CN106407731B - 一种气动干扰流场数值计算方法 - Google Patents

一种气动干扰流场数值计算方法 Download PDF

Info

Publication number
CN106407731B
CN106407731B CN201611086147.2A CN201611086147A CN106407731B CN 106407731 B CN106407731 B CN 106407731B CN 201611086147 A CN201611086147 A CN 201611086147A CN 106407731 B CN106407731 B CN 106407731B
Authority
CN
China
Prior art keywords
rotor
face
parameter
point
induced velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611086147.2A
Other languages
English (en)
Other versions
CN106407731A (zh
Inventor
牛嵩
龙海斌
徐宝石
陈文轩
吴林波
习娟
王之良
曹普孙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Helicopter Research and Development Institute
Original Assignee
China Helicopter Research and Development Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Helicopter Research and Development Institute filed Critical China Helicopter Research and Development Institute
Priority to CN201611086147.2A priority Critical patent/CN106407731B/zh
Publication of CN106407731A publication Critical patent/CN106407731A/zh
Application granted granted Critical
Publication of CN106407731B publication Critical patent/CN106407731B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种气动干扰流场数值计算方法,属于直升机机翼设计技术领域,包括以下步骤:步骤一:输入旋翼参数;步骤二:输入飞行状态参数并选择桨叶动力学模型;步骤三:根据直升机的飞行环境选择一个地形,并设置地坪直径、甲板宽度、旋翼离地高度参数;步骤四:将选取的地形表面划分多个四边形面元,对曲面面元进行平面投影,获取每个面元上的常值面源及四周涡环并对面源及涡环进行排序;步骤五:选用自由尾迹模型,计算旋翼诱导速度;步骤六:根据诱导速度以及点到涡环的距离计算旋翼的拉力、功率系数气动力特性,为飞行状态参数的设计与选取提供参考;步骤七:采用自由尾迹计算模型得到总压与自由流总压的差值分析计算地面压力分布情况,能够为设计和选取地形提供参考。

Description

一种气动干扰流场数值计算方法
技术领域
本发明属于直升机旋翼设计技术领域,具体涉及一种气动干扰流场数值计算方法。
背景技术
直升机在起飞、贴地飞行、着陆及着舰等过程中旋翼与地面之间存在严重的气动干扰,因此在这些过程中直升机处于事故高发时间点,很容易造成机毁人亡。因而开展直升机旋翼与地面气动干扰流场数值并修订相关参数,以减少坠毁和人员伤亡的概率是十分有必要的。
直升机旋翼-地面气动干扰流场非常复杂,涉及的地面形状也千变万化,因此计算非常困难。在我国以往的直升机研制过程中,由于受到计算方法的限制,尚未对旋翼-地面气动干扰过程进行详细的数值模拟计算。
发明内容
本发明的目的:为了解决上述问题,本发明提出了一种气动干扰流场数值计算方法,采用自由尾迹方法和面元法对不同的地表形状下的旋翼-地面气动干扰流场进行数值计算。
本发明的技术方案:一种气动干扰流场数值计算方法,适用于直升机旋翼-地面气动干扰流场,运用动态的自由尾迹方法和面元法,对不同地面形状下和不同飞行状态下的旋翼—地面气动干扰流场进行数值计算,得到旋翼气动特性、地面压力分布;包括以下步骤:
步骤一:输入旋翼参数;
步骤二:输入飞行状态参数并选择桨叶动力学模型;
步骤三:根据直升机的飞行环境在平坦地形、陡壁、台阶、斜坡、山凹、机库和无地效7个地形类型中选择一个地形,并设置地坪直径、甲板宽度、旋翼离地高度参数;
步骤四:将选取的地形表面划分为多个四边形面元,对曲面面元进行平面投影,获取每个面元上的常值面源或四周涡环,物面上控制点处设置无不穿透条件,面元和涡格中心取为控制点,并对面源或涡环进行排序;
步骤五:选用自由尾迹模型,利用毕奥-沙伐尔定律计算旋翼诱导速度;
步骤六:采用下式计算桨叶环量:
步骤七:涡段的诱导速度同样通过毕奥-沙伐尔定律计算,在计算涡段的诱导速度之前首先要计算涡段的长度和诱导速度点到涡线的距离,根据计算得到的诱导速度以及点到原始面源或涡环的距离能够得到相应点处的面源速度,之后计算得到直升机旋翼的拉力、功率系数等气动力特性,为旋翼的半径、桨叶片数、预锥角、翼型参数与布置位置等设计参数和飞行速度、旋翼轴倾角、侧滑角、总距角等飞行状态参数的设计与选取提供参考;
步骤八:旋翼尾迹内点i处的总压与自由流总压的差值能够根据静压增量、动压增量、桨盘面积、i点处的尾迹横截面积以及尾迹充分收缩后的横截面积等参数计算得到,根据总压与自由流总压的差值能够计算得到的地面压力分布情况,能够为设计和选取地形提供参考。优选地,所述步骤一中输入的旋翼参数包括:直升机旋翼的半径、桨叶片数、预锥角、翼型参数与布置位置。
优选地,输入飞行状态参数包括:飞行速度、旋翼轴倾角、侧滑角、总距角。
优选地,所述步骤二中,桨叶动力学模型包括:柔性桨叶动力学模型和刚性桨叶动力学模型。
本发明的技术效果:本发明可以计算直升机旋翼在不同地面形状及不同飞行状态下的气动力特性、旋翼流场以及地面压力分布,能够模拟绝大多数直升机飞行情况下的旋翼—地面干扰流场,同时计算速度快,计算精度高。
附图说明
图1为本发明一种气动干扰流场数值计算方法的一优选实施例的流程示意图。
具体实施方式
为使本发明实施的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行更加详细的描述。在附图中,自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。所描述的实施例是本发明一部分实施例,而不是全部的实施例。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。下面结合附图对本发明的实施例进行详细说明。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制。
一种气动干扰流场数值计算方法,适用于直升机旋翼-地面气动干扰流场,运用动态的自由尾迹方法和面元法,对不同地面形状下和不同飞行状态下的旋翼—地面气动干扰流场进行数值计算,得到旋翼气动特性、地面压力分布;包括以下步骤:
1)、根据直升机研制要求,输入直升机旋翼的半径、桨叶片数、预锥角、翼型参数与布置位置等设计参数和飞行速度、旋翼轴倾角、侧滑角、总距角等飞行状态参数并选择刚性桨叶或柔性桨叶动力学模型。
2)、根据直升机的飞行环境在平坦地形、陡壁、台阶、斜坡、山凹、机库和无地效7个地形类型中选择一个近似的地形,并设置地坪直径、甲板宽度、旋翼离地高度等参数。
3)、将选取的地形表面划分为多个四边形面元,对曲面面元则需要进行平面投影,然后获取每个面元上分布常值面源或四周涡环;物面上控制点处设置无不穿透条件,面元和涡格中心取为控制点。最后对布置的面源或涡环进行排序。
4)、利用毕奥-沙伐尔定律计算旋翼诱导速度,公式如下:
其中涡线上涡元到诱导速度所在点P的矢量,Γ-涡线上涡元的强度。
旋翼尾迹模型选用自由尾迹模型,由毕奥-沙伐尔定律计算得到诱导速度如下:
其中nb-叶片数,nai-桨叶径向站数,nψ-叶片后涡格方位数,nw-桨尖涡段数;
在诱导速度计算公式中,第一项为附着涡激起的诱导速度,后面四项分别为尾随涡、脱体涡和卷起的桨尖涡、桨根涡激起的诱导速度。
5)、采用下式计算桨叶环量:
6)、涡段的诱导速度也是通过毕奥-沙伐尔定律计算,在计算涡段的诱导速度之前首先要计算涡段的长度和诱导速度点到涡线的距离。根据计算得到的诱导速度以及点到原始面源或涡环的距离可以得到相应点处的面源速度。之后可以计算得到直升机旋翼的拉力、功率系数等气动力特性,为旋翼的半径、桨叶片数、预锥角、翼型参数与布置位置等设计参数和飞行速度、旋翼轴倾角、侧滑角、总距角等飞行状态参数的设计与选取提供参考。
7)、旋翼尾迹内点i处的总压与自由流总压的差值可以根据静压增量、动压增量、桨盘面积、i点处的尾迹横截面积以及尾迹充分收缩后的横截面积等参数计算得到。根据总压与自由流总压的差值可以计算得到的地面压力分布情况,为设计和选取地坪直径、舰船直升机机库长度和宽度、楼顶和海洋平台直升机停机坪直径等提供参考。
本发明一种气动干扰流场数值计算方法,可以计算直升机旋翼在不同地面形状及不同飞行状态下的气动力特性、旋翼流场以及地面压力分布,能够模拟绝大多数直升机飞行情况下的旋翼—地面干扰流场,同时计算速度快,计算精度高。
最后需要指出的是:以上实施例仅用以说明本发明的技术方案,而非对其限制。尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (2)

1.一种气动干扰流场数值计算方法,适用于直升机旋翼-地面气动干扰流场,其特征在于;运用动态的自由尾迹方法和面元法,对不同地面形状下和不同飞行状态下的旋翼—地面气动干扰流场进行数值计算,得到旋翼气动特性、地面压力分布;包括以下步骤:
步骤一:输入旋翼参数;
步骤二:输入飞行状态参数并选择桨叶动力学模型;
步骤三:根据直升机的飞行环境在平坦地形、陡壁、台阶、斜坡、山凹、机库和无地效7个地形类型中选择一个地形,并设置地坪直径、甲板宽度、旋翼离地高度参数;
步骤四:将选取的地形表面划分为多个四边形面元,对曲面面元进行平面投影,获取每个面元上的常值面源或四周涡环,物面上控制点处设置无不穿透条件,面元和涡格中心取为控制点,并对面源或涡环进行排序;
步骤五:选用自由尾迹模型,利用毕奥-沙伐尔定律计算旋翼诱导速度;
步骤六:采用下式计算桨叶环量:
步骤七:涡段的诱导速度同样通过毕奥-沙伐尔定律计算,在计算涡段的诱导速度之前首先要计算涡段的长度和诱导速度点到涡线的距离,根据计算得到的诱导速度以及点到原始面源或涡环的距离能够得到相应点处的面源速度,之后计算得到直升机旋翼的拉力以及功率系数,为旋翼的半径、桨叶片数、预锥角、翼型参数、布置位置、飞行速度、旋翼轴倾角、侧滑角以及总距角的设计与选取提供参考;
步骤八:旋翼尾迹内点i处的总压与自由流总压的差值能够根据静压增量、动压增量、桨盘面积、i点处的尾迹横截面积以及尾迹充分收缩后的横截面积计算得到,根据总压与自由流总压的差值能够计算得到的地面压力分布情况,能够为设计和选取地形提供参考。
2.根据权利要求1所述的气动干扰流场数值计算方法,其特征在于:所述步骤二中,桨叶动力学模型包括:柔性桨叶动力学模型和刚性桨叶动力学模型。
CN201611086147.2A 2016-11-30 2016-11-30 一种气动干扰流场数值计算方法 Active CN106407731B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611086147.2A CN106407731B (zh) 2016-11-30 2016-11-30 一种气动干扰流场数值计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611086147.2A CN106407731B (zh) 2016-11-30 2016-11-30 一种气动干扰流场数值计算方法

Publications (2)

Publication Number Publication Date
CN106407731A CN106407731A (zh) 2017-02-15
CN106407731B true CN106407731B (zh) 2019-05-07

Family

ID=58083901

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611086147.2A Active CN106407731B (zh) 2016-11-30 2016-11-30 一种气动干扰流场数值计算方法

Country Status (1)

Country Link
CN (1) CN106407731B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110889172B (zh) * 2019-12-04 2023-03-28 中国直升机设计研究所 一种直升机旋翼系统弹击损伤预制方法
CN112182752B (zh) * 2020-09-25 2022-11-18 中国直升机设计研究所 一种直升机飞行姿态预测方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102682144B (zh) * 2011-11-30 2014-02-19 天津空中代码工程应用软件开发有限公司 直升机旋翼飞行结冰的数值模拟方法
CN104881510B (zh) * 2015-02-13 2018-06-05 南京航空航天大学 一种直升机旋翼/尾桨气动干扰数值仿真方法
CN104899365B (zh) * 2015-05-27 2018-05-08 南京航空航天大学 一种可减小气动干扰不利影响的直升机气动布局优化方法
CN105468814B (zh) * 2015-10-29 2018-11-09 南京航空航天大学 一种考虑全机气动干扰的直升机飞行特性计算方法

Also Published As

Publication number Publication date
CN106407731A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
Patel et al. CFD Analysis of an Aerofoil
Coleman A survey of theoretical and experimental coaxial rotor aerodynamic research
Pereira Hover and wind-tunnel testing of shrouded rotors for improved micro air vehicle design
CN105083572B (zh) 具有位于旋翼飞机直尾翼顶部的空速传感器的旋翼飞机
CN109543271B (zh) 一种应用于共轴带推力桨高速直升机的配平操纵设计方法
US20220281583A1 (en) Aircraft having an aircraft body including a feature
CN106407731B (zh) 一种气动干扰流场数值计算方法
CN109747818B (zh) 基于桨尖质量射流的直升机旋翼气动干扰控制方法
WO2019011395A1 (en) AIR WING WITH AT LEAST TWO MARGINAL FINS
CN109625315B (zh) 一种基于最大性能的直升机起飞临界决断点试飞方法
Chambers Overview of stall/spin technology
Yusoff et al. The evolution of induced drag of multi-winglets for aerodynamic performance of NACA23015
US20210253248A1 (en) Aircraft wings with reduced wingspan
Sutrisno et al. Sukhoi SU-47 Berkut and Eurofighter Typhoon Models Flow Visualization and Performance Investigation Using GAMA Water Tunnel
Ahad et al. Flight simulation and testing of the FanWing experimental aircraft
Sestak The effect of surface materials and morphology on wingsuit aerodynamics
Prouty Ground effect and the helicopter-a summary
Stalewski et al. Investigations of the vortex ring state on a helicopter main rotor based on computational methodology using URANS solver
McAndrew et al. Twin-wing design options used for unmanned aerial vehicles to achieve high altitudes at low speeds
Pereira et al. Hover Tests of Micro Aerial Vehicle‐Scale Shrouded Rotors, Part II: Flow Field Measurements
CN103809464A (zh) 直升机舰面效应影响的仿真方法
Merryisha et al. Wing Engineering: Aerodynamics, Structures And Design
Lofthouse et al. Computational Simulation of a Generic UCAV Configuration with Moveable Control Surfaces
Heyson Some considerations in wind-tunnel tests of V/STOL models
Bottai Computational Fluid Dynamics/Flight Dynamics Simulations of an Autonomous Helicopter using Actuator Disk Couplings for Main and Tail Rotors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant