说明的本发明实施例适用但不限于以下实施方式。In order to better understand the technical solution, the embodiments of the present invention provide more specific implementations, and the embodiments of the present invention that need to be explained are applicable to but not limited to the following implementations.
步骤1、将检测区域分成12(3x4)块小区域,对前2400帧图像的每块区域建立行人的泊松位置并进行参数估计得到模型初始值,从而可以得到每块区域处泊松模型单位时间内行人出现的平均发生率初始值。Step 1. Divide the detection area into 12 (3x4) small areas, establish the Poisson position of pedestrians for each area of the first 2400 frames of images, and perform parameter estimation to obtain the initial value of the model, so that the Poisson model unit at each area can be obtained. The initial value of the average incidence of pedestrian appearances over time.
步骤2、训练泊松模型,在学习过程中动态获取行人在每块区域出现的频率信息以及行人分布的密度信息。Step 2: Train the Poisson model, and dynamically obtain the frequency information of pedestrians appearing in each area and the density information of pedestrian distribution during the learning process.
步骤21、根据建立的泊松模型的初始值利用梯度下降法学习更新得到行人在每帧图像中各个原始分区分布的密度信息。Step 21: According to the initial value of the established Poisson model, use the gradient descent method to learn and update to obtain the density information of each original partition distribution of pedestrians in each frame of image.
步骤22、对于步骤21得到的各个位置区域行人分布的情况,针对实施例中场景,对于行人出现较多的分块区域:Step 22. Regarding the distribution of pedestrians in each location area obtained in step 21, for the scene in the embodiment, there are more sub-block areas for pedestrians:
当出现的行人个数为10个以内时,将该区域视作行人稀疏分布区域;When the number of pedestrians appearing is less than 10, the area is regarded as a sparse distribution area of pedestrians;
当出现的行人个数为10至30时,将该区域视作行人中等分布区域;When the number of pedestrians appearing is 10 to 30, the area is regarded as a medium distribution area of pedestrians;
当出现行人的次数大于30时,将该区域视作行人密集分布区域。When the number of pedestrians is more than 30, the area is regarded as a densely distributed area of pedestrians.
步骤23、对于行人出现较少的分块区域,设置出现行人的次数阈值为8。Step 23: For the segmented area where there are few pedestrians, set the threshold for the number of pedestrians to be 8.
步骤3、根据泊松位置模型学习得到的行人在每帧图像分布的密度信息,在搜索目标不同分布密度集的区域设置候选框不同的搜索步长,控制整帧图像的候选框数目。Step 3: According to the density information of pedestrian distribution in each frame image obtained by the Poisson position model, set different search step sizes of candidate boxes in the regions of different distribution density sets of the search target, and control the number of candidate boxes in the whole frame image.
步骤31、对于搜索目标分布较多的区域设置步长如下:行人稀疏分布区域step=16,行人中等分布区域step=8,行人密集分布区域step=4。Step 31: Set the step size for the area with more search targets as follows: step=16 in the area with sparse pedestrian distribution, step=8 in the area with moderate distribution of pedestrians, and step=4 in the area with dense pedestrian distribution.
步骤32、对于搜索目标分布较少的区域设置步长如下:对于出现行人的次数大于8的情况,步长step=16,反之,设置步长step=32。Step 32 , set the step size for the area with less distribution of search targets as follows: for the case where the number of pedestrians appearing is greater than 8, the step size step=16, otherwise, the step size step=32 is set.
本发明的实施例中,各区域设置的候选框的宽高比锁定为0.5,另外,对于各区域处不出现行人的情况,则不生成候选框。In the embodiment of the present invention, the aspect ratio of the candidate frame set in each area is locked to 0.5, and in addition, in the case where there is no pedestrian in each area, no candidate frame is generated.
本发明实施例提供的一种候选框搜索步长的获取方法,通过分区建立泊松模型并不断学习更新得到的特定搜索目标的位置信息,可以调整每帧图像中每块区域的候选框搜索步长,约束目标候选框的数量,从而针对不同的区域对搜索目标进行检测。这种方法提升了检测效果,可以获得较高的检出率。A method for obtaining a candidate frame search step size provided by an embodiment of the present invention can adjust the candidate frame search step of each area in each frame of image by establishing a Poisson model by partition and continuously learning and updating the position information of a specific search target. long, constrain the number of target candidate boxes, so as to detect the search target for different regions. This method improves the detection effect and can obtain a higher detection rate.
本发明实施例提供了一种候选框搜索步长的获取装置,可用于实现前述各方法流程,其组成如图5所示,所述装置包括:An embodiment of the present invention provides a device for obtaining a search step size of a candidate frame, which can be used to implement the flow of the aforementioned methods. The composition is shown in FIG. 5 , and the device includes:
第一获取单元51,用于获取待搜索图像。The first acquiring
第二获取单元52,用于获取所述待搜索图像中各个原始分区的图像信息以及各个原始分区各自对应的泊松分布函数。The second acquiring
第一确定单元53,用于根据每个原始分区的图像信息和泊松分布函数,确定每个原始分区的分区类型。The first determining
第二确定单元54,用于根据所述分区类型,确定在每个原始分区中的候选框搜索步长。The second determining
可选的是,如图6所示,所述第一确定单元53包括:Optionally, as shown in FIG. 6 , the first determining
第一确定模块531,用于根据每个原始分区的图像信息和泊松分布函数,确定每个原始分区中搜索目标的个数。The
第二确定模块532,用于当所述搜索目标的个数在第一阈值范围内时,将搜索目标的个数在第一阈值范围内的原始分区的分区类型确定为目标稀疏分布区域。The second determining
第三确定模块533,用于当所述搜索目标的个数在第二阈值范围内时,将搜索目标的个数在第二阈值范围内的原始分区的分区类型确定为目标中等分布区域。The third determining
第四确定模块534,用于当所述搜索目标的个数在第三阈值范围内时,将搜索目标的个数在第三阈值范围内的原始分区的分区类型确定为目标密集分布区域。The
可选的是,如图7所示,所述第二确定单元54包括:Optionally, as shown in FIG. 7 , the second determining
第一设置模块541,用于将所述分区类型为目标稀疏分布区域的原始分区中的候选框搜索步长设置为第一步长。The
第二设置模块542,用于将所述分区类型为目标中等分布区域的原始分区中的候选框搜索步长设置为第二步长。The
第三设置模块543,用于将所述分区类型为目标密集分布区域的原始分区中的候选框搜索步长设置为第三步长。The
可选的是,如图8所示,所述装置还包括:Optionally, as shown in Figure 8, the device further includes:
第三获取单元55,用于获取原始图像内的原始分区。The third acquiring
采集单元56,用于采集所述原始分区内搜索目标的出现频率和分布密度。The collecting
第三确定单元57,用于根据所述搜索目标的出现频率和密度,确定所述原始分区的泊松分布函数。The third determining
本发明实施例提供的一种候选框搜索步长的获取装置,通过分区建立泊松模型并不断学习更新得到的特定搜索目标的位置信息,可以调整每帧图像中每块区域的候选框搜索步长,约束目标候选框的数量,从而针对不同的区域对搜索目标进行检测。这种装置提升了检测效果,可以获得较高的检出率。An apparatus for obtaining a search step size of a candidate frame provided by an embodiment of the present invention can adjust the search step of a candidate frame for each area in each frame of images by establishing a Poisson model by partition and continuously learning and updating the position information of a specific search target. long, constrain the number of target candidate boxes, so as to detect the search target for different regions. This device improves the detection effect and can obtain a higher detection rate.
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that, for the convenience and brevity of description, the specific working process of the system, device and unit described above may refer to the corresponding process in the foregoing method embodiments, which will not be repeated here.
在本发明所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。In the several embodiments provided by the present invention, it should be understood that the disclosed system, apparatus and method may be implemented in other manners. For example, the apparatus embodiments described above are only illustrative. For example, the division of the units is only a logical function division. In actual implementation, there may be other division methods. For example, multiple units or components may be combined. Either it can be integrated into another system, or some features can be omitted, or not implemented. On the other hand, the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。The units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。In addition, each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit. The above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of hardware plus software functional units.
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机装置(可以是个人计算机,服务器,或者网络装置等)或处理器(Processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。The above-mentioned integrated units implemented in the form of software functional units can be stored in a computer-readable storage medium. The above-mentioned software functional unit is stored in a storage medium, and includes several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (Processor) to execute the methods described in the various embodiments of the present invention. some steps. The aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the present invention. within the scope of protection.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610716184.0A CN106407887B (en) | 2016-08-24 | 2016-08-24 | Method and device for obtaining step size of candidate frame search |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610716184.0A CN106407887B (en) | 2016-08-24 | 2016-08-24 | Method and device for obtaining step size of candidate frame search |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106407887A CN106407887A (en) | 2017-02-15 |
CN106407887B true CN106407887B (en) | 2020-07-31 |
Family
ID=58004405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610716184.0A Active CN106407887B (en) | 2016-08-24 | 2016-08-24 | Method and device for obtaining step size of candidate frame search |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106407887B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101144784A (en) * | 2007-09-04 | 2008-03-19 | 杭州电子科技大学 | A Method for Automatic Tracking of Cells in Video Microscopic Image |
CN103150566A (en) * | 2011-12-06 | 2013-06-12 | 中国科学院电子学研究所 | Automatic detecting method of remote sensing ground object target based on random geometric model |
CN104715451A (en) * | 2015-03-11 | 2015-06-17 | 西安交通大学 | Seamless image fusion method based on consistent optimization of color and transparency |
CN104778358A (en) * | 2015-04-09 | 2015-07-15 | 西安工程大学 | Method for tracking extended target by multiple sensors with partially overlapped monitoring areas |
CN105205450A (en) * | 2015-08-24 | 2015-12-30 | 辽宁工程技术大学 | SAR image target extraction method based on irregular marked point process |
-
2016
- 2016-08-24 CN CN201610716184.0A patent/CN106407887B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101144784A (en) * | 2007-09-04 | 2008-03-19 | 杭州电子科技大学 | A Method for Automatic Tracking of Cells in Video Microscopic Image |
CN103150566A (en) * | 2011-12-06 | 2013-06-12 | 中国科学院电子学研究所 | Automatic detecting method of remote sensing ground object target based on random geometric model |
CN104715451A (en) * | 2015-03-11 | 2015-06-17 | 西安交通大学 | Seamless image fusion method based on consistent optimization of color and transparency |
CN104778358A (en) * | 2015-04-09 | 2015-07-15 | 西安工程大学 | Method for tracking extended target by multiple sensors with partially overlapped monitoring areas |
CN105205450A (en) * | 2015-08-24 | 2015-12-30 | 辽宁工程技术大学 | SAR image target extraction method based on irregular marked point process |
Non-Patent Citations (4)
Title |
---|
"Poisson models for extended target and group tracking";Kevin Gilholm等;《Signal & Data Processing of Small Targets》;20050915;第59130R-59130R-12页 * |
"Spatial distribution model for tracking extended objects";K.Gilhol等;《IEEE Proceedings-Radar,Sonar and Navigation》;20050725;第152卷(第5期);第364-371页 * |
"天基红外传感器对中段目标群跟踪技术研究";张慧;《中国博士学位论文全文数据库 工程科技Ⅱ辑》;20151115(第11期);第46页 * |
"采用在线高斯模型的行人检测候选框快速生成方法";覃剑等;《光学学报》;20160802;第36卷(第11期);正文第2-3节 * |
Also Published As
Publication number | Publication date |
---|---|
CN106407887A (en) | 2017-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105550678B (en) | Human action feature extracting method based on global prominent edge region | |
US11302104B2 (en) | Method, apparatus, device, and storage medium for predicting the number of people of dense crowd | |
WO2018113523A1 (en) | Image processing method and device, and storage medium | |
JP5478047B2 (en) | Video data compression pre-processing method, video data compression method and video data compression system using the same | |
WO2016149938A1 (en) | Video monitoring method, video monitoring system and computer program product | |
CN103955930B (en) | Motion parameter estimation method based on gray integral projection cross-correlation function characteristics | |
CN106845621A (en) | Dense population number method of counting and system based on depth convolutional neural networks | |
CN108647649A (en) | The detection method of abnormal behaviour in a kind of video | |
CN111723773A (en) | Remnant detection method, device, electronic equipment and readable storage medium | |
WO2023207742A1 (en) | Method and system for detecting anomalous traffic behavior | |
CN102903124A (en) | Moving object detection method | |
CN113424516B (en) | Method of processing a series of events received asynchronously from a pixel array of an event-based light sensor | |
CN110659658B (en) | Target detection method and device | |
CN105913003A (en) | Multi-characteristic multi-model pedestrian detection method | |
CN100382600C (en) | Moving Object Detection Method in Dynamic Scene | |
CN116030396B (en) | An Accurate Segmentation Method for Video Structured Extraction | |
CN110008789A (en) | Multiclass object detection and knowledge method for distinguishing, equipment and computer readable storage medium | |
CN112967341A (en) | Indoor visual positioning method, system, equipment and storage medium based on live-action image | |
CN109191498A (en) | Object detection method and system based on dynamic memory and motion perception | |
CN110557521A (en) | Method, device and equipment for removing rain from video and computer readable storage medium | |
CN105654440A (en) | Regression model-based fast single-image defogging algorithm and system | |
CN107578424B (en) | Dynamic background difference detection method, system and device based on space-time classification | |
CN111091093A (en) | Method, system and related device for estimating number of high-density crowds | |
CN110114801B (en) | Image foreground detection device and method and electronic equipment | |
CN108614998B (en) | Single-pixel infrared target detection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20200325 Address after: 400044 Shapingba District Sha Street, No. 174, Chongqing Applicant after: Chongqing University Address before: 400044 Shapingba District Sha Street, No. 174, Chongqing Applicant before: Chongqing University Applicant before: SHENZHEN TINNO WIRELESS TECHNOLOGY Co.,Ltd. |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant |