CN106402664A - 气体泄漏激光遥感机载探测装置 - Google Patents

气体泄漏激光遥感机载探测装置 Download PDF

Info

Publication number
CN106402664A
CN106402664A CN201610791247.9A CN201610791247A CN106402664A CN 106402664 A CN106402664 A CN 106402664A CN 201610791247 A CN201610791247 A CN 201610791247A CN 106402664 A CN106402664 A CN 106402664A
Authority
CN
China
Prior art keywords
laser
gas
leakage
signal
remote sensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610791247.9A
Other languages
English (en)
Inventor
高晓明
汪磊
梅教旭
谈图
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Institutes of Physical Science of CAS
Original Assignee
Hefei Institutes of Physical Science of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Institutes of Physical Science of CAS filed Critical Hefei Institutes of Physical Science of CAS
Priority to CN201610791247.9A priority Critical patent/CN106402664A/zh
Publication of CN106402664A publication Critical patent/CN106402664A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/02Preventing, monitoring, or locating loss
    • F17D5/06Preventing, monitoring, or locating loss using electric or acoustic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/38Investigating fluid-tightness of structures by using light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1793Remote sensing

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种气体泄漏激光遥感机载探测装置。它包括红外激光发射和接收部件,以及与其电连接的控制处理部件,特别是机载探测装置位于飞行器上,且还含有由置于电机(14)轴上的旋转反射镜(13)组成的螺旋探测轨迹部件,其中,旋转反射镜(13)的法线与电机(14)轴线的夹角为1~6°、且与红外激光发射部件的光轴(12)呈40~50°角;控制处理部件包含电连接的发射信号控制组件和接收信号处理组件,其中的发射信号控制组件用于实现对红外激光发射部件中的激光器(5)输出的调制,接收信号处理组件用于根据探测到的携带泄漏气体信息的信号计算出泄漏气体的浓度。它可广泛地应用于对天然气泄漏的精确定位和大面积的快速探测。

Description

气体泄漏激光遥感机载探测装置
技术领域
本发明涉及一种激光遥感机载探测装置,尤其是一种气体泄漏激光遥感机载探测装置。
背景技术
随着天然气消费领域的不断扩大,我国已建成了数十万公里的天然气管道。对于如此长的天然气管网,在天然气的运输、储存、销售管理的过程中,泄漏是不可避免的,也是造成安全事故的最主要原因。因此,为及时地发现泄漏点,人们研发出了天然气泄漏激光遥感探测技术。然而,该技术在探测天然气泄漏时,由于接收到的散射光随着反射体的不同,其回光功率变化极大,而解调的二次谐波信号又正比于光强,从而使测量结果的准确性大打折扣。为解决这一问题,人们做出了不懈的努力,如中国发明专利CN 101696897B于2011年9月7日公告的一种移动式单频差分天然气管道泄漏激光遥感探测系统及方法。该发明专利中提及的系统主要由甲烷气体探测仪、GPS全球定位系统和CCD相机,以及计算机组成,其中,甲烷气体探测仪包含与卡塞格林望远镜光连接的激光器、与位于卡塞格林望远镜焦点处的第二光电探测器电连接的控制处理单元,控制处理单元为其输入端依次电连接有模数转换器和三只锁相放大器、输出端依次电连接有数模转换器、正弦波模块及反馈控制直流电平模块、加法器和激光电流温度控制器;方法主要为经调制的激光按比例分成两束光,其中的一束光经内冲甲烷气体的参考吸收池后由第一光电探测器接收,并经第一锁相放大器解调后通过模数转换器送往微处理器,另一束光经卡塞格林望远镜同轴发射后,其反射光被第二光电探测器转换为电信号后,经第二和第三锁相放大器解调后通过模数转换器送往微处理器,由微处理器将采集到的第二、第三锁相放大器的输出信号相除得到一个正比于甲烷气体浓度的比值,该比值对应于用甲烷气体测量得到的系统标定曲线上所对应的某一气体浓度。这种采用二次谐波信号与一次谐波信号残余振幅的比来消除光强影响的探测系统及方法,虽也获得了一些效果,却仍存在着不足之处,首先,由于解调二次谐波信号和一次谐波信号采用的是不同的锁相放大器,两只锁相放大器的相位等信息并不一致,而遥感探测技术在实际应用中距离又是变化的,这就造成了相位也会有一定的改变,这些都会造成利用二次谐波信号与一次谐波信号残余振幅的比来消除光强起伏的影响存在着很大的误差;其次,探测系统于单位时间内移动的距离有限,难以快速有效地探测较大区域天然气管网的泄漏。
发明内容
本发明要解决的技术问题为克服现有技术中的不足之处,提供一种消除光强变化对浓度测量影响,且易于快速探测较大区域天然气管网的气体泄漏激光遥感机载探测装置。
为解决本发明的技术问题,所采用的技术方案为:气体泄漏激光遥感机载探测装置包括红外激光发射和接收部件,以及与其电连接的控制处理部件,特别是,
所述机载探测装置位于飞行器上,且还含有螺旋探测轨迹部件,所述螺旋探测轨迹部件由置于电机轴上的旋转反射镜组成,其中,旋转反射镜的法线与电机轴线的夹角为1~6°、且与红外激光发射部件的光轴呈40~50°角;
所述控制处理部件包含电连接的发射信号控制组件和接收信号处理组件,其中,
发射信号控制组件为锯齿波信号发生器和正弦波信号发生器的输出端经加法器与激光调制器电连接,用于将锯齿波信号和正弦波信号叠加后形成控制信号,以由激光调制器实现对红外激光发射部件中的激光器输出的调制,
接收信号处理组件为分别与红外接收部件中的探测器电连接的锁相放大器和数据采集器,以及锁相放大器的输入端经倍频器与正弦波信号发生器的输出端电连接、输出端与数据采集器的输入端电连接,数据采集器的输出端与计算机电连接,用于由携带泄漏气体信息的信号与倍频后的正弦波信号解调出二次谐波信号,并由数据采集器连同携带泄漏气体信息的信号一起送往计算机,计算出泄漏气体的浓度。
作为气体泄漏激光遥感机载探测装置的进一步改进:
优选地,计算机的输出端电连接有无线通信部件;利于地面上实时地获得探测结果。
优选地,激光调制器为连续窄线宽的种子激光器;易于获得窄线宽的中红外激光输出来测量气体泄漏。
优选地,红外激光发射部件为依次光连接的激光器、第一反射镜和位于光收集器光轴上的第二反射镜。
优选地,红外激光接收部件为光收集器和位于光收集器焦点处的探测器,其中,光收集器为卡塞格林望远镜或菲涅尔透镜。
优选地,激光器为窄线宽二极管激光器,或窄线宽量子级联激光器,或窄线宽连续OPO激光器。
相对于现有技术的有益效果是:
采用这样的结构后,既通过提取直接反映散射光回光强度信息的非吸收段加载在锯齿波上的正弦波信号,消除了浓度测量中光强变化对其的影响,又杜绝了不同锁相放大器的相位不一致造成的误差,还因基于飞行器的快速移动而于待测管道上方形成了螺旋管探测轨迹,保证了在待测管道上方形成了一个宽的探测通道,避免了单一测量轨迹因飞行器姿势的抖动或风速风向引起的气团漂移所造成的探测激光无法完全覆盖探测区域的缺陷,不仅大大地提高了探测天然气浓度的精确度,也极大地提高了探测天然气管网的速度,更是杜绝了漏测的可能,使其极易于广泛地应用于对天然气泄漏的精确定位和大面积的快速探测。
附图说明
图1是本发明的一种基本结构示意图。
图2是图1中的螺旋探测轨迹部件于探测区域形成的螺旋管探测轨迹图。
图3是经图1中的锁相放大器解调后得到的二次谐波信号图。
具体实施方式
下面结合附图对本发明的优选方式作进一步详细的描述。
参见图1,气体泄漏激光遥感机载探测装置的构成如下:
装置位于飞行器上,其包括电连接的红外激光发射部件、红外激光接收部件和控制处理部件,以及螺旋探测轨迹部件;其中,
红外激光发射部件为依次光连接的激光器5、第一反射镜7和位于光收集器11光轴12上的第二反射镜8;其中的激光器5为窄线宽二极管激光器(可为窄线宽量子级联激光器,或窄线宽连续OPO激光器)。
红外激光接收部件为光收集器11和位于光收集器11焦点处的探测器20;其中的光收集器11为卡塞格林望远镜(或菲涅尔透镜)。
控制处理部件包含电连接的发射信号控制组件和接收信号处理组件;其中的,
发射信号控制组件为锯齿波信号发生器1和正弦波信号发生器2的输出端经加法器3与激光调制器4电连接;其中,激光调制器4为连续窄线宽的种子激光器,用于对红外激光发射部件中的激光器5输出的调制;
接收信号处理组件为分别与红外接收部件中的探测器20电连接的锁相放大器21和数据采集器22,以及锁相放大器21的输入端经倍频器23与正弦波信号发生器2的输出端电连接、输出端与数据采集器22的输入端电连接,数据采集器22的输出端与计算机24电连接,用于计算出泄漏气体的浓度。
螺旋探测轨迹部件由置于电机14轴上的旋转反射镜13组成;其中,旋转反射镜13的法线与电机14轴线的夹角为3(可为1~6)°、且与红外激光发射部件的光轴12呈45(可为40~50)°角;
计算机24的输出端电连接有无线通信部件。
参见图1、图2和图3,探测时,锯齿波信号发生器1和正弦波信号发生器2分别输出的锯齿波信号和正弦波信号经加法器3后,叠加成了控制信号送入激光调制器4,由激光调制器4实现对红外激光发射部件中的激光器5输出的调制。
带有调制信息的激光束6经第一反射镜7和位于光收集器11——由凹面镜9和凸透镜10组成的卡塞格林望远镜光轴12上的第二反射镜8,射向以旋转轴15为旋转轴心的旋转反射镜13。由旋转反射镜13反射的激光束6于含有地下天然气管道17的待测区域的地面16上形成了如图2所示的螺旋管探测轨迹。激光束6经螺旋管探测轨迹内的地面16散射后形成的地形散射光19,经旋转反射镜13和光收集器11汇聚于探测器20上,并由其转换为电信号。
当地下天然气管道17泄漏,形成泄漏气团18时,就会被探测器20探测到携带泄漏气体信息的信号,并经接收信号处理组件由携带泄漏气体信息的信号与倍频后的正弦波信号解调出如图3所示的二次谐波信号后,连同携带泄漏气体信息的信号一起经计算机24计算出泄漏气体的浓度。
计算泄漏气体浓度的具体过程为,
P2f=k1·sdcα0·2C,
Psin=k2·Sdc
式中的P2f为二次谐波信号的强度——峰值与基线之间的差值,Psin为提取非吸收段加载在锯齿波上的正弦波信号,Sdc是激光强度信息的直流分量,k1、k2是常数,α0是气体分子的吸收系数,C是气体浓度;其中,
式中的k为常数。
为使地面上的相关部门实时地了解探测的结果,可由计算机24经无线通信部件发出相应的信息。
显然,本领域的技术人员可以对本发明的气体泄漏激光遥感机载探测装置进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若对本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (6)

1.一种气体泄漏激光遥感机载探测装置,包括红外激光发射和接收部件,以及与其电连接的控制处理部件,其特征在于:
所述机载探测装置位于飞行器上,且还含有螺旋探测轨迹部件,所述螺旋探测轨迹部件由置于电机(14)轴上的旋转反射镜(13)组成,其中,旋转反射镜(13)的法线与电机(14)轴线的夹角为1~6°、且与红外激光发射部件的光轴(12)呈40~50°角;
所述控制处理部件包含电连接的发射信号控制组件和接收信号处理组件,其中,
发射信号控制组件为锯齿波信号发生器(1)和正弦波信号发生器(2)的输出端经加法器(3)与激光调制器(4)电连接,用于将锯齿波信号和正弦波信号叠加后形成控制信号,以由激光调制器(4)实现对红外激光发射部件中的激光器(5)输出的调制,
接收信号处理组件为分别与红外接收部件中的探测器(20)电连接的锁相放大器(21)和数据采集器(22),以及锁相放大器(21)的输入端经倍频器(23)与正弦波信号发生器(2)的输出端电连接、输出端与数据采集器(22)的输入端电连接,数据采集器(22)的输出端与计算机(24)电连接,用于由携带泄漏气体信息的信号与倍频后的正弦波信号解调出二次谐波信号,并由数据采集器(22)连同携带泄漏气体信息的信号一起送往计算机(24),计算出泄漏气体的浓度。
2.根据权利要求1所述的气体泄漏激光遥感机载探测装置,其特征是计算机(24)的输出端电连接有无线通信部件。
3.根据权利要求1所述的气体泄漏激光遥感机载探测装置,其特征是激光调制器(4)为连续窄线宽的种子激光器。
4.根据权利要求1所述的气体泄漏激光遥感机载探测装置,其特征是红外激光发射部件为依次光连接的激光器(5)、第一反射镜(7)和位于光收集器(11)光轴(12)上的第二反射镜(8)。
5.根据权利要求1所述的气体泄漏激光遥感机载探测装置,其特征是红外激光接收部件为光收集器(11)和位于光收集器(11)焦点处的探测器(20),其中,光收集器(11)为卡塞格林望远镜或菲涅尔透镜。
6.根据权利要求1所述的气体泄漏激光遥感机载探测装置,其特征是激光器(5)为窄线宽二极管激光器,或窄线宽量子级联激光器,或窄线宽连续OPO激光器。
CN201610791247.9A 2016-08-31 2016-08-31 气体泄漏激光遥感机载探测装置 Pending CN106402664A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610791247.9A CN106402664A (zh) 2016-08-31 2016-08-31 气体泄漏激光遥感机载探测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610791247.9A CN106402664A (zh) 2016-08-31 2016-08-31 气体泄漏激光遥感机载探测装置

Publications (1)

Publication Number Publication Date
CN106402664A true CN106402664A (zh) 2017-02-15

Family

ID=58000858

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610791247.9A Pending CN106402664A (zh) 2016-08-31 2016-08-31 气体泄漏激光遥感机载探测装置

Country Status (1)

Country Link
CN (1) CN106402664A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107178708A (zh) * 2017-06-28 2017-09-19 广东省特种设备检测研究院茂名检测院 一种基于红外线油气管道泄漏检测装置及检测方法
CN107677575A (zh) * 2017-09-30 2018-02-09 合肥朗伯光电传感技术有限公司 单光束激光测量烟气颗粒物及氧气气体浓度的装置及方法
CN108415002A (zh) * 2018-05-14 2018-08-17 天津杰泰高科传感技术有限公司 激光雷达光学系统及激光雷达
CN112611730A (zh) * 2020-11-27 2021-04-06 深圳市英宝硕科技有限公司 一种无人机气体检测方法、系统及存储介质
CN113176228A (zh) * 2021-03-25 2021-07-27 西安理工大学 基于物联网的so2浓度被动遥感监测仪及监测方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63173982A (ja) * 1987-01-14 1988-07-18 Matsushita Electric Works Ltd 物体形状検知装置
JPH04295738A (ja) * 1991-03-26 1992-10-20 Osaka Gas Co Ltd ガス漏れ検出装置
CN1470863A (zh) * 2003-06-20 2004-01-28 山西大学 单激光源谐波遥感探测气体的方法及其设备
CN1904574A (zh) * 2005-07-30 2007-01-31 中国科学院安徽光学精密机械研究所 天然气管道泄漏激光遥感探测装置及其探测方法
CN1936413A (zh) * 2006-09-29 2007-03-28 淄博思科光电科技有限公司 一种地下管线泄漏检测方法及其装置
CN200975609Y (zh) * 2006-09-29 2007-11-14 淄博思科光电科技有限公司 一种地下管线泄漏检测装置
CN201152458Y (zh) * 2007-12-07 2008-11-19 中国科学技术大学 新型城市天然气管道泄漏检测定位系统
CN101696897A (zh) * 2009-10-23 2010-04-21 中国科学院安徽光学精密机械研究所 移动式单频差分天然气管道泄漏激光遥感探测系统及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63173982A (ja) * 1987-01-14 1988-07-18 Matsushita Electric Works Ltd 物体形状検知装置
JPH04295738A (ja) * 1991-03-26 1992-10-20 Osaka Gas Co Ltd ガス漏れ検出装置
CN1470863A (zh) * 2003-06-20 2004-01-28 山西大学 单激光源谐波遥感探测气体的方法及其设备
CN1904574A (zh) * 2005-07-30 2007-01-31 中国科学院安徽光学精密机械研究所 天然气管道泄漏激光遥感探测装置及其探测方法
CN1936413A (zh) * 2006-09-29 2007-03-28 淄博思科光电科技有限公司 一种地下管线泄漏检测方法及其装置
CN200975609Y (zh) * 2006-09-29 2007-11-14 淄博思科光电科技有限公司 一种地下管线泄漏检测装置
CN201152458Y (zh) * 2007-12-07 2008-11-19 中国科学技术大学 新型城市天然气管道泄漏检测定位系统
CN101696897A (zh) * 2009-10-23 2010-04-21 中国科学院安徽光学精密机械研究所 移动式单频差分天然气管道泄漏激光遥感探测系统及方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107178708A (zh) * 2017-06-28 2017-09-19 广东省特种设备检测研究院茂名检测院 一种基于红外线油气管道泄漏检测装置及检测方法
CN107178708B (zh) * 2017-06-28 2018-09-14 广东省特种设备检测研究院茂名检测院 一种基于红外线油气管道泄漏检测装置及检测方法
CN107677575A (zh) * 2017-09-30 2018-02-09 合肥朗伯光电传感技术有限公司 单光束激光测量烟气颗粒物及氧气气体浓度的装置及方法
CN108415002A (zh) * 2018-05-14 2018-08-17 天津杰泰高科传感技术有限公司 激光雷达光学系统及激光雷达
CN112611730A (zh) * 2020-11-27 2021-04-06 深圳市英宝硕科技有限公司 一种无人机气体检测方法、系统及存储介质
CN113176228A (zh) * 2021-03-25 2021-07-27 西安理工大学 基于物联网的so2浓度被动遥感监测仪及监测方法

Similar Documents

Publication Publication Date Title
CN106402664A (zh) 气体泄漏激光遥感机载探测装置
CN105805560B (zh) 一种基于无人机的天然气管道泄漏检测系统
US10598562B2 (en) Gas detection systems and methods using measurement position uncertainty representations
US7365352B2 (en) Gas concentration flux measuring device
US9557240B1 (en) Gas detection systems and methods using search area indicators
CN106019303B (zh) 多普勒测风激光雷达径向风速实时校准系统
CN101696897B (zh) 移动式单频差分天然气管道泄漏激光遥感探测系统及方法
CN205424432U (zh) 车载顶置式多光束激光天然气泄漏遥测仪
CN106323878B (zh) 天然气浓度和距离的激光遥感探测装置
CN105928902A (zh) 高光谱分辨率整层大气透过率测量方法
CN102508222A (zh) 一种中高层大气风场反演方法
CN107515402A (zh) 一种tof三维测距系统
CN104769441A (zh) 包括多个激光源的风速测定装置
CN101782643A (zh) 高精度局部无线定位系统
CN105403731B (zh) 一种高精度宽量程的飞秒激光多普勒三维流速传感方法
US7277053B2 (en) Apparatus and methods for detecting and locating signals
CN110392825A (zh) 用于远程测量大气中气体浓度的方法
CN106226783A (zh) 基于激光雷达的大气颗粒物光学参数测量系统
CN103901425B (zh) 一种测量运动物体横向速度的雷达及方法
CN103299155A (zh) 一种测距方法及系统
CN108548644A (zh) 一种基于光纤氧气传感的联通石油储罐泄漏监测装置
CN105158205A (zh) 甲烷气团界面识别和可调量程激光遥测甲烷浓度的方法和装置
Li et al. SNR and transmission error rate for remote laser communication system in real atmosphere channel
CN107941276A (zh) 燃气流量和甲烷含量激光测量仪及测量方法
Yan et al. An eLoran signal cycle identification method based on joint time–frequency domain

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170215

WD01 Invention patent application deemed withdrawn after publication