CN106396101A - Pce污染地下水修复的厌氧‑好氧型生物反应格栅系统及方法 - Google Patents

Pce污染地下水修复的厌氧‑好氧型生物反应格栅系统及方法 Download PDF

Info

Publication number
CN106396101A
CN106396101A CN201611026072.9A CN201611026072A CN106396101A CN 106396101 A CN106396101 A CN 106396101A CN 201611026072 A CN201611026072 A CN 201611026072A CN 106396101 A CN106396101 A CN 106396101A
Authority
CN
China
Prior art keywords
oxygen
grid
anaerobic
pce
aerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611026072.9A
Other languages
English (en)
Inventor
刘涉江
杨钦明
周玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201611026072.9A priority Critical patent/CN106396101A/zh
Publication of CN106396101A publication Critical patent/CN106396101A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/301Aerobic and anaerobic treatment in the same reactor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/06Nutrients for stimulating the growth of microorganisms

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

本发明涉及PCE污染地下水修复的厌氧‑好氧型生物反应格栅系统及方法。由捕氧反应格栅、厌氧生物降解格栅、释氧反应格栅和好氧生物降解格栅组成;沿着地下水流方向,各层格栅安装顺序依次为捕氧反应格栅,厌氧生物降解格栅,释氧反应格栅,好氧生物降解格栅。捕氧反应格栅中装填捕氧材料,厌氧生物降解格栅中装填固定化的厌氧微生物,释氧反应格栅中装填释氧材料,好氧生物降解格栅中装填固定化的好氧微生物。本发明以微生物降解为核心,集营养和碳供给、溶解氧调控及微生物固定为一体,既能提供PCE厌氧降解所需的厌氧环境,同时又能满足低氯代烯烃等中间产物好氧降解的好氧需求,最终实现PCE污染地下水的完全无害化处理。

Description

PCE污染地下水修复的厌氧-好氧型生物反应格栅系统及方法
技术领域
本发明涉及四氯乙烯(PCE)污染地下水的生物修复技术领域,特别涉及一种以微生物降解为核心,集营养和碳供给、溶解氧调控、微生物固定为一体的厌氧-好氧型生物反应格栅系统及方法。
背景技术
地下水污染是目前一个严重的环境问题。四氯乙烯(PCE)是污染地下水中最常检出的有机氯代溶剂之一。PCE作为一类重要的难降解性有机化合物,被认为具有“致癌、致畸、致突变”三致效应,并被多国列为优先控制污染物之一。利用生物技术修复PCE污染地下水过程中,PCE在好氧条件下很难降解,只有在厌氧环境并补充适当的碳源作为共代谢基质,PCE才能发生还原脱氯反应,依次脱氯为三氯乙烯、二氯乙烯以及氯乙烯等毒性更强的低氯代烯烃,但很难完成和维持PCE完全脱氯为环境可接受的乙烯。对于PCE降解过程中产生的低氯代烯烃等中间产物,只有在好氧且适当的碳基质存在条件下,才可最终转化为无毒无害的乙烯。在自然条件下,地下水环境中的溶解氧含量是一个不可调控的因素,因此在利用生物技术修复PCE污染的地下水过程中,其无法既是厌氧环境满足PCE的厌氧降解,同时又是好氧环境满足低氯代烯烃等中间产物的好氧降解。
发明内容
本发明的目的在于调控地下水中的溶解氧含量,提供一种新颖、高效、经济可行的PCE污染地下水修复的厌氧-好氧型生物反应格栅体系,即以微生物降解为核心,集营养和碳供给、溶解氧调控及微生物固定为一体的厌氧-好氧型生物反应格栅系统,人为制造厌氧环境满足PCE的厌氧降解,同时再改变厌氧环境为好氧环境,满足低氯代烯烃等中间产物的好氧降解,最终实现PCE污染地下水的完全无害化处理。
本发明的技术方案如下:
一种用于PCE污染地下水修复的厌氧-好氧型生物反应格栅系统,其特征是沿着地下水流方向顺序依次安装捕氧反应格栅4、厌氧生物降解格栅5、释氧反应格栅6和好氧生物降解格栅7。
捕氧反应格栅4中装填捕氧材料,厌氧生物降解格栅5中装填固定化的厌氧微生物,释氧反应格栅6中装填释氧材料,好氧生物降解格栅7中装填固定化的好氧微生物。
捕氧反应格栅4中装填捕氧材料,捕氧材料的组成如下:捕氧化合物为5%~15%;葡萄糖为15%~20%;酵母粉为5%~8%;水泥为25%~28%;石英砂为25%~27%;KH2PO4为3%~6%;K2HPO4为3%~6%;微量元素为1%~2%,其余组分为水。
释氧反应格栅6中装填释氧材料,释氧材料的组成如下:释氧化合物为5%~15%;葡萄糖为12%~15%;酵母粉为3%~5%;(NH4)2SO4为4%~8%;KH2PO4为4%~8%;石英砂为25%~27%;水泥为25%~28%;微量元素为1%~2%,其余组分为水。
所述捕氧化合物为优选还原铁粉。
所述释氧化合物为优选CaO2
捕氧反应格栅中微量元素是由NH4Cl,、H2NCSNH2、KH2PO4、Na2CO3和CaCl2按10:20:1:4:2的质量比组成。
释氧反应格栅微量元素是由Na2HPO4、KH2PO4、MgSO4·7H2O、NH4Cl、MnSO4·7H2O、FeSO4·7H2O和CaCl2按11:6:100:250:1:5:10的质量比组成。
本发明是通过下述技术方案加以实现的:当PCE从污染源1渗流至地下后,会在重力作用下垂直向下迁移,直至进入地下含水层后,在地下水流2作用下发生横向扩散,从而造成地下水污染。通过对地下水污染现状的调查,在地下水污染羽状体3的下游,即尚未被污染的地下水区域,一般与地下水流2方向相垂直的某处,通过挖—填手段,按照捕氧反应格栅4,厌氧生物降解格栅5,释氧反应格栅6,好氧生物降解格栅7的顺序修建安装厌氧-好氧型生物反应格栅系统。捕氧反应格栅4内装填捕氧材料,厌氧生物降解格栅5内装填固定化的厌氧微生物,释氧反应格栅6内装填释氧材料,好氧生物降解格栅7内装填固定化的好氧微生物。当含有PCE的地下水在天然水力梯度下进入捕氧反应格栅4,格栅内装填的捕氧材料不仅消耗地下水中的溶解氧,同时也向地下水中释放厌氧微生物生长所必需的营养物质;之后含有PCE的地下水进入厌氧生物降解格栅5,PCE在该格栅装填的固定化的厌氧微生物作用下,厌氧降解为一系列的低氯代烯烃等中间产物;携带着低氯代烯烃等中间产物的地下水随后进入释氧反应格栅6,格栅内装填的释氧材料向地下水中释放出氧气,同时也向地下水中释放好氧微生物生长所必需的营养物质;之后携带着低氯代烯烃等中间产物的地下水进入好氧生物降解格栅7,低氯代烯烃等中间产物在该格栅装填的固定化的好氧微生物作用下,好氧降解为无毒无害的乙烯。经过本专利的厌氧-好氧型生物反应格栅系统,PCE污染的地下水最终得到完全的无害化处理。
本发明的独特之处如下几点:
厌氧-好氧型生物反应格栅系统由捕氧反应格栅4、厌氧生物降解格栅5、释氧反应格栅6和好氧生物降解格栅7四层组成,该系统集营养和碳供给、溶解氧调控、微生物固定为一体。当含有PCE的污染地下水穿过第一层格栅后,会变成低含氧量和富含厌氧微生物生长所需营养物质的地下水,从而保证其进入第二层格栅后,PCE能够厌氧降解成一系列的低氯代烯烃等中间产物;之后处于贫氧状态并含有低氯代烯烃等中间产物的地下水穿过第三层格栅后,会变成富含氧气和好氧微生物生长所需营养物质的地下水,从而保证其进入第四层格栅后,低氯代烯烃等中间产物能够好氧降解成无毒无害的乙烯。
通过捕氧反应格栅4与释氧反应格栅6对地下水中的溶解氧含量进行调控,人为的创造适合PCE及其中间产物-低氯代烯烃生物降解的厌氧和好氧环境,使遭受PCE污染的地下水得到完全的无害化处理,降解效率可达到99.3%以上。
附图说明
图1:厌氧-好氧型生物反应格栅系统示意图
其中:1—污染源,2—地下水流,3—污染羽状体,4—捕氧反应格栅,5—厌氧生物降解格栅,6—释氧反应格栅,7—好氧生物降解格栅
具体实施方式
下面结合附图1对本发明的系统和方法作进一步说明。
一种用于PCE污染地下水修复的厌氧-好氧型生物反应格栅系统,沿着地下水流方向顺序依次安装捕氧反应格栅4、厌氧生物降解格栅5、释氧反应格栅6和好氧生物降解格栅7。捕氧反应格栅4中装填捕氧材料,厌氧生物降解格栅5中装填固定化的厌氧微生物,释氧反应格栅6中装填释氧材料,好氧生物降解格栅7中装填固定化的好氧微生物。
捕氧反应格栅4中装填捕氧材料,捕氧材料的组成如下:捕氧化合物(还原铁粉)为5%~15%;葡萄糖为15%~20%;酵母粉为5%~8%;水泥为25%~28%;石英砂为25%~27%;KH2PO4为3%~6%;K2HPO4为3%~6%;微量元素为1%~2%,其中微量元素是由NH4Cl,、H2NCSNH2、KH2PO4、Na2CO3和CaCl2等组分按10:20:1:4:2的质量比组成;其余组分为水。捕氧材料的作用是消耗地下水环境中的溶解氧,为厌氧生物降解格栅5中的厌氧微生物创造适合PCE降解的厌氧环境,同时又能为厌氧微生物提供其生长所必需的营养物质。
厌氧生物降解格栅5中装填固定化的厌氧微生物,厌氧微生物是经过前期的厌氧富集与驯化得来的,厌氧富集驯化过程采用微生物培养通用方法。其作用是将具有降解PCE能力的微生物固定在该格栅之内,从而保证地下水中的PCE进入该格栅后,在厌氧微生物作用下进行厌氧生物降解,依次脱氯为三氯乙烯、二氯乙烯以及氯乙烯等毒性更强的低氯代烯烃。
释氧反应格栅6中装填释氧材料,释氧材料的组成如下:释氧化合物(CaO2)为5%~15%;葡萄糖为12%~15%;酵母粉为3%~5%;(NH4)2SO4为4%~8%;KH2PO4为4%~8%;石英砂为25%~27%;水泥为25%~28%;微量元素为1%~2%,其中微量元素是由Na2HPO4、KH2PO4、MgSO4·7H2O、NH4Cl、MnSO4·7H2O、FeSO4·7H2O和CaCl2等组分按11:6:100:250:1:5:10的质量比组成;其余组分为水。释氧材料的用是向地下水环境中补充溶解氧,为好氧生物降解格栅7中的好氧微生物创造适合低氯代烯烃等中间产物降解的好氧环境,同时又能为好氧微生物提供其生长所必需的营养物质。
好氧生物降解格栅7中装填固定化的好氧微生物,好氧微生物是经过前期的好氧富集与驯化的来的,好氧富集驯化过程采用微生物培养通用方法。其作用是将具有降解低氯代烯烃等中间产物能力的微生物固定在该格栅之内,从而保证上游地下水中PCE厌氧降解后的低氯代烯烃等中间产物进入该格栅后,在好氧微生物作用下最终降解为无毒无害的乙烯。
实施例1:
1)捕氧材料的制作过程是:将还原铁粉、葡萄糖、酵母粉、KH2PO4、K2HPO4、微量元素、石英砂、水泥混合均匀,加入一定质量的水后送入造粒机造粒,即得捕氧材料固体颗粒。上述混合物的质量百分比如下:还原铁粉为5%;葡萄糖为15%;酵母粉为5%;KH2PO4为6%;K2HPO4为6%;微量元素为1%;石英砂为27%;水泥为28%;水为7%。
2)释氧材料的制作过程是:将CaO2、葡萄糖、酵母粉、(NH4)2SO4、KH2PO4、微量元素、石英砂、水泥混合均匀,加入一定的水后送入造粒机造粒,即得释氧材料固体颗粒。上述混合物的质量百分比如下:CaO2为5%;葡萄糖为12%;酵母粉为3%;(NH4)2SO4为8%;KH2PO4为8%;微量元素为1%;石英砂为27%;水泥为28%;水为8%。
3)当PCE从污染源1渗流至地下后,会在重力作用下垂直向下迁移,直至进入地下含水层后,在地下水流2作用下发生横向扩散,从而造成地下水污染。通过对地下水污染现状的调查,在地下水污染羽状体3的下游,即尚未被污染的地下水区域,一般与地下水流2方向相垂直的某处,通过挖—填手段,按照捕氧反应格栅4,厌氧生物降解格栅5,释氧反应格栅6,好氧生物降解格栅7的顺序修建安装厌氧-好氧型生物反应格栅系统。捕氧反应格栅4内装填捕氧材料,厌氧生物降解格栅5内装填固定化的厌氧微生物,释氧反应格栅6内装填释氧材料,好氧生物降解格栅7内装填固定化的好氧微生物。当含有PCE的地下水在天然水力梯度下进入捕氧反应格栅4,格栅内装填的捕氧材料不仅消耗地下水中的溶解氧,同时也向地下水中释放厌氧微生物生长所必需的营养物质;之后含有PCE的地下水进入厌氧生物降解格栅5,PCE在该格栅装填的固定化的厌氧微生物作用下,厌氧降解为一系列的低氯代烯烃等中间产物;携带着低氯代烯烃等中间产物的地下水随后进入释氧反应格栅6,格栅内装填的释氧材料向地下水中释放出氧气,同时也向地下水中释放好氧微生物生长所必需的营养物质;之后携带着低氯代烯烃等中间产物的地下水进入好氧生物降解格栅7,低氯代烯烃等中间产物在该格栅装填的固定化的好氧微生物作用下,好氧降解为无毒无害的乙烯。经过本实施例1处理后的地下水中PCE的去除效率达到99.3%,去除效果良好。
实施例2:
1)捕氧材料的制作过程是:将还原铁粉、葡萄糖、酵母粉、KH2PO4、K2HPO4、微量元素、石英砂、水泥混合均匀,加入一定质量的水后送入造粒机造粒,即得捕氧材料固体颗粒。上述混合物的质量百分比如下:还原铁粉为10%;葡萄糖为15%;酵母粉为5%;KH2PO4为5%;K2HPO4为5%;微量元素为1%;石英砂为25%;水泥为27%;水为5%。
2)释氧材料的制作过程是:将CaO2、葡萄糖、酵母粉、(NH4)2SO4、KH2PO4、微量元素、石英砂、水泥混合均匀,加入一定质量的水后送入造粒机造粒,即得释氧材料固体颗粒。上述混合物的质量百分比如下:CaO2为10%;葡萄糖为12%;酵母粉为5%;(NH4)2SO4为6%;KH2PO4为6%;微量元素为2%;石英砂为25%;水泥为25%;水为7%。
3)当PCE从污染源1渗流至地下后,会在重力作用下垂直向下迁移,直至进入地下含水层后,在地下水流2作用下发生横向扩散,从而造成地下水污染。通过对地下水污染现状的调查,在地下水污染羽状体3的下游,即尚未被污染的地下水区域,一般与地下水流2方向相垂直的某处,通过挖—填手段,按照捕氧反应格栅4,厌氧生物降解格栅5,释氧反应格栅6,好氧生物降解格栅7的顺序修建安装厌氧-好氧型生物反应格栅系统。捕氧反应格栅4内装填捕氧材料,厌氧生物降解格栅5内装填固定化的厌氧微生物,释氧反应格栅6内装填释氧材料,好氧生物降解格栅7内装填固定化的好氧微生物。当含有PCE的地下水在天然水力梯度下进入捕氧反应格栅4,格栅内装填的捕氧材料不仅消耗地下水中的溶解氧,同时也向地下水中释放厌氧微生物生长所必需的营养物质;之后含有PCE的地下水进入厌氧生物降解格栅5,PCE在该格栅装填的固定化的厌氧微生物作用下,厌氧降解为一系列的低氯代烯烃等中间产物;携带着低氯代烯烃等中间产物的地下水随后进入释氧反应格栅6,格栅内装填的释氧材料向地下水中释放出氧气,同时也向地下水中释放好氧微生物生长所必需的营养物质;之后携带着低氯代烯烃等中间产物的地下水进入好氧生物降解格栅7,低氯代烯烃等中间产物在该格栅装填的固定化的好氧微生物作用下,好氧降解为无毒无害的乙烯。经过本实施例2处理后的地下水中PCE的去除效率达到99.5%,去除效果良好。
实施例3:
1)捕氧材料的制作过程是:将还原铁粉、葡萄糖、酵母粉、KH2PO4、K2HPO4、微量元素、石英砂、水泥混合均匀,加入一定质量的水后送入造粒机造粒,即得捕氧材料固体颗粒。上述混合物的质量百分比如下:还原铁粉为15%;葡萄糖为15%;酵母粉为5%;KH2PO4为3%;K2HPO4为3%;微量元素为1%;石英砂为25%;水泥为25%;水为8%。
2)释氧材料的制作过程是:将CaO2、葡萄糖、酵母粉、(NH4)2SO4、KH2PO4、微量元素、石英砂、水泥混合均匀,加入一定质量的水后送入造粒机造粒,即得释氧材料固体颗粒。上述混合物的质量百分比如下:CaO2为10%;葡萄糖为13%;酵母粉为4%;(NH4)2SO4为6%;KH2PO4为6%;微量元素为2%;石英砂为27%;水泥为28%;水为4%。
3)当PCE从污染源1渗流至地下后,会在重力作用下垂直向下迁移,直至进入地下含水层后,在地下水流2作用下发生横向扩散,从而造成地下水污染。通过对地下水污染现状的调查,在地下水污染羽状体3的下游,即尚未被污染的地下水区域,一般与地下水流2方向相垂直的某处,通过挖—填手段,按照捕氧反应格栅4,厌氧生物降解格栅5,释氧反应格栅6,好氧生物降解格栅7的顺序修建安装厌氧-好氧型生物反应格栅系统。捕氧反应格栅4内装填捕氧材料,厌氧生物降解格栅5内装填固定化的厌氧微生物,释氧反应格栅6内装填释氧材料,好氧生物降解格栅7内装填固定化的好氧微生物。当含有PCE的地下水在天然水力梯度下进入捕氧反应格栅4,格栅内装填的捕氧材料不仅消耗地下水中的溶解氧,同时也向地下水中释放厌氧微生物生长所必需的营养物质;之后含有PCE的地下水进入厌氧生物降解格栅5,PCE在该格栅装填的固定化的厌氧微生物作用下,厌氧降解为一系列的低氯代烯烃等中间产物;携带着低氯代烯烃等中间产物的地下水随后进入释氧反应格栅6,格栅内装填的释氧材料向地下水中释放出氧气,同时也向地下水中释放好氧微生物生长所必需的营养物质;之后携带着低氯代烯烃等中间产物的地下水进入好氧生物降解格栅7,低氯代烯烃等中间产物在该格栅装填的固定化的好氧微生物作用下,好氧降解为无毒无害的乙烯。经过本实施例3处理后的地下水中PCE的去除率达到99.4%,去除效果良好。
实施例4:
1)捕氧材料的制作过程是:将还原铁粉、葡萄糖、酵母粉、KH2PO4、K2HPO4、微量元素、石英砂、水泥混合均匀,加入一定质量的13%的水后送入造粒机造粒,即得捕氧材料固体颗粒。上述混合物的质量百分比如下:还原铁粉为5%;葡萄糖为20%;酵母粉为8%;KH2PO4为5%;K2HPO4为5%;微量元素为1%;石英砂为25%;水泥为27%;水为4%。
2)释氧材料的制作过程是:将CaO2、葡萄糖、酵母粉、(NH4)2SO4、KH2PO4、微量元素、石英砂、水泥混合均匀,加入一定质量的水后送入造粒机造粒,即得释氧材料固体颗粒。上述混合物的质量百分比如下:CaO2为8%;葡萄糖为12%;酵母粉为4%;(NH4)2SO4为8%;KH2PO4为8%;微量元素为2%;石英砂为26%;水泥为27%;水为5%。
3)当PCE从污染源1渗流至地下后,会在重力作用下垂直向下迁移,直至进入地下含水层后,在地下水流2作用下发生横向扩散,从而造成地下水污染。通过对地下水污染现状的调查,在地下水污染羽状体3的下游,即尚未被污染的地下水区域,一般与地下水流2方向相垂直的某处,通过挖—填手段,按照捕氧反应格栅4,厌氧生物降解格栅5,释氧反应格栅6,好氧生物降解格栅7的顺序修建安装厌氧-好氧型生物反应格栅系统。捕氧反应格栅4内装填捕氧材料,厌氧生物降解格栅5内装填固定化的厌氧微生物,释氧反应格栅6内装填释氧材料,好氧生物降解格栅7内装填固定化的好氧微生物。当含有PCE的地下水在天然水力梯度下进入捕氧反应格栅4,格栅内装填的捕氧材料不仅消耗地下水中的溶解氧,同时也向地下水中释放厌氧微生物生长所必需的营养物质;之后含有PCE的地下水进入厌氧生物降解格栅5,PCE在该格栅装填的固定化的厌氧微生物作用下,厌氧降解为一系列的低氯代烯烃等中间产物;携带着低氯代烯烃等中间产物的地下水随后进入释氧反应格栅6,格栅内装填的释氧材料向地下水中释放出氧气,同时也向地下水中释放好氧微生物生长所必需的营养物质;之后携带着低氯代烯烃等中间产物的地下水进入好氧生物降解格栅7,低氯代烯烃等中间产物在该格栅装填的固定化的好氧微生物作用下,好氧降解为无毒无害的乙烯。经过本实施例4处理后的地下水中PCE的去除率达到99.3%,去除效果良好。
本发明提出的用于PCE污染地下水修复的厌氧-好氧型生物反应格栅系统及方法,已通过较佳实施例子进行了描述,相关技术人员明显能在不脱离本发明内容、精神和范围内对本文所述的系统、填充物和制作方法进行改动或适当变更与组合,来实现本发明技术。特别需要指出的是,所有相类似的替换和改动对本领域技术人员来说是显而易见的,他们都被视为包括在本发明精神、范围和内容中。

Claims (8)

1.一种用于PCE污染地下水修复的厌氧-好氧型生物反应格栅系统,其特征是沿着地下水流方向顺序依次安装有由捕氧反应格栅、厌氧生物降解格栅、释氧反应格栅和好氧生物降解格栅。
2.如权利要求1所述的系统,其特征是捕氧反应格栅中装填捕氧材料,厌氧生物降解格栅中装填固定化的厌氧微生物,释氧反应格栅中装填释氧材料,好氧生物降解格栅中装填固定化的好氧微生物。
3.如权利要求1所述的系统,其特征是捕氧反应格栅中装填捕氧材料,捕氧材料的组成如下:捕氧化合物为5%~15%;葡萄糖为15%~20%;酵母粉为5%~8%;水泥为25%~28%;石英砂为25%~27%;KH2PO4为3%~6%;K2HPO4为3%~6%;微量元素为1%~2%,其余组分为水。
4.如权利要求1所述的系统,其特征是释氧反应格栅中装填释氧材料,释氧材料的组成如下:释氧化合物为5%~15%;葡萄糖为12%~15%;酵母粉为3%~5%;(NH4)2SO4为4%~8%;KH2PO4为4%~8%;石英砂为25%~27%;水泥为25%~28%;微量元素为1%~2%,其余组分为水。
5.如权利要求3所述的系统,其特征是所述捕氧化合物为还原铁粉。
6.如权利要求4所述的系统,其特征是所述释氧化合物为CaO2
7.如权利要求3所述的系统,其特征是微量元素是由NH4Cl,、H2NCSNH2、KH2PO4、Na2CO3和CaCl2按10:20:1:4:2的质量比组成。
8.如权利要求4所述的系统,其特征是微量元素是由Na2HPO4、KH2PO4、MgSO4·7H2O、NH4Cl、MnSO4·7H2O、FeSO4·7H2O和CaCl2按11:6:100:250:1:5:10的质量比组成。
CN201611026072.9A 2016-11-18 2016-11-18 Pce污染地下水修复的厌氧‑好氧型生物反应格栅系统及方法 Pending CN106396101A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611026072.9A CN106396101A (zh) 2016-11-18 2016-11-18 Pce污染地下水修复的厌氧‑好氧型生物反应格栅系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611026072.9A CN106396101A (zh) 2016-11-18 2016-11-18 Pce污染地下水修复的厌氧‑好氧型生物反应格栅系统及方法

Publications (1)

Publication Number Publication Date
CN106396101A true CN106396101A (zh) 2017-02-15

Family

ID=58068665

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611026072.9A Pending CN106396101A (zh) 2016-11-18 2016-11-18 Pce污染地下水修复的厌氧‑好氧型生物反应格栅系统及方法

Country Status (1)

Country Link
CN (1) CN106396101A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2448838Y (zh) * 2000-09-21 2001-09-19 上海佛欣爱建河道治理有限公司 城市地下管道式污水处理单元
CN2483384Y (zh) * 2000-09-21 2002-03-27 贾燕山 厌氧-好氧活性污泥法污水处理设备
JP2004237245A (ja) * 2003-02-07 2004-08-26 Matsushita Electric Ind Co Ltd 地下水浄化方法
CN101219832A (zh) * 2008-01-25 2008-07-16 天津大学 用于硝酸氮污染地下水修复的释碳材料及制备方法
CN101428906A (zh) * 2008-12-12 2009-05-13 天津大学 三氯乙烯污染地下水的修复系统及修复方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2448838Y (zh) * 2000-09-21 2001-09-19 上海佛欣爱建河道治理有限公司 城市地下管道式污水处理单元
CN2483384Y (zh) * 2000-09-21 2002-03-27 贾燕山 厌氧-好氧活性污泥法污水处理设备
JP2004237245A (ja) * 2003-02-07 2004-08-26 Matsushita Electric Ind Co Ltd 地下水浄化方法
CN101219832A (zh) * 2008-01-25 2008-07-16 天津大学 用于硝酸氮污染地下水修复的释碳材料及制备方法
CN101428906A (zh) * 2008-12-12 2009-05-13 天津大学 三氯乙烯污染地下水的修复系统及修复方法

Similar Documents

Publication Publication Date Title
Bunce et al. A review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems
CN104607460B (zh) 一种有机物污染土壤的生物修复方法
Garima et al. Application of bioremediation on solid waste management: a review
CN102923927B (zh) 一种污染水体底泥复氧型修复剂及其制备方法和应用
Amin et al. Bioremediation of different waste waters-a review
Han et al. A removal mechanism for organics and nitrogen in treating leachate using a semi-aerobic aged refuse biofilter
CN101428906A (zh) 三氯乙烯污染地下水的修复系统及修复方法
Maitra In situ bioremediation—An overview
Rani et al. Overview of Subsurface Constructed Wetlands Application in Tropical Climates.
CN105268730A (zh) 一种利用蚯蚓修复重金属污染土壤的方法
CN110304736A (zh) 一种缓释型复合微生物促生剂及制备方法和用途
Ubani et al. Unravelling the genetic and functional diversity of dominant bacterial communities involved in manure co-composting bioremediation of complex crude oil waste sludge
CN107311315A (zh) 基于生物‑生态耦合的黑臭水体净化方法
Júlio et al. A new biostimulation approach based on the concept of remaining P for soil bioremediation
Azizi et al. Vermiremediation and mycoremediation of polycyclic aromatic hydrocarbons in soil and sewage sludge mixture: a comparative study
Zhao et al. Research on sludge-fly ash ceramic particles (SFCP) for synthetic and municipal wastewater treatment in biological aerated filter (BAF)
CN103691737B (zh) 一种微生物异位修复难降解有机污染土壤的组合工艺
CN106396101A (zh) Pce污染地下水修复的厌氧‑好氧型生物反应格栅系统及方法
CN101879522A (zh) 铅锌矿复合污染土壤的修复方法
Ebah et al. Application of Genetically Modified Organisms in Waste Management– A Review
CN101234392B (zh) 高浓度石油污染土壤的生物修复装置和方法
Gangar et al. Microbes and processes in bioremediation of soil
CN115677150A (zh) 一种含油污泥的微生物处理方法
Cha et al. Treatment technologies
CN104829043A (zh) 一种兼氧膜生物反应器技术处理食品废水的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170215