CN106405558B - 基于双频天线的地基气象微波辐射计系统及测量方法 - Google Patents

基于双频天线的地基气象微波辐射计系统及测量方法 Download PDF

Info

Publication number
CN106405558B
CN106405558B CN201610986966.6A CN201610986966A CN106405558B CN 106405558 B CN106405558 B CN 106405558B CN 201610986966 A CN201610986966 A CN 201610986966A CN 106405558 B CN106405558 B CN 106405558B
Authority
CN
China
Prior art keywords
band
band antenna
antenna
radiometer
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610986966.6A
Other languages
English (en)
Other versions
CN106405558A (zh
Inventor
郎量
桂良启
陈柯
金锋
郭伟
张祖荫
田加胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Dream Technology Co Ltd
Original Assignee
Wuhan Dream Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Dream Technology Co Ltd filed Critical Wuhan Dream Technology Co Ltd
Priority to CN201610986966.6A priority Critical patent/CN106405558B/zh
Publication of CN106405558A publication Critical patent/CN106405558A/zh
Application granted granted Critical
Publication of CN106405558B publication Critical patent/CN106405558B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • G01S13/951Radar or analogous systems specially adapted for specific applications for meteorological use ground based
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/02Instruments for indicating weather conditions by measuring two or more variables, e.g. humidity, pressure, temperature, cloud cover or wind speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Atmospheric Sciences (AREA)
  • Environmental Sciences (AREA)
  • Ecology (AREA)
  • Electromagnetism (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radiation Pyrometers (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明公开了基于双频天线的地基气象微波辐射计系统及测量方法,地基气象微波辐射计系统中气压传感器、红外辐射计、GPS、温湿传感器、雨量传感器分别与数据采集与控制器相连,数据采集与控制器与计算机相连,通过电源模块为系统各器件供电,室温黑体定标源安装在微波辐射计内,所述的微波辐射计由K波段天线、K波段接收机、V波段天线、V波段接收机组成,K波段天线与K波段接收机相连,V波段天线与V波段接收机相连,K波段接收机和V波段接收机分别与数据采集与控制器相连,且K波段天线与V波段天线背对背安装,电机控制整个微波辐射计旋转。本发明的辐射计采用双频独立旋转天线来替代采用极化栅网共用反射面或抛物面的双频天线。

Description

基于双频天线的地基气象微波辐射计系统及测量方法
技术领域
本发明属于大气微波无源遥感领域,具体涉及到一种基于双频天线的地基气象微波辐射计系统及测量方法。
背景技术
微波辐射计作为一种被动遥感探测设备,其结构简单,可以连续不间断的接收大气自身发射的微波辐射信号,并从大气亮温信号中直接反演出温度、湿度以及液态水含量等气象要素的大气垂直分布信息,从而准确的预测中小尺度天气灾害,对于实时气象预报具有非常重要的实用价值。近年来,国内对气象微波辐射计在灾害天气预报方面的应用已经引起了广泛的关注。理论及实践研究证明:对于暴风雨、降雨、雾、冰冻等天气能满足即时预报的要求,从而能弥补气象雷达、探空气球等其它设备在天气即时预报方面的不足。
目前,美国Radiometrics公司和德国RPG公司生产的微波辐射计均采用了通过极化栅网共用反射面或者抛物面的方式,这种天线形式的缺点是:天线加工成本比较高,同时极化栅网引入了损耗,降低了天线的性能。国内有单位提出了双频独立反射面的地基微波辐射计,但是,两个频段(K波段和V波段)的天线并排独立放置,所占体积较大;同时由于天线并排放置,两个频段所测量的天空大气在空间位置上有一定的错位,引入了额外的误差。
发明内容
本发明的目的在于提供一种基于双频天线的地基气象微波辐射计系统及测量方法,本发明的辐射计采用双频独立旋转天线来替代采用极化栅网共用反射面或抛物面的双频天线。
基于双频天线的地基气象微波辐射计系统,包括微波辐射计、电机、气压传感器、红外辐射计、GPS、温湿传感器、雨量传感器、数据采集与控制器、电源模块、计算机、室温黑体定标源,气压传感器、红外辐射计、GPS、温湿传感器、雨量传感器分别与数据采集与控制器相连,数据采集与控制器与计算机相连,通过电源模块为系统各器件供电,室温黑体定标源安装在微波辐射计内,其特征在于:所述的微波辐射计由K波段天线、K波段接收机、V波段天线、V波段接收机组成,K波段天线与K波段接收机相连,V波段天线与V波段接收机相连,K波段接收机和V波段接收机分别与数据采集与控制器相连,且K波段天线与V波段天线背对背安装,电机控制整个微波辐射计旋转。微波辐射计系统进行大气测量时,需要对微波辐射计进行定标。系统自身带有室温黑体定标源,通过对微波辐射计进行定标,使系统的输出电压转换为大气辐射亮温。本发明的两个独立旋转天线用于信号接收,其中K波段天线和V波段天线接收的信号分别送入K波段接收机和V波段接收机,信号经滤波、放大、下变频以及检波后,与气压传感器、GPS、温湿传感器、雨量传感器以及红外辐射计采集的信号一起送入计算机进行处理,最终反演出大气温度、湿度廓线以及液态水含量。其中,红外辐射计可用来判断是否有云,并根据有云的情况测出云底的温度和云底的高度,这些信息可用于大气参量的反演。
所述的K波段天线和V波段天线背对背安装是指K波段天线和V波段天线的前馈抛物面天线或卡塞格伦天线上下背靠背叠放,当K波段天线指向天空进行测量时,V波段天线指向室温黑体进行定标;然后旋转微波辐射计,V波段天线指向天空进行测量时,K波段天线指向室温黑体进行定标,周而复始。这种天线体制的加工难度和成本不仅较低,而且由于减少了极化栅网,天线损耗降低,增加了辐射计系统的灵敏度;此外,由于一个频段的辐射计进行大气测量时,另外一个频段可以进行常温黑体定标,通过增加定标的次数,有利于提高微波辐射计的长期稳定度;与其它并排独立放置两个频段天线的模式相比,两个频段的天线所测量的大气在空间位置上是重叠的,减少了两个频段天线接收区域错位带来的误差,同时有效节省了空间。
一种基于双频天线的地基气象微波辐射计系统的测量方法,其特征在于按系统四点定标、噪声注入定标或者增益定标、以及倾斜曲线定标的步骤进行,具体如下:
(1)进行大气亮温测量前,首先对辐射计系统进行四点定标;辐射计系统的非线性模型由下式给出:
V=GTα,0.9≤α≤1.1 (1)
上式中,V为检波器端电压,G是系统增益,a是非线性因子,T是系统噪声温度Tsys与环境噪声温度TSC之和;其中,非线性因子α,系统噪声温度Tsys以及系统增益G都是未知的,常规两点定标无法求出三个未知数;为此,采用四点定标的方法,即通过增加一个额外的注入噪声温度Tn来产生四个方程,从而获得系统的定标方程;
Tsys+Tcold=G-α'V1 α' (2)
Tsys+Tcold+Tn=G-α'V2 α' (3)
Tsys+Thot=G-α'V3 α' (4)
Tsys+Thot+Tn=G-α'V4 α' (5)
上式中,V1是噪声二极管关闭时辐射计天线端指向冷源时的输出电压,V3是噪声二极管关闭时辐射计天线端指向热源时的输出电压,冷源指液氮,热源指室温黑体,Tcold是冷源温度,Thot是热源温度,V2是噪声二极管打开时辐射计天线端指向冷源时的输出电压;V4是噪声二极管打开时辐射计天线端指向热源时的输出电压;
(2)当K波段天线指向天空进行测量时,V波段天线指向室温黑体进行定标;此时,V波段天线根据需要进行噪声注入定标或者增益定标;其中,增益定标的次数应多于噪声注入定标的次数;通过增加定标的次数,有利于提高微波辐射计的长期稳定度;旋转天线,当V波段天线指向天空进行测量时,此时,K波段天线指向室温黑体进行定标,K波段天线根据需要进行噪声注入定标或者增益定标;而噪声注入定标和增益定标的具体步骤分别如下:
噪声注入定标的步骤:四点定标过程结束后,由于噪声二极管的注入噪声温度Tn和系统非线性因子a比较稳定,系统的噪声温度Tsys和增益G相对没那么稳定,需要实时再进行修正;此时,在不使用液氮冷源的情况下,只使用内部的室温吸波材料作为热源(Thot),采用噪声注入的方法进行定标,再次修正Tsys和G;此处,噪声二极管注入温度Tn和非线性修正系数α为已知值,定标方程如下:
Tsys+Thot=G-α'V3 α' (6)
Tsys+Thot+Tn=G-α'V4 α' (7)
增益定标的步骤:接收机温度的微小变化都将使增益产生波动,因此需要更加频繁的对增益记性定标;假定系统噪声温度Tsys稳定,通过单点定标就可以对增益G进行修正,定标方程如下:
Tsys+Thot=G-α'V3 α' (8)
(3)倾斜曲线定标
微波辐射计K波段接收机每天进行一次倾斜曲线定标,在微波辐射计长期的使用过程中,噪声二极管的注入噪声温度Tn会发生变化,因此通过倾斜曲线定标来修正噪声二极管的注入噪声温度Tn
倾斜曲线定标来修正噪声二极管的的注入噪声温度Tn的具体步骤为:令Tn'=r×Tn;其中r为修正因子;此时,真正注入到通道的噪声温度为r×Tn;为了计算出修正因子r,具体为:首先定义大气的Atmospheric airmass为:
a(θ)=τ(θ)/τ(90)=1/sin(θ) (9)
上式中,θ是微波辐射计的观测角,τ(θ)为微波辐射计观测角为θ时的不透明度;当微波辐射计中K波段天线在两个不同的观测角θ1和θ2时,测量出不同观测角对应的亮度温度Tb1)和Tb2),那么计算出观测角为θ1和θ2时的不透明度τ11)、τ22),若用τ1,τ2都用a(θ)归一化,则归一化后:
t1=τ11)/a(θ1)且应等于t2=τ22)/a(θ2) (10)
因此,调整r使得t1=t2,此时计算出修正因子r。
本发明的技术效果体现在:
本发明采用的双频独立旋转天线,这种天线体制的加工难度和成本不仅较低,而且由于减少了极化栅网,天线损耗降低,增加了辐射计系统的 灵敏度,有效节省了空间;此外,由于一个频段的辐射计进行大气测量时,另外一个频段可以进行常温黑体定标,通过增加定标的次数,有利于提高微波辐射计的长期稳定度;与其它并排独立放置两个频段天线的模式相比,两个频段的天线所测量的大气在空间位置上是重叠的。
附图说明
图1为本发明的框图。
图2为本发明的测量流程图。
具体实施方式
下面结合附图对本发明的具体实施方式进一步说明。
如图1所示,基于双频天线的地基气象微波辐射计系统,包括微波辐射计、电机、气压传感器、红外辐射计、GPS、温湿传感器、雨量传感器、数据采集与控制器、电源模块、计算机、室温黑体定标源,气压传感器、红外辐射计、GPS、温湿传感器、雨量传感器分别与数据采集与控制器相连,数据采集与控制器与计算机相连,通过电源模块为系统各器件供电,室温黑体定标源安装在微波辐射计内,其特征在于:所述的微波辐射计由K波段天线、K波段接收机、V波段天线、V波段接收机组成,K波段天线与K波段接收机相连,V波段天线与V波段接收机相连,K波段接收机和V波段接收机分别与数据采集与控制器相连,且K波段天线与V波段天线背对背安装,电机控制整个微波辐射计旋转,微波辐射计系统进行大气测量时,需要对微波辐射计进行定标。系统自身带有室温黑体定标源,通过对微波辐射计进行定标,使系统的输出电压转换为大气辐射亮温。本发明的两个独立旋转天线用于信号接收,其中K波段天线和V波段天线接收的信号分 别送入K波段接收机和V波段接收机,信号经滤波、放大、下变频以及检波后,与气压传感器、GPS、温湿传感器、雨量传感器以及红外辐射计采集的信号一起送入计算机进行处理,最终反演出大气温度、湿度廓线以及液态水含量。其中,红外辐射计可用来判断是否有云,并根据有云的情况测出云底的温度和云底的高度,这些信息可用于大气参量的反演。
如图2所示,一种基于双频天线的地基气象微波辐射计系统的测量方法,其特征在于按系统四点定标、噪声注入定标或者增益定标、以及倾斜曲线定标的步骤进行,具体如下:
(1)进行大气亮温测量前,首先对辐射计系统进行四点定标;辐射计系统的非线性模型由下式给出:
V=GTα,0.9≤α≤1.1 (1)
上式中,V为检波器端电压,G是系统增益,a是非线性因子,T是系统噪声温度Tsys与环境噪声温度TSC之和;其中,非线性因子α,系统噪声温度Tsys以及系统增益G都是未知的,常规两点定标无法求出三个未知数;为此,我们可以采用四点定标的方法,即通过增加一个额外的注入噪声温度Tn来产生四个方程,从而获得系统的定标方程;
Tsys+Tcold=G-α'V1 α' (2)
Tsys+Tcold+Tn=G-α'V2 α' (3)
Tsys+Thot=G-α'V3 α' (4)
Tsys+Thot+Tn=G-α'V4 α' (5)
上式中,V1是噪声二极管关闭时辐射计天线端指向冷源时的输出电压,V3是噪声二极管关闭时辐射计天线端指向热源时的输出电压,冷源指液氮, 热源指室温黑体,Tcold是冷源温度,Thot是热源温度,V2是噪声二极管打开时辐射计天线端指向冷源时的输出电压;V4是噪声二极管打开时辐射计天线端指向热源时的输出电压;建议5-6个月进行一次四点定标以修正a和Tn
(2)当K波段天线指向天空进行测量时,V波段天线指向室温黑体进行定标,此时,V波段天线可以根据需要可以进行噪声注入定标或者增益定标。其中,增益定标的次数应多于噪声注入定标的次数。通过增加定标的次数,有利于提高微波辐射计的长期稳定度;旋转天线,当V波段天线指向天空进行测量时,此时,K波段天线指向室温黑体进行定标,K波段天线可以根据需要可以进行噪声注入定标或者增益定标。而噪声注入定标和增益定标的具体步骤分别如下:
噪声注入定标的步骤:四点定标过程结束后,由于噪声二极管的注入噪声温度Tn和系统非线性因子a可认为比较稳定,但是系统的噪声温度Tsys和增益G相对没那么稳定,需要实时再进行修正。此时,可以在不使用液氮冷源的情况下,只使用内部的室温吸波材料作为热源(Thot),采用噪声注入的方法进行定标,再次修正Tsys和G。此处,噪声二极管注入温度Tn和非线性修正系数α为已知值,定标方程如下:
Tsys+Thot=G-α'V3 α' (6)
Tsys+Thot+Tn=G-α'V4 α' (7)
增益定标的步骤:接收机温度的微小变化都将使增益产生波动,因此需要更加频繁的对增益记性定标。假定系统噪声温度Tsys稳定,通过单点定标就可以对增益G进行修正,定标方程如下:
Tsys+Thot=G-α'V3 α' (8)
(3)倾斜曲线定标
微波辐射计K波段接收机每天进行一次倾斜曲线定标,在微波辐射计长期的使用过程中,噪声二极管的注入噪声温度Tn会发生变化,因此通过倾斜曲线定标来修正噪声二极管的注入噪声温度Tn
倾斜曲线定标来修正噪声二极管的的注入噪声温度Tn的具体步骤为:令Tn'=r×Tn;其中r为修正因子;此时,真正注入到通道的噪声温度为r×Tn;为了计算出修正因子r,具体为:首先定义大气的Atmospheric airmass为:
a(θ)=τ(θ)/τ(90)=1/sin(θ) (9)
上式中,θ是微波辐射计的观测角,τ(θ)为微波辐射计观测角为θ时的不透明度;当微波辐射计中K波段天线在两个不同的观测角θ1和θ2时,测量出不同观测角对应的亮度温度Tb1)和Tb2),那么计算出观测角为θ1和θ2时的不透明度τ11)、τ22),若用τ1,τ2都用a(θ)归一化,则归一化后:
t1=τ11)/a(θ1)且应等于t2=τ22)/a(θ2) (10)
因此,调整r使得t1=t2,此时计算出修正因子r。

Claims (1)

1.基于双频天线的地基气象微波辐射计系统,包括微波辐射计、电机、气压传感器、红外辐射计、GPS、温湿传感器、雨量传感器、数据采集与控制器、电源模块、计算机、室温黑体定标源,气压传感器、红外辐射计、GPS、温湿传感器、雨量传感器分别与数据采集与控制器相连,数据采集与控制器与计算机相连,通过电源模块为系统各器件供电,室温黑体定标源安装在微波辐射计内,其特征在于:所述的微波辐射计由K波段天线、K波段接收机、V波段天线、V波段接收机组成,K波段天线与K波段接收机相连,V波段天线与V波段接收机相连,K波段接收机和V波段接收机分别与数据采集与控制器相连,且K波段天线与V波段天线背对背安装,电机控制整个微波辐射计旋转,微波辐射计系统进行大气测量时,需要对微波辐射计进行定标;通过对微波辐射计进行定标,使系统的输出电压转换为大气辐射亮温;所述的K波段天线和V波段天线背对背安装是指K波段天线和V波段天线的前馈抛物面天线或卡塞格伦天线上下背靠背叠放,当K波段天线指向天空进行测量时,V波段天线指向室温黑体进行定标;然后旋转微波辐射计,V波段天线指向天空进行测量时,K波段天线指向室温黑体进行定标,周而复始。
CN201610986966.6A 2016-11-09 2016-11-09 基于双频天线的地基气象微波辐射计系统及测量方法 Active CN106405558B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610986966.6A CN106405558B (zh) 2016-11-09 2016-11-09 基于双频天线的地基气象微波辐射计系统及测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610986966.6A CN106405558B (zh) 2016-11-09 2016-11-09 基于双频天线的地基气象微波辐射计系统及测量方法

Publications (2)

Publication Number Publication Date
CN106405558A CN106405558A (zh) 2017-02-15
CN106405558B true CN106405558B (zh) 2019-05-21

Family

ID=59229923

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610986966.6A Active CN106405558B (zh) 2016-11-09 2016-11-09 基于双频天线的地基气象微波辐射计系统及测量方法

Country Status (1)

Country Link
CN (1) CN106405558B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108254076B (zh) * 2017-11-22 2020-11-17 安徽四创电子股份有限公司 一种用于多通道毫米波辐射计的标定方法
CN108957377B (zh) * 2018-04-23 2020-11-06 中国科学院国家空间科学中心 一种全极化微波辐射计的定标装置及定标方法
CN109239805A (zh) * 2018-08-31 2019-01-18 安徽四创电子股份有限公司 一种直检式并行多通道地基微波辐射计系统
CN109357784B (zh) * 2018-11-21 2020-10-09 中国科学院新疆天文台 一种k波段天空亮温度的测试方法
CN110119001B (zh) * 2019-06-14 2024-04-30 上海清江实业有限公司 地基微波辐射计系统及其定标方法
CN110456295B (zh) * 2019-08-21 2021-04-02 国家卫星气象中心(国家空间天气监测预警中心) 一种基于天线方向图实时监测的微波辐射计在轨定标方法
CN110617889B (zh) * 2019-08-28 2020-11-20 西安空间无线电技术研究所 一种应用于综合孔径微波辐射计的高稳定性测试方法
CN111045013A (zh) * 2019-12-10 2020-04-21 中国科学院国家空间科学中心 一种测量海面气压的多频差分吸收雷达系统
CN111948617B (zh) * 2020-08-27 2024-04-12 上海航天电子通讯设备研究所 一种反射面天线微波发射率测试方法及其测试系统
CN112415520B (zh) * 2020-09-25 2022-11-25 上海航天测控通信研究所 基于变温源天线口面定标的地基微波辐射计系统及其定标方法
CN116576974B (zh) * 2023-07-14 2023-09-29 山东省科学院海洋仪器仪表研究所 一种多通道微波辐射计自定标方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204348909U (zh) * 2015-01-30 2015-05-20 东莞市仁丰电子科技有限公司 一种二合一双馈线多波段全向高增益pcb天线

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI114662B (fi) * 1995-03-28 2004-11-30 Pentti Salonen Menetelmä ja laitteisto vesipitoisuuden muutoksen ilmaisemiseksi
CN101285862A (zh) * 2008-05-09 2008-10-15 华中科技大学 一种全数字补偿微波辐射计
CN102243294B (zh) * 2010-05-14 2015-02-04 中国科学院空间科学与应用研究中心 一种地基微波辐射计的非线性定标方法及装置
CN102243304A (zh) * 2010-05-14 2011-11-16 中国科学院空间科学与应用研究中心 一种基于地基的大气廓线微波探测仪
CN101865909A (zh) * 2010-06-07 2010-10-20 大连海事大学 一种微波遥感土壤水分监测系统及其方法
CN101976297B (zh) * 2010-09-30 2012-09-26 中国科学院国家天文台 一种地基单天线观测月球亮温度数据的处理方法
CN206161853U (zh) * 2016-11-09 2017-05-10 武汉华梦科技有限公司 基于双频天线的地基气象微波辐射计系统

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204348909U (zh) * 2015-01-30 2015-05-20 东莞市仁丰电子科技有限公司 一种二合一双馈线多波段全向高增益pcb天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
地基多通道微波辐射计的反演算法及应用;张北斗;《中国博士学位论文全文数据库 基础科技辑》;20150315(第03期);正文第53,57-66,70-72,77,92页

Also Published As

Publication number Publication date
CN106405558A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
CN106405558B (zh) 基于双频天线的地基气象微波辐射计系统及测量方法
CN102243294B (zh) 一种地基微波辐射计的非线性定标方法及装置
CN206161853U (zh) 基于双频天线的地基气象微波辐射计系统
CN105372610B (zh) 一种用于微波辐射计四点定标的装置及方法
CN103616078B (zh) 一种热红外载荷便携式野外定标及水面温度验证系统装置
CN102829874A (zh) 一种微波高光谱辐射计
CN203881444U (zh) 一种自然地表红外发射率光谱数据野外测量系统
CN108827878B (zh) 一种地表气压的被动微波遥感探测方法
CN108267739A (zh) 一种地基微波辐射计及其定标方法、大气探测方法
CN104181511A (zh) 一种地基微波辐射计定标方法
CN108180999A (zh) 基于激光扫描的红外探测器绝对响应度定标装置及方法
CN104483646A (zh) 一种地基微波辐射计实时定标装置及方法
CN108957377A (zh) 一种全极化微波辐射计的定标装置及定标方法
CN102830448B (zh) 一种微波高光谱晴空定标方法、装置及系统
Colaizzi et al. Two-source energy balance model: Refinements and lysimeter tests in the Southern High Plains
Surussavadee et al. Satellite retrievals of arctic and equatorial rain and snowfall rates using millimeter wavelengths
CN102435324B (zh) 一种线极化微波辐射计变温源装置
CN201724913U (zh) 一种无接触土壤湿度测量仪
CN109959970A (zh) 一种天空半球热红外大气下行辐射地面测量方法
CN111207837B (zh) 一种基于波导开关的地基微波辐射计四点定标方法
CN108594333B (zh) 一种大气温湿度廓线微波探测仪及其探测方法
CN111337065A (zh) 一种微波辐射计小型环境模拟定标试验装置
Wilbert et al. Reduced uncertainties of field pyrheliometers through improved sensor calibration
Zhao et al. Design and test of a new truck-mounted microwave radiometer for remote sensing research
CN113175997B (zh) 一种喇叭天线测试天空亮温的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant