CN106407678B - One kind being based on phased nonparametric anisotropy variogram construction method - Google Patents
One kind being based on phased nonparametric anisotropy variogram construction method Download PDFInfo
- Publication number
- CN106407678B CN106407678B CN201610818417.8A CN201610818417A CN106407678B CN 106407678 B CN106407678 B CN 106407678B CN 201610818417 A CN201610818417 A CN 201610818417A CN 106407678 B CN106407678 B CN 106407678B
- Authority
- CN
- China
- Prior art keywords
- variogram
- point
- ant
- sedimentary facies
- vertex
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010276 construction Methods 0.000 title claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 30
- 208000035126 Facies Diseases 0.000 claims abstract description 29
- 238000004088 simulation Methods 0.000 claims abstract description 13
- 239000003016 pheromone Substances 0.000 claims description 12
- 238000005070 sampling Methods 0.000 claims description 7
- 230000009466 transformation Effects 0.000 claims description 4
- 241000257303 Hymenoptera Species 0.000 claims description 3
- 230000008676 import Effects 0.000 claims description 3
- 238000004422 calculation algorithm Methods 0.000 abstract description 6
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 230000001131 transforming effect Effects 0.000 abstract description 2
- 238000010187 selection method Methods 0.000 abstract 1
- 238000002948 stochastic simulation Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 3
- 230000007261 regionalization Effects 0.000 description 3
- 241001589086 Bellapiscis medius Species 0.000 description 2
- 238000010219 correlation analysis Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Z—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
- G16Z99/00—Subject matter not provided for in other main groups of this subclass
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开一种基于相控非参数各项异性变差函数构建方法,基于地层不同沉积相进行不同的各向异性变差函数拟合,实现了对指数型变差函数的构建和求解,通过合理的相建模,具有以下优点:与传统的变差函数构建方式相比,本发明拟合出的变差函数更接近于真实的地质情况,有效避免了因变差函数构建不合理而在随后的随机模拟工作中所产生的误差;本发明建立了一种基于反演数据的点对随机选取方法,通过在各个角度区间点对的随机选取作为变差函数构建时的参数输入,能更好的反应变差函数的各向异性特征;本发明提出了一种基于蚁群算法的变差函数参数拟合方法,通过将问题的转化,能够提高变差函数参数拟合的准确性,为以后的工作提供了技术保障。
The invention discloses a method for constructing a non-parametric anisotropic variogram based on phase control. Different anisotropic variogram fittings are carried out based on different sedimentary facies of the formation, and the construction and solution of the exponential variogram are realized. Through Reasonable facies modeling has the following advantages: Compared with the traditional variogram construction method, the variogram fitted by the present invention is closer to the real geological situation, effectively avoiding the unreasonable construction of the variogram. The error produced in the subsequent random simulation work; the present invention has established a kind of point-to-random selection method based on the inversion data, by randomly selecting the point-to-point in each angle interval as the parameter input when the variogram is constructed, it can be more The anisotropy characteristic of good response variogram; The present invention proposes a kind of variogram parameter fitting method based on ant colony algorithm, by transforming the problem, can improve the accuracy of variogram parameter fitting, for Future work provides technical support.
Description
技术领域technical field
本发明涉及地质统计学领域,特别涉及一种变差函数构建方法。The invention relates to the field of geostatistics, in particular to a method for constructing a variation function.
背景技术Background technique
随机建模的主要工具是地质统计学,地质统计学是利用变差函数去统计采样数据间的空间关系规律,然后利用这个统计规律去模拟未采样位置处随机变量的值的一种统计方法。地质统计学在研究区域化变量的空间分布结构特征规律性的基础上,选择各种合适的克立格法,以达到更精确的估计或对区域化变量进行条件模拟的目的。它一般包括三大基本组成部分:空间函数的相关性分析、克立格估计和条件模拟。空间函数相关性分析是对变差函数和协方差函数的分析,包括它们的定义和估计方差,它是克立格估计和条件模拟的基础。The main tool for stochastic modeling is geostatistics. Geostatistics is a statistical method that uses variograms to count the spatial relationship between sampled data, and then uses this statistical rule to simulate the value of random variables at unsampled locations. On the basis of studying the regularity of spatial distribution structure characteristics of regionalized variables, geostatistics selects various appropriate Kriging methods to achieve more accurate estimation or conditional simulation of regionalized variables. It generally includes three basic components: correlation analysis of spatial functions, Kriging estimation and conditional simulation. Spatial function correlation analysis is the analysis of variogram function and covariance function, including their definition and estimated variance, which is the basis of Kriging estimation and conditional simulation.
自地质统计学问世以来,对地球科学中有关资源信息的空间变异性用区域化变量理论进行表征,不仅对地质预测和评估理论有很大发展,也对许多非地质科学如水土资源、水文气象、生物环境和工程技术产生了广泛影响,目前已经形成对空间信息分布特征或模拟其离散性和波动性的研究,均可用地质统计学理论进行,而地质统计学也已经成为评估各种区域性自然现象、自然资源及再现其波动性过程的新的工程科学。Since the advent of geostatistics, the regionalization variable theory has been used to characterize the spatial variability of resource information in earth sciences. , bio-environment and engineering technology have had a wide range of impacts, and the research on the distribution characteristics of spatial information or the simulation of its discreteness and volatility has been formed, which can be carried out with geostatistical theory, and geostatistics has also become an important tool for evaluating various regional characteristics. Natural phenomena, natural resources, and new engineering sciences that reproduce their fluctuating processes.
变差函数作为地质统计学的一个基本工具,是随机建模的关键因素,其主要作用是刻画空间变量的空间关系结构,在建模中可以帮助人们分析储层特征、获得特征。变差函数可以充分描述储层参数空间相关性,在不同的沉积条件下,储层的空间分布特征各不相同,尤其是非均质性较强的地区,更需要用变差函数来准确估计储层的各项异性特征。因此变差函数的构建是随机模拟和随机反演的核心技术。As a basic tool of geostatistics, variogram is a key factor in stochastic modeling. Its main function is to describe the spatial relationship structure of spatial variables, and it can help people analyze and obtain characteristics of reservoirs in modeling. The variogram can fully describe the spatial correlation of reservoir parameters. Under different depositional conditions, the spatial distribution characteristics of reservoirs are different, especially in areas with strong heterogeneity. Anisotropic characteristics of layers. Therefore, the construction of variogram is the core technology of stochastic simulation and stochastic inversion.
变差函数Variation function
地质统计学中用区域化变量来表示所研究的对象。区域化变量是以空间点X的三维直角坐标(xu,xv,xw)为自变量的随机场Z(xu,xv,xw)=Z(x),它反映了地质变量特有的双重特征,即随机特征和空间结构特征。Regionalized variables are used in geostatistics to represent the object of study. The regionalization variable is a random field Z(x u ,x v ,x w )=Z(x) whose independent variable is the three-dimensional Cartesian coordinates (x u ,x v ,x w ) of the spatial point X, which reflects the geological variable Unique dual features, namely random features and spatial structure features.
在点x处的变差函数定义为x处相距为h的区域化随机变量之差的方差之半,记为γ(x,h),即The variogram at a point x is defined as half the variance of the difference between regionalized random variables at x with a distance of h, denoted as γ(x,h), that is
r(x,h)=0.5*D2[Z(x)-Z(x+h)]r(x,h)=0.5*D 2 [Z(x)-Z(x+h)]
=0.5*E[Z(x)-Z(x+h)]2-0.5*{E[Z(x)-Z(x+h)]}2 (1-1)=0.5*E[Z(x)-Z(x+h)] 2 -0.5*{E[Z(x)-Z(x+h)]} 2 (1-1)
变差函数有三个基本参数:变程a、块金值c0及基台值c。The variogram has three basic parameters: range a, nugget value c 0 and sill value c.
①变程① variable range
变程a反映了区域化变量的影响范围,在变程范围之内具有相关性,且随着距离的增大相关性逐渐减弱,超出该范围则不具有相关性。The range a reflects the influence range of the regionalized variable, and there is correlation within the range range, and the correlation gradually weakens with the increase of the distance, and there is no correlation beyond this range.
②块金值② nugget value
块金值c0=γ(0),理论上变差函数在原点处的值应为零,但是由于测量的误差和微观变异性,使得在很小的距离之内随机区域化变量之间出现了较大的变化。The nugget value c 0 = γ(0), theoretically the value of the variogram at the origin should be zero, but due to measurement errors and microscopic variability, random regionalization variables appear within a small distance major changes.
③基台值③Abutment value
基台值反映了区域化变量在研究区域范围内的变异强度。The sill value reflects the intensity of variation of a regionalized variable within the study area.
变差函数能很好地描述地质变量的特征,如变程反映了变量的影响范围,基台值反映了变量的变异强度,变差函数在零点附近起始段的斜率反映了在较小的距离内,变量的变化是剧烈还是平缓,不同方向上的变差图可反映变量的各向异性等等[1]。The variogram can well describe the characteristics of geological variables. For example, the range reflects the range of influence of the variable, the sill value reflects the variation intensity of the variable, and the slope of the initial section of the variogram near zero reflects the influence of the variable in a smaller range. Within the distance, whether the change of the variable is sharp or gentle, and the variogram in different directions can reflect the anisotropy of the variable and so on [1] .
随机模拟stochastic simulation
变差函数的构建是进行随机模拟的前提。随机建模是指根据收集到的信息,运用随机函数理论,采用随机模拟方法,从而产生可选的、等概率的、高精度的储层模型的方法。这种方法承认控制点以外的储层参数具有一定的不确定性,即具有一定的随机性。其流程如图1所示。The construction of variogram is the premise of stochastic simulation. Stochastic modeling refers to the method of generating optional, equal-probability, and high-precision reservoir models based on the collected information, using random function theory, and adopting stochastic simulation methods. This method admits that the reservoir parameters outside the control points have a certain degree of uncertainty, that is, a certain degree of randomness. Its process is shown in Figure 1.
发明内容Contents of the invention
本发明为解决上述技术问题,提出了一种基于相控非参数各向异性变差函数构建方法,结合工区不同的沉积相相位,在不同沉积相分别构建非参数各向异性变差函数,拟合参数时提出一种基于蚁群算法的方式,可以较好的估计出变差函数对应参数。为进一步的模拟工作提供良好的技术支持。In order to solve the above-mentioned technical problems, the present invention proposes a construction method based on phase-controlled non-parametric anisotropic variogram, combining different sedimentary facies phases in the work area, and constructing non-parametric anisotropic variograms in different sedimentary facies respectively. When combining parameters, a method based on ant colony algorithm is proposed, which can better estimate the corresponding parameters of the variogram. Provide good technical support for further simulation work.
本发明采用的技术方案是:一种基于相控非参数各向异性变差函数构建方法,包括:The technical solution adopted in the present invention is: a method for constructing a non-parametric anisotropic variogram based on phase control, comprising:
S1、工区沉积相划分,采用指示模拟对工区沉积相进行划分;S1. Sedimentary facies division of the work area, using indicator simulation to divide the sedimentary facies of the work area;
S2、构建不同沉积相的变差函数,具体包括以下分步骤:S2. Construct the variogram of different sedimentary facies, specifically including the following sub-steps:
S21、初始化:导入已经反演好的波阻抗数据和测井数据;S21. Initialization: import the inverted wave impedance data and logging data;
S22、相控建模:利用PETREL软件针测井数据进行相控建模,得到每个点对应的标签phase_label;S22. Phase-controlled modeling: use PETREL software to conduct phase-controlled modeling based on well logging data, and obtain the label phase_label corresponding to each point;
S23、对角度进行等分,设置角度区间数量为M等分,记等分M=degree_num,间隔记为θ,θ=360/M,则第n个角度区间对应斜率为[arctan((n-1)·θ),arctan(n·θ));S23. Divide the angle equally, set the number of angle intervals as M equal divisions, mark the equal division M=degree_num, and record the interval as θ, θ=360/M, then the slope corresponding to the nth angle interval is [arctan((n- 1) θ), arctan(n θ));
S24、随机选取点对,将不同标签下的点进行分类,任意两点随机组合成点对,将每组点对都进行标号;S24, randomly select point pairs, classify points under different labels, randomly combine any two points into point pairs, and label each group of point pairs;
S25、计算所选取点对的斜率,根据其取值将该点对放入对应的角度区间;S25. Calculate the slope of the selected point pair, and put the point pair into the corresponding angle interval according to its value;
S26、对各的沉积相分别重复步骤S2 3至步骤S2 5,直到各沉积相的各个角度区间都有足够的采样点;S26. Repeat steps S23 to S25 for each sedimentary facies, until there are enough sampling points in each angle interval of each sedimentary facies;
S27、根据不同沉积相下的采样数据分别计算变差函数;S27. Calculate the variogram respectively according to the sampling data under different sedimentary facies;
S3、拟合变差函数参数求解,包括:S3. Solving the fitting variogram parameters, including:
S31、对候选解{x1,x2,…}的每一变量xi用字长为N的二进制码串{bNbN-1…b1b0}进行编码,根据下面的公式进行解码:S31. Encode each variable x i of the candidate solution {x 1 , x 2 ,...} with a binary code string {b N b N-1 ...b 1 b 0 } with a word length of N, and perform the following formula decoding:
其中,b∈{0,1},j=1,2…N,bN-1为最高位,b0为最低位,变量xi的左边界为实数值ximin,右边界为实数值ximax,z表示二进制码串对应的十进制整数值的左边界为实数值;Among them, b∈{0,1}, j=1,2...N, b N-1 is the highest bit, b 0 is the lowest bit, the left boundary of the variable x i is the real value x imin , and the right boundary is the real value x imax , z indicates that the left boundary of the decimal integer value corresponding to the binary code string is a real value;
S32、将待拟合参数转化为有向图的形式;S32. Transform the parameters to be fitted into a form of a directed graph;
S33、采用指数模型进行参数拟合。S33. Using an exponential model to perform parameter fitting.
进一步地,所述步骤S1之前还包括:指示变换,具体为:根据门限值,把连续确定的原始数据离散成布尔量0或1。Further, before the step S1, it also includes: indicating transformation, specifically: discretizing the continuously determined original data into Boolean quantities 0 or 1 according to the threshold value.
进一步地,所述步骤S32具体为:Further, the step S32 is specifically:
定义有向图G=(C,L),其中顶点集C为Define a directed graph G=(C,L), where the vertex set C is
其中,vs为起始点,顶点和分别表示二进制码串中位bj取值为0和1的状态, j=1,2…N,c0(vs),均表示顶点集C中的元素,e=1,2,…,2N。Among them, v s is the starting point, the vertex and Respectively represent the state of bit b j in the binary code string with values of 0 and 1, j=1,2...N, c 0 (v s ), Both represent the elements in the vertex set C, e=1,2,...,2N.
进一步地,所述步骤S33具体包括以下分步骤:Further, the step S33 specifically includes the following sub-steps:
S331、nc=0,各τij和Δτij的初始化,将m个蚂蚁置于n个顶点上;S331, nc=0, initialization of each τ ij and Δτ ij , placing m ants on n vertices;
其中,nc为迭代步数或搜索次数,τij为t时刻在i,j连线上残留的信息量,为蚂蚁k在边弧(i,j)上留下的单位长度轨迹信息素数量;Among them, nc is the number of iteration steps or search times, τ ij is the amount of information remaining on the line i, j at time t, is the number of pheromones per unit length track left by ant k on the edge arc (i, j);
S332、将各蚂蚁的初始出发点置于当前解集中,对每个蚂蚁k(k=1,…,m),按概率移至下一顶点j;将顶点j置于当前解集;S332. Put the initial starting point of each ant in the current solution set, and for each ant k (k=1,...,m), according to the probability Move to the next vertex j; put vertex j in the current solution set;
S333、计算各蚂蚁的目标函数值Zk,记录使得目标函数值Zk最小的解;k=1,…m;S333. Calculate the objective function value Z k of each ant, and record the solution that minimizes the objective function value Z k ; k=1,...m;
S334、设Path*(t)为第t搜索周期内的最佳路径,该最佳路径对应的目标函数值为f*(t),边弧(i,j)中顶点i对应候选解的第Κ位,则蚁群搜索的信息素按照下式更新S334. Let Path * (t) be the best path in the t search period, the objective function value corresponding to the best path is f * (t), and the vertex i in the edge arc (i, j) corresponds to the first candidate solution K position, then the pheromone searched by the ant colony is updated according to the following formula
其中,f*(t+1)表示第t+1搜索周期内的最佳路径对应的目标函数值,τij(t,k)表示t时刻的信息素,τij(t+1,k)表示t+1时刻的信息素,L为候选解的二进制编码的编码长度,为正整数,k表示第k个蚂蚁;Among them, f * (t+1) represents the objective function value corresponding to the best path in the t+1th search period, τ ij (t,k) represents the pheromone at time t, τ ij (t+1,k) Represents the pheromone at time t+1, L is the code length of the binary code of the candidate solution, which is a positive integer, and k represents the kth ant;
S335、对各弧边(i,j),置Δτij=0;nc=nc+1;S335. For each arc edge (i, j), set Δτ ij =0; nc=nc+1;
S336、若nc<预定的迭代次数,转步骤S332。S336. If nc<predetermined number of iterations, go to step S332.
本发明的有益效果:本发明基于地层不同沉积相进行不同的各向异性变差函数拟合,实现了对指数型变差函数的构建和求解,通过合理的相建模,具有以下优点:Beneficial effects of the present invention: the present invention carries out different anisotropic variogram fittings based on different sedimentary facies of the formation, realizes the construction and solution of the exponential variogram, and has the following advantages through reasonable facies modeling:
(1)本发明所构建的变差函数是基于不同沉积相的各向异性变差函数,与传统的变差函数构建方式相比,本发明拟合出的变差函数更接近于真实的地质情况,有效避免了因变差函数构建不合理而在随后的随机模拟工作中所产生的误差;(1) The variogram constructed by the present invention is based on the anisotropic variogram of different sedimentary facies. Compared with the traditional variogram construction method, the variogram fitted by the present invention is closer to the real geological situation, effectively avoiding errors in the subsequent random simulation work due to the unreasonable construction of the variogram;
(2)本发明建立了一种基于反演数据的点对随机选取方法,通过在各个角度区间点对的随机选取作为变差函数构建时的参数输入,能更好的反应变差函数的各向异性特征;(2) The present invention establishes a method for random selection of point pairs based on inversion data, through the random selection of point pairs in each angle interval as the parameter input when the variogram is constructed, which can better reflect the various parameters of the variogram. Anisotropic characteristics;
(3)本发明提出了一种基于蚁群算法的变差函数参数拟合方法,通过将问题的转化,能够提高变差函数参数拟合的准确性,为以后的工作提供了技术保障。(3) The present invention proposes a variogram parameter fitting method based on the ant colony algorithm. By transforming the problem, the accuracy of variogram parameter fitting can be improved, providing technical support for future work.
附图说明Description of drawings
图1为随机模拟的流程图。Figure 1 is a flowchart of the stochastic simulation.
图2为本发明提供的变差函数的构建流程图。Fig. 2 is a flow chart of the construction of the variogram provided by the present invention.
