CN106404270B - 基于文丘里管差压数据的气液两相流参数测量方法 - Google Patents

基于文丘里管差压数据的气液两相流参数测量方法 Download PDF

Info

Publication number
CN106404270B
CN106404270B CN201610984640.XA CN201610984640A CN106404270B CN 106404270 B CN106404270 B CN 106404270B CN 201610984640 A CN201610984640 A CN 201610984640A CN 106404270 B CN106404270 B CN 106404270B
Authority
CN
China
Prior art keywords
differential pressure
gas
venturi tube
liquid
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610984640.XA
Other languages
English (en)
Other versions
CN106404270A (zh
Inventor
王微微
张明柱
魏颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Priority to CN201610984640.XA priority Critical patent/CN106404270B/zh
Publication of CN106404270A publication Critical patent/CN106404270A/zh
Application granted granted Critical
Publication of CN106404270B publication Critical patent/CN106404270B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L13/00Devices or apparatus for measuring differences of two or more fluid pressure values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/86Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure
    • G01F1/88Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure with differential-pressure measurement to determine the volume flow

Abstract

本发明公开了一种基于文丘里管差压数据的气液两相流参数测量方法。包括如下步骤:1)应用差压传感器测量文丘里管上部差压波动信号;2)根据差压信号的概率密度函数将差压信号分为低差压部分与高差压部分;3)计算差压信号的特征值;4)根据关系式计算气液两相流流量与含气率。本发明的优点在于无需进行气液分离,仅基于文丘里管的差压信号分布特征即可实现气液两相流参数的测量。本发明的测量装置成本低,计算简便,实时性好,参数测量精度高。本发明适用于气液两相流多参数的测量。

Description

基于文丘里管差压数据的气液两相流参数测量方法
技术领域
本发明属于流体测量技术领域,具体涉及到一种基于文丘里管差压数据的气液两相流参数测量方法。
背景技术
多相流动是指由固、液、气(汽)三相中任何两相或者两相以上不相溶物质的混合流动,其中气液两相流动是多相流动中最常见、最复杂的流动形态,广泛存在于动力、化工、石油、冶金、管道运输、医药、制冷等领域。气液两相复杂多变的接触界面、两相介质的相对温度、相对含量、流动型态等因素复杂多变,导致气液两相流的流量、分相含率等参数的测量难度较大。
目前气液两相流参数检测技术及装置大多处于研究探索阶段,可以现场应用的技术以及工业型的仪器仪表还不多,这与气液两相流在工程领域的广泛存在极其不适应,因此气液两相流参数测量是一个急需研究、有待提高的领域。
目前气液两相流参数检测方法大体可分为三大类。第一类为分流分相的方法。在石油工业中常用油气水三相分离器实现多相流的测量。在计量时首先进行油气水分离,再通过多条管线分相计量,该计量方式设备昂贵、安装复杂,并需要建立专门的计量站和测试管线,不利于建设成本的节约以及管线各站点的管理。第二类是采用传统的单相流仪表与多相流参数测量模型相结合的测量方法。传统的单相流仪表技术成熟,工作可靠,被许多研究者所熟悉,在不同的应用领域,根据测量现场的具体情况,选择合适的测量模型,能在一定精度条件下解决气液两相流参数测量问题。三是采用现代信息处理方法来估计两相流参数。首先利用近代的新技术,如辐射线技术、激光技术、光纤技术、超声技术、相关技术、过程层析成像技术等,获取管道内气液两相流动信息,再在成熟的硬件基础上,以计算机技术为支撑平台,应用现代信息处理方法来解决两相流参数估计问题,可以提高两相流参数检测的实时性。
目前应用文丘里管等节流元件,采用节流法测量气液两相流参数时,主要基于节流式仪表测量原理与两相流模型来实现。根据不同的假设条件,国内外学者建立了均相流模型、分相流模型、Murdock关系式、Chisholm关系式、林宗虎关系式、漂移通量模型等两相流测量模型。部分模型中的参数需要通过实验数据确定,当实验装置或应用条件不同时,模型中的参数也略有不同。
气液两相流流经文丘里管时,管道内差压的波动特征与气液两相流的流型、两相间的相对运动、气液相间的相互作用等有关。有研究者报道了该差压波动信号的概率密度函数与气液两相流流型间的关系,应用该概率密度函数的特征来识别两相流流型。
发明内容
本发明的目的是利用文丘里管的差压波动信号估计气液两相流参数。具有测量装置简单,测量过程中无需切断管道中流体的正常流动,实时性好,液体流量及含气率测量精度高的优点。
基于文丘里管差压数据测量气液两相流参数的测量装置,包括计量管道(1)、压力传感器(2)、文丘里管(3)、差压传感器(4)、A/D转换卡(5)和计算机(6)。
基于文丘里管差压数据测量气液两相流参数的测量装置如图1所示,在计量管道(1)上依次设有压力传感器(2)、文丘里管(3),差压传感器(4)与文丘里管(3)相连,A/D转换卡(5)与压力传感器(2)、差压传感器(4)相连,计算机(6)与A/D转换卡(5)相连。
本发明基于文丘里管上部差压信号测量气液两相流参数,包括有如下步骤:
(1)差压信号测量:应用差压传感器测量T时间内文丘里管上部差压波动信号ΔP,其中T≥2秒,采样频率为1000Hz;
(2)差压信号分界:计算ΔP的概率密度函数,取概率密度函数的波谷为分界点S,将ΔP分为低差压部分ΔPL与高差压部分ΔPH
(3)计算特征值:根据计算RHL,其中NH为高差压部分ΔPH的数据点数,NL为低差压部分ΔPL的数据点数,并计算高差压部分ΔPH的方差VH
(4)根据关系式计算液体流量Qliq,根据关系式计算含气率α,其中β0,β1,θ0,θ1根据实验数据离线确定,根据计算气体流量Qgas
上述步骤(1)中所述的文丘里管上部差压波动信号ΔP在从水平方向倾斜向上45度的取压位置采集得到。
上述步骤(2)中的分界点S根据实验工况的差压信号的概率密度函数离线确定。差压信号的概率密度函数为双峰曲线,两峰之间的极小值点的横坐标即为分界点S。
本发明的优点是,仅需要一个文丘里管,根据差压数据的分布即可实现气液两相流参数的测量,测量装置成本低、测量精度高、实时性好。由于根据一段时间T内的差压数据进行参数估计,因此,减小了偶然性的干扰,提高了测量精度。本发明适用于气液两相流多参数的测量。
附图说明
图1为基于文丘里管差压数据测量气液两相流参数的结构示意图;
图2为文丘里管差压信号采集位置示意图;
图3为文丘里管差压信号采集位置剖面图;
图4为水流量为15.09m3/h,气流量为17.21m3/h工况下差压信号分界示意图,左侧为该工况的原始差压信号,右侧为该差压信号的概率密度函数曲线与分界线;
图5为液体流量变化时差压信号的概率密度函数;
图6为气体流量变化时差压信号的概率密度函数;
图7为液相流量Qliq与特征值RHL的曲线拟合关系图;
图8为含气率α与特征值VH的曲线拟合关系图;
图9为液体流量测量结果;
图10为含气率测量结果;
图11为气体流量测量结果。
具体实施方式
本发明的气液两相流测量装置,包括计量管道(1)、压力传感器(2)、文丘里管(3)、差压传感器(4)、A/D转换卡(5)和计算机(6)。本实施例实现液体体积流量为5.91~14.28m3/h,气体体积流量为9.62~59.72m3/h,含气率为0.55~0.88的气液两相流液体流量、气体流量和含气率的测量。
(1)测量装置安装
气液两相流的测量装置如图1所示,计量管道(1)为内径40mm的测试管段,计量管道(1)上依次安装有压力传感器(2)、文丘里管(3),差压传感器(4)与文丘里管(3)相连,A/D转换卡(5)与压力传感器(2)、差压传感器(4)相连,计算机(6)与A/D转换卡(5)相连。
(2)差压信号测量
应用差压传感器测量文丘里管上部的差压波动信号ΔP,文丘里管如图2所示,其取压口方向如图3所示:取压口与水平方向夹角为45°,斜向上方。
文丘里管的差压信号由差压传感器采集之后经A/D转换卡送入计算机。采样频率为1000Hz,采样时间为8秒。水流量为15.09m3/h,气流量为17.21m3/h工况下测得的差压波动信号如图4左侧图所示。
(3)计算差压波动信号的概率密度函数
根据核密度估计方法计算差压波动信号的概率密度函数,核密度估计的核函数采用高斯(Gaussian)函数,窗口宽度为差压数据极差的百分之一。
图4右侧的曲线为在水流量为15.09m3/h,气流量为17.21m3/h工况下差压波动信号的概率密度函数。
(4)计算差压信号分界点S
计算ΔP的概率密度函数,取概率密度函数的波谷为分界点S,将ΔP分为低差压部分ΔPL与高差压部分ΔPH
图5为液相流量几乎不变,气相流量增大工况下,差压波动信号的概率密度函数。
图6为气相流量几乎不变,液相流量增大工况下,差压波动信号的概率密度函数。
低差压部分ΔPL与高差压部分ΔPH的分界点S为两波峰之间的波谷,根据实验数据确定分界点S为1.1Kpa。
(5)计算特征值
根据计算RHL,其中NH为高差压部分ΔPH的数据点数,NL为低差压部分ΔPL的数据点数,并计算高差压部分ΔPH的方差VH
(6)根据实验数据离线确定β0,β1,θ0,θ1
根据实验中的参考液相流量与对应的特征值RHL,应用最小二乘法拟合中的参数β0,β1;根据实验数据离线确定参数β0=0.0255,β1=0.2972,图7为液相流量Qliq与特征值RHL的曲线拟合关系图。
根据实验中的参考含气率与对应的特征值VH,应用最小二乘法拟合中的参数θ0,θ1;根据实验数据离线确定参数θ0=8.2924×10-4,θ1=11.1910,图8为含气率α与特征值VH的曲线拟合关系图。
(7)气液两相流参数估计
根据关系式计算液体流量Qliq,根据关系式计算含气率α,其中β0,β1,θ0,θ1根据实验数据离线确定,根据计算气体流量Qgas
在本实施例中,参数β0=0.0255,β1=0.2972,θ0=8.2924×10-4,θ1=11.1910。图9为液体流量估计结果,其相对误差在10%以内。图10为含气率估计结果,有98.82%的工况相对误差在10%以内,所有工况的相对误差都在20%以内。图11为气体流量估计结果,大部分工况的相对误差在20%以内。

Claims (2)

1.一种基于文丘里管差压数据的气液两相流参数测量方法,其特征包括如下具体步骤:
(1)差压信号测量:应用差压传感器测量T时间内文丘里管上部差压波动信号ΔP,其中T≥2秒,采样频率为1000Hz;
(2)差压信号分界:计算ΔP的概率密度函数,取概率密度函数的波谷为分界点S,将ΔP分为低差压部分ΔPL与高差压部分ΔPH
(3)计算特征值:根据计算RHL,其中NH为高差压部分ΔPH的数据点数,NL为低差压部分ΔPL的数据点数,并计算高差压部分ΔPH的方差VH
(4)根据关系式计算液体流量Qliq,根据关系式计算含气率α,其中β0,β1,θ0,θ1为关系式参数,根据实验数据离线确定,根据计算气体流量Qgas
2.根据权利要求1所述的一种基于文丘里管差压数据的气液两相流参数测量方法,其特征在于上述步骤(1)中所述的文丘里管上部差压波动信号ΔP在从水平方向倾斜向上45度的取压位置采集得到。
CN201610984640.XA 2016-11-09 2016-11-09 基于文丘里管差压数据的气液两相流参数测量方法 Expired - Fee Related CN106404270B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610984640.XA CN106404270B (zh) 2016-11-09 2016-11-09 基于文丘里管差压数据的气液两相流参数测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610984640.XA CN106404270B (zh) 2016-11-09 2016-11-09 基于文丘里管差压数据的气液两相流参数测量方法

Publications (2)

Publication Number Publication Date
CN106404270A CN106404270A (zh) 2017-02-15
CN106404270B true CN106404270B (zh) 2019-03-22

Family

ID=59229728

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610984640.XA Expired - Fee Related CN106404270B (zh) 2016-11-09 2016-11-09 基于文丘里管差压数据的气液两相流参数测量方法

Country Status (1)

Country Link
CN (1) CN106404270B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108168612A (zh) * 2017-12-27 2018-06-15 中国石油大学(华东) 基于差压信号波动的气液两相流体积含气率测量方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576495A (en) * 1995-10-23 1996-11-19 The Babcock & Wilcox Company Two phase flow meter
CN101413817A (zh) * 2008-12-05 2009-04-22 天津大学 双差压节流湿气测量方法
CN102116754A (zh) * 2011-02-28 2011-07-06 天津大学 基于双截面阻抗式长腰内锥传感器的多相流测量方法
CN104265267A (zh) * 2014-09-19 2015-01-07 中国石油大学(华东) 适用于控压钻井的气液两相流量测量装置及测量方法
CN104330336A (zh) * 2014-11-07 2015-02-04 中国石油大学(华东) 基于ica和svm的气液两相流型识别方法
CN105222831A (zh) * 2015-07-23 2016-01-06 中国石油大学(华东) 一种气液两相流计量装置和方法
CN105486358A (zh) * 2015-11-19 2016-04-13 中国石油大学(华东) 基于文丘里管双差压的气液两相流参数测量方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576495A (en) * 1995-10-23 1996-11-19 The Babcock & Wilcox Company Two phase flow meter
CN101413817A (zh) * 2008-12-05 2009-04-22 天津大学 双差压节流湿气测量方法
CN102116754A (zh) * 2011-02-28 2011-07-06 天津大学 基于双截面阻抗式长腰内锥传感器的多相流测量方法
CN104265267A (zh) * 2014-09-19 2015-01-07 中国石油大学(华东) 适用于控压钻井的气液两相流量测量装置及测量方法
CN104330336A (zh) * 2014-11-07 2015-02-04 中国石油大学(华东) 基于ica和svm的气液两相流型识别方法
CN105222831A (zh) * 2015-07-23 2016-01-06 中国石油大学(华东) 一种气液两相流计量装置和方法
CN105486358A (zh) * 2015-11-19 2016-04-13 中国石油大学(华东) 基于文丘里管双差压的气液两相流参数测量方法

Also Published As

Publication number Publication date
CN106404270A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
US8087293B2 (en) Oil-gas-water multi-phase flow adjusting apparatus and oil-gas-water multi-phase flow rate measuring apparatus and measuring method
Manera et al. Comparison between wire-mesh sensors and conductive needle-probes for measurements of two-phase flow parameters
CN101178347B (zh) 狭缝文丘里节流装置及气液两相流测量系统
CN100437046C (zh) 基于截面测量的气液两相流测量方法及装置
CN102116754B (zh) 基于双截面阻抗式长腰内锥传感器的多相流测量方法
EP1893952B1 (en) Method and apparatus for measuring nonhomogeneous flow phase velocities
CN105486358B (zh) 基于文丘里管双差压的气液两相流参数测量方法
CN102147385B (zh) 基于单截面阻抗式长腰内锥传感器的多相流测量方法
US20160341585A1 (en) Multiphase Flow Meter
CN102246009A (zh) 湿气流测量和气体性质测量的方法和装置
Ahmed Experimental investigation of air–oil slug flow using capacitance probes, hot-film anemometer, and image processing
CN102116755B (zh) 基于多截面阻抗式长腰内锥及相关测速的多相流测量方法
CN107843297B (zh) 基于v锥的低含气率气液两相流液相流量在线测量装置及方法
CN102246008A (zh) 用于测量湿气的组成和流速的方法和装置
Wang et al. Slug flow identification using ultrasound Doppler velocimetry
CN104101396A (zh) 智能多相流量计
CN101900589B (zh) 基于质量流量计的夹气液体流量测量方法
dos Reis et al. Characterization of slug flows in horizontal piping by signal analysis from a capacitive probe
CN203929148U (zh) 智能多相流量计
CN106404270B (zh) 基于文丘里管差压数据的气液两相流参数测量方法
CN102346058A (zh) 科氏质量流量计测量夹气液体流量的模型法
Guo et al. Rapid on-line and non-invasive flow rate measurement of gas–liquid slug flow based only on basic differential pressure fluctuations
Chen et al. Conductance sensor-based flowrate estimation of horizontal gas-water slug flow from interfacial wave statistics
CN201032457Y (zh) 基于标准文丘里管与涡街流量计的低含气率气液两相流测量装置
CN110987097A (zh) 一种利用压力波动测量气液多相流流量的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190322

Termination date: 20191109

CF01 Termination of patent right due to non-payment of annual fee