具体实施方式Detailed ways
为便于本领域技术人员理解本发明的技术内容,下面结合附图对本发明内容进一步阐释。In order to facilitate those skilled in the art to understand the technical content of the present invention, the content of the present invention will be further explained below in conjunction with the accompanying drawings.
如图1所示为本发明的方案流程图,本发明的技术方案为:一种基于相控非参数各向异性变差函数构建方法,包括:As shown in Fig. 1, it is a scheme flowchart of the present invention, and the technical scheme of the present invention is: a kind of construction method based on phase-controlled non-parametric anisotropic variogram, comprising:
S1、工区沉积相划分,采用指示模拟对工区沉积相进行划分;指示模拟是划分工区沉积相的有效方法。在进行模拟之前,本申请先要进行指示变换,即根据一系列门限值,把连续确定的原始数据离散成一个布尔量0或1的过程。设{Z(xα),α=1,…,N}是所研究的储集层上的一组观测数据,N表示进行了N次观测,得到N个不同值,给定一个门限值Z,可把所有的观测数据转换成指示值I(xα;Z);S1. Sedimentary facies division in the work area, use indicator simulation to divide the sedimentary facies in the work area; indicator simulation is an effective method to divide the sedimentary facies in the work area. Before performing the simulation, the application needs to carry out instruction transformation, that is, the process of discretizing the continuously determined original data into a Boolean quantity 0 or 1 according to a series of threshold values. Let {Z(x α ),α=1,…,N} be a set of observation data on the studied reservoir, N means that N observations have been carried out and N different values have been obtained, and a threshold value is given Z, can convert all observed data into indicator value I(x α ; Z);
则以x0为中心的待估区的区域化变量I*(x,Z)的概率估计为Then the probability estimate of the regionalized variable I * (x, Z) of the area to be estimated centered on x 0 for
式中的权系数λα可由指示Kriging方程组求出,最终可以求得待估区域的估计值Z*(X);The weight coefficient λ α in the formula can be obtained by indicating the Kriging equations, and finally the estimated value Z * (X) of the area to be estimated can be obtained;
式中的权系数λb可由指示Kriging方程组求出,Z(X)表示区域变化量,是一个随机变量。The weight coefficient λ b in the formula can be obtained by indicating Kriging equations, and Z(X) represents the regional variation, which is a random variable.
在PETREL软件中可以选择利用指示模拟的方法进行沉积相的划分。在导入工区测井数据后,PETREL软件会根据测井数据进行聚类,一般情况下,三种不同的沉积相就能满足需要,因此,手动调节将其分成三类,之后选择指示模拟方式对其进行建模,就可以得到工区中每个点所对应的相标签,将每个点的标签都保存在phase_label的矩阵中,标签值取为1,2,3。In the PETREL software, you can choose to use the method of indicator simulation to divide the sedimentary facies. After importing the logging data in the work area, the PETREL software will perform clustering according to the logging data. Generally, three different sedimentary facies can meet the needs. After modeling, the phase label corresponding to each point in the work area can be obtained, and the label of each point is stored in the matrix of phase_label, and the label value is 1, 2, 3.
S2、构建不同沉积相的变差函数,传统的变差函数仅仅利用测井数据进行构建,不能很好的拟合出变差函数曲线。本发明采用已经反演好的数据,利用较为丰富的数据,提出一种点对随机选择的方法,针对不同的沉积相标签,分别进行变差函数的构建,如图2所示,具体包括以下分步骤:S2. Construct the variograms of different sedimentary facies. The traditional variograms are only constructed using well logging data and cannot fit the variogram curves well. The present invention adopts the data that has been inverted, utilizes relatively abundant data, proposes a method of random selection of point pairs, and constructs the variogram respectively for different sedimentary facies labels, as shown in Figure 2, specifically includes the following Step by step:
S21、初始化:导入已经反演好的波阻抗数据和测井数据;S21. Initialization: import the inverted wave impedance data and logging data;
S22、相控建模:利用PETREL软件针测井数据进行相控建模,得到每个点对应的标签phase_label;S22. Phase-controlled modeling: use PETREL software to conduct phase-controlled modeling based on well logging data, and obtain the label phase_label corresponding to each point;
S23、对角度进行等分,设置角度区间数量为M等分,M=degree_num,间隔记为θ,θ=360/M,则第n个角度区间对应斜率为[arctan((n-1)·θ),arctan(n·θ));S23. Divide the angle equally, set the number of angle intervals as M equal divisions, M=degree_num, and the interval is recorded as θ, θ=360/M, then the slope corresponding to the nth angle interval is [arctan((n-1)· θ), arctan(n θ));
S24、随机选取点对,将不同标签下的点进行分类,任意两点随机组合成点对,将每组点对都进行标号;本申请利用rsenne Twister随机数发生器为每组点对产生一个随机数, rsenne Twister随机数发生器递推公式为S24. Randomly select point pairs, classify the points under different labels, randomly combine any two points into point pairs, and label each group of point pairs; this application uses the rsenne Twister random number generator to generate one for each group of point pairs random number, the recursive formula of the rsenne Twister random number generator is
其中,初始值为(x0,x1,...,xn-1),是一个n维行向量,每一个x=x(w)x(w-1)...x(0)是w位的二进制表示,左边为高位;表示xs的前w-r位(u为upper),表示xs+1的后r位(l为lower),是由xs的前w-r位和xs+1的后r位组成的新的w位数据;1≤m<n,r为字符分割点,0≤r≤w-1;“|”为或运算符,“⊕”为异或运算符,“>>”为右移,“<<”为左移; A是MT算法的回旋变换矩阵,大小为w×w维;“:=”是一种表示方式,意思是定义等于。Among them, the initial value is (x 0 ,x 1 ,...,x n-1 ), which is an n-dimensional row vector, each x=x (w) x (w-1) ...x (0) It is the binary representation of w bits, and the left side is the high bit; Represents the first wr bit of x s (u is upper), Represents the last r bits of x s+1 (l is lower), It is a new w-bit data consisting of the first wr bits of x s and the last r bits of x s+1 ; 1≤m<n, r is the character segmentation point, 0≤r≤w-1; "|" is or operator, "⊕" is an XOR operator, ">>" is a right shift, and "<<" is a left shift; A is the convolution transformation matrix of the MT algorithm, and its size is w×w; A representation that means the definition is equal to.
按照随机数大小对点对进行排序,选择N组点对作为变差函数计算输入。Sort the point pairs according to the size of the random number, and select N groups of point pairs as the input of the variogram calculation.
S25、计算所选取点对的斜率,根据其取值将该点对放入对应的角度区间;S25. Calculate the slope of the selected point pair, and put the point pair into the corresponding angle interval according to its value;
S26、对各的沉积相分别重复步骤S2 3至步骤S2 5,直到各沉积相的各个角度区间采样点个数大于或等于N;按照划分的角度区间大小进行判断,角度区间较大的话就多一些,较小的话就可以少点,本申请中设定采样点个数N为20个左右。S26. Repeat steps S23 to S25 for each sedimentary facies, until the number of sampling points in each angle interval of each sedimentary facies is greater than or equal to N; judge according to the size of the divided angle intervals, if the angle intervals are larger, there will be more Some, if smaller, can be less. In this application, the number N of sampling points is set to be about 20.
S27、根据不同沉积相下的采样数据分别计算变差函数;S27. Calculate the variogram respectively according to the sampling data under different sedimentary facies;
S3、拟合变差函数参数求解,虽然目前已提出了多种变异函数的拟合方法,但这些方法用起来有很多不便和缺点。如加权多项式拟合法很大程度上依赖地质人员的经验,其权系数的确定也较困难;线性规划法与加权多项式回归方法相比,仅在求取多项式系数方法上有所改进,没有考虑加权问题;目标规划法则又太复杂;加权线性规划法考虑到了不同滞后距h下所得实验变异函数值进行加权,还保证了拟合的成功,同时进行了人工干预,但该方法是在加权多项式拟合法和线性规划法上提出的,目标函数太复杂,很难求解。本发明根据这些拟合方法的特点,提出了一种运用蚁群算法来拟合变差函数参数的方法。包括:S3. Solve the parameters of the fitting variogram. Although many fitting methods of the variogram have been proposed, these methods have many inconveniences and shortcomings. For example, the weighted polynomial fitting method largely relies on the experience of geological personnel, and the determination of its weight coefficient is also difficult; compared with the weighted polynomial regression method, the linear programming method only improves the method of calculating polynomial coefficients, without considering weighting. Problem; the goal programming rule is too complicated; the weighted linear programming method takes into account the weighting of the experimental variation function values obtained under different lag distances h, and also ensures the success of the fitting. At the same time, manual intervention is carried out. Proposed legally and linearly, the objective function is too complex to solve. According to the characteristics of these fitting methods, the present invention proposes a method of using an ant colony algorithm to fit the parameters of the variation function. include:
S31、对候选解{x1,x2,…}的每一变量xi用字长为N的二进制码串{bNbN-1…b1b0}进行编码,根据下面的公式进行解码:S31. Encode each variable x i of the candidate solution {x 1 , x 2 ,...} with a binary code string {b N b N-1 ...b 1 b 0 } with a word length of N, and perform the following formula decoding:
其中,b∈{0,1},j=1,2…N,bN-1为最高位,b0为最低位,变量xi的左边界为实数值ximin,右边界为实数值ximax,z表示二进制码串对应的十进制整数值的左边界为实数值;Among them, b∈{0,1}, j=1,2...N, b N-1 is the highest bit, b 0 is the lowest bit, the left boundary of the variable x i is the real value x imin , and the right boundary is the real value x imax , z indicates that the left boundary of the decimal integer value corresponding to the binary code string is a real value;
S32、将待拟合参数转化为有向图的形式;定义有向图G=(C,L),其中顶点集C为S32, convert the parameters to be fitted into the form of a directed graph; define the directed graph G=(C, L), wherein the vertex set C is
vs为起始点,顶点和分别表示二进制码串中位bj取值为0和1的状态, j=0,1,2,…,N,c1是实际的顶点,括号里的表示它的生成方式,上标0,1表示它的两种状态,下标表示从N开始,则有向弧L为v s is the starting point, the vertex and Respectively represent the state that the bit b j in the binary code string takes the value of 0 and 1, j=0, 1, 2,..., N, c 1 is the actual vertex, and the Indicates its generation method, the superscript 0, 1 indicates its two states, the subscript indicates starting from N, then the directed arc L is
即,对于j=2,3,…N,在所有顶点和处,分别有且只有指向的两条有向弧;That is, for j=2,3,...N, at all vertices and , respectively have and only point to Two directed arcs of ;
S33、采用指数模型进行参数拟合,其公式为S33. Using an exponential model for parameter fitting, the formula is
待拟合参数为a和c。The parameters to be fitted are a and c.
由试验变差函数可得a∈(40,100),c∈(8000,16000),通过步骤S32分别对其进行编码并转化为有向图G的形式。则对于问题A∈(40,100) and c∈(8000,16000) can be obtained from the experimental variogram, which are respectively coded and converted into the form of a directed graph G through step S32. then for the problem
其最小值问题可以转化为以参数a和c为图的蚁群算法最小路径求解问题,其中γ*(hi)为对应试验变差函数滞后距为hi的函数值。其求解步骤如下:Its minimum value problem can be transformed into an ant colony algorithm minimum path finding problem with parameters a and c as a graph, where γ*(h i ) is the function value corresponding to the lag distance of the experimental variogram h i . The solution steps are as follows:
S331、nc=0,各τij和Δτij的初始化,将m个蚂蚁置于n个顶点上;S331, nc=0, initialization of each τ ij and Δτ ij , placing m ants on n vertices;
其中,nc为迭代步数或搜索次数,τij为t时刻在i,j连线上残留的信息量,为蚂蚁k在弧边(i,j)上留下的单位长度轨迹信息素数量;Among them, nc is the number of iteration steps or search times, τ ij is the amount of information remaining on the line i, j at time t, is the number of pheromones per unit length track left by ant k on the arc edge (i, j);
S332、将各蚂蚁的初始出发点置于当前解集中,对每个蚂蚁k,k=1,…,m,按概率移至下一顶点j;将顶点j置于当前解集;S332. Put the initial starting point of each ant in the current solution set, and for each ant k, k=1,...,m, according to the probability Move to the next vertex j; put vertex j in the current solution set;
S333、计算各蚂蚁的目标函数值Zk,记录使得目标函数值Zk最小的解;S333. Calculate the objective function value Z k of each ant, and record the solution that minimizes the objective function value Z k ;
S334、设Path*(t)为第t搜索周期内的最佳路径,该最佳路径对应的目标函数值为f*(t),弧边(i,j)中顶点i对应候选解的第Κ位,则蚁群搜索的信息素按照下式更新S334. Let Path * (t) be the best path in the t search period, the objective function value corresponding to this best path is f * (t), and the vertex i in the arc edge (i, j) corresponds to the first candidate solution K position, then the pheromone searched by the ant colony is updated according to the following formula
其中,f*(t+1)表示第t+1搜索周期内的最佳路径对应的目标函数值,τij(t,k)表示t时刻的信息素,τij(t+1,k)表示t+1时刻的信息素,L为候选解的二进制编码的编码长度,为正整数,k表示第k个蚂蚁;Among them, f * (t+1) represents the objective function value corresponding to the best path in the t+1th search period, τ ij (t,k) represents the pheromone at time t, τ ij (t+1,k) Represents the pheromone at time t+1, L is the code length of the binary code of the candidate solution, which is a positive integer, and k represents the kth ant;
S335、对各弧边(i,j),置Δτij=0;nc=nc+1;S335. For each arc edge (i, j), set Δτ ij =0; nc=nc+1;
S336、若nc<预定的迭代次数,转步骤S332。S336. If nc<predetermined number of iterations, go to step S332.
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。Those skilled in the art will appreciate that the embodiments described here are to help readers understand the principles of the present invention, and it should be understood that the protection scope of the present invention is not limited to such specific statements and embodiments. Various modifications and variations of the present invention will occur to those skilled in the art. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the scope of the claims of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610818417.8A CN106407678B (en) | 2016-09-12 | 2016-09-12 | One kind being based on phased nonparametric anisotropy variogram construction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610818417.8A CN106407678B (en) | 2016-09-12 | 2016-09-12 | One kind being based on phased nonparametric anisotropy variogram construction method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106407678A CN106407678A (en) | 2017-02-15 |
CN106407678B true CN106407678B (en) | 2018-09-28 |
Family
ID=57999490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610818417.8A Active CN106407678B (en) | 2016-09-12 | 2016-09-12 | One kind being based on phased nonparametric anisotropy variogram construction method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106407678B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113486519B (en) * | 2021-07-08 | 2022-05-20 | 山东大学 | A Two-Point Geostatistical Modeling Method Based on Sublinear Expectation |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104281724A (en) * | 2013-07-09 | 2015-01-14 | 中国石油化工股份有限公司 | Method for conducting reservoir property simulation through multi-direction variation function analysis |
CN104656130A (en) * | 2013-11-19 | 2015-05-27 | 中国石油天然气股份有限公司 | Planar seismic exploration signal decomposition method based on Kriging method |
CN105046097A (en) * | 2015-09-09 | 2015-11-11 | 电子科技大学 | Random modeling method based on nonparametric anisotropism variation function |
CN105791117A (en) * | 2016-03-21 | 2016-07-20 | 广东科学技术职业学院 | A Method of Quickly Solving QoSR Based on Ant Colony Algorithm |
-
2016
- 2016-09-12 CN CN201610818417.8A patent/CN106407678B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104281724A (en) * | 2013-07-09 | 2015-01-14 | 中国石油化工股份有限公司 | Method for conducting reservoir property simulation through multi-direction variation function analysis |
CN104656130A (en) * | 2013-11-19 | 2015-05-27 | 中国石油天然气股份有限公司 | Planar seismic exploration signal decomposition method based on Kriging method |
CN105046097A (en) * | 2015-09-09 | 2015-11-11 | 电子科技大学 | Random modeling method based on nonparametric anisotropism variation function |
CN105791117A (en) * | 2016-03-21 | 2016-07-20 | 广东科学技术职业学院 | A Method of Quickly Solving QoSR Based on Ant Colony Algorithm |
Non-Patent Citations (3)
Title |
---|
Study on the Layout of Efficient Arable Land Quality Monitoring Samples Based on Kriging Interpolation Method-Case Study in Jian"ou County;Zhuang Y T et.;《Subtropical Soil and Water Conservation》;20131231;第25卷(第2期);第17-22页 * |
利用虚拟井提高相控随机建模中地质约束的原理和方法;刘超等;《天然气地球科学》;20150430;第26卷(第4期);第616-624页 * |
油藏开发储层随机建模技术研究;徐丕东;《中国博士学位论文全文数据库 基础科学辑》;20090615(第6期);机建模技术研究 第A011-22页 * |
Also Published As
Publication number | Publication date |
---|---|
CN106407678A (en) | 2017-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mo et al. | Integration of adversarial autoencoders with residual dense convolutional networks for estimation of non‐Gaussian hydraulic conductivities | |
CN113052371B (en) | Residual oil distribution prediction method and device based on deep convolutional neural network | |
CN114693005B (en) | Three-dimensional underground oil reservoir dynamic prediction method based on convolution Fourier neural network | |
Kingston et al. | Bayesian training of artificial neural networks used for water resources modeling | |
Alavi et al. | New ground-motion prediction equations using multi expression programing | |
Wang et al. | Seismic velocity inversion transformer | |
CN113610945B (en) | Ground stress curve prediction method based on hybrid neural network | |
CN106776729B (en) | A construction method of large-scale knowledge graph path query predictor | |
CN109272029B (en) | Seismic facies partitioning method for large-scale spectral clustering based on sparse representation of well control | |
CN107607996B (en) | A Geological Modeling Method for Sequential Co-simulation Based on Phase Control | |
CN110031895B (en) | A multi-point geostatistics stochastic inversion method and device based on image stitching | |
CN113359212A (en) | Reservoir characteristic prediction method and model based on deep learning | |
CN105184398A (en) | Power maximum load small-sample prediction method | |
CN107506857A (en) | Urban lake storehouse blue-green alga bloom multi variant based on fuzzy support vector machine | |
Aranha et al. | Optimization of oil reservoir models using tuned evolutionary algorithms and adaptive differential evolution | |
Kim et al. | Selection of augmented data for overcoming the imbalance problem in facies classification | |
Cui et al. | Characterization of subsurface hydrogeological structures with convolutional conditional neural processes on limited training data | |
CN106407678B (en) | One kind being based on phased nonparametric anisotropy variogram construction method | |
Yoon et al. | Deep learning-based data assimilation in the latent space for real-time forecasting of geologic carbon storage | |
Wang et al. | Text mining | |
CN102830430A (en) | Horizon speed modeling method | |
GB2584447A (en) | Apparatus method and computer-program product for processing geological data | |
CN116484295A (en) | Mineral resources classification and prediction method and system based on multi-source small sample joint learning | |
CN117075191A (en) | Microseism focus positioning method based on convolutional neural network | |
Kumar | Surrogate model for field optimization using beta-VAE based regression |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |