CN106354911B - 一种顶板含水层采前预疏降安全水位确定方法 - Google Patents

一种顶板含水层采前预疏降安全水位确定方法 Download PDF

Info

Publication number
CN106354911B
CN106354911B CN201610714589.0A CN201610714589A CN106354911B CN 106354911 B CN106354911 B CN 106354911B CN 201610714589 A CN201610714589 A CN 201610714589A CN 106354911 B CN106354911 B CN 106354911B
Authority
CN
China
Prior art keywords
water
quasi
working face
exploitation
bearing layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610714589.0A
Other languages
English (en)
Other versions
CN106354911A (zh
Inventor
宋业杰
刘治国
张玉军
李磊
赵秋阳
樊振丽
康永华
刘秀娥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tiandi Science and Technology Co Ltd
Original Assignee
Tiandi Science and Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tiandi Science and Technology Co Ltd filed Critical Tiandi Science and Technology Co Ltd
Priority to CN201610714589.0A priority Critical patent/CN106354911B/zh
Publication of CN106354911A publication Critical patent/CN106354911A/zh
Application granted granted Critical
Publication of CN106354911B publication Critical patent/CN106354911B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling

Abstract

一种顶板含水层采前预疏降安全水位确定方法,包括步骤:(a)确定拟开采工作面的地质条件和开采工艺参数;(b)根据开采工艺参数确定覆岩破坏高度和采前疏放水目标含水层,根据钻孔柱状资料和区域水文地质资料构建三维地质模型;(c)初始流场模型、采前预疏降流场模型和工作面采动过程流场模型采用连续介质的水流平衡方程;(d)根据拟开采工作面区域水文地质资料确定初始流场模型和三维水文地质概化模型的水文地质边界条件和初始条件等。本发明能够在合理假定的情况下,较为准确的模拟整个流场变化趋势,进而确定各参数之间的函数关系,直观简洁的方法确定采前预疏降安全水位。

Description

一种顶板含水层采前预疏降安全水位确定方法
技术领域
本发明涉及一种顶板含水层采前预疏降安全水位确定方法。
背景技术
近年来,我国煤炭产量总体呈逐年增长的趋势,煤炭资源开采条件也日趋多样化、复杂化,煤层顶板砂岩含水层的静水压力随着开采深度的增加而逐步升高,高水压顶板砂岩水的存在给工作面安全生产带来了较大隐患。而对顶板砂岩含水层进行采前预疏放,实现疏水降压是目前被广泛应用的防治手段,国内外学者针对工作面顶板含水层的采前预疏放进行了诸多研究,但都是侧重于疏放水钻孔设计和施工工艺的研究,而对顶板含水层采前预疏放的安全水位相关研究属于空白。目前,现有技术中还没有一种顶板含水层采前疏降安全水位准确有效的确定方法。
发明内容
根据现有规程规定,当导水裂缝带范围内的含水层或老空积水影响安全开采时,必须采取超前探放水措施,当导水裂缝带范围内有强富水含水层时,必须将强富水含水层疏干后方可开采。但对于补给条件好、储量丰富的强富水含水层,在实际生产中难以完全疏干或疏干工程量巨大,完全疏干需要很长时间,在经济上不合理。实际上,将回采区域强含水层水位疏降至某一数值时,即达到安全水位时,疏水钻孔出水量趋于稳定或降到安全临界数值以下,也可以实现工作面安全生产。其他类型的含水层采前疏降也存在同样的问题。因此,对顶板含水层采前疏降,准确有效的确定安全水位十分重要,在确保工作面开采安全的前提下,能够有效降低工作面开采成本和提高生产效率。
本发明提供了一种顶板含水层采前疏降安全水位确定方法。
本发明采用的技术方案如下:
一种顶板含水层采前预疏降安全水位确定方法,包括如下步骤:
(a)确定拟开采工作面的地质条件和开采工艺参数;
(b)根据拟开采工作面的开采工艺参数确定覆岩破坏高度和采前疏放水目标含水层,根据钻孔柱状资料和区域水文地质资料构建三维地质模型,用于模拟拟开采工作面预疏放前的初始流场状态、预疏放过程疏降流场状态和拟开采工作面开采过程中的采动流场状态;
(c)所述拟开采工作面初始流场模型、采前预疏降流场模型和工作面采动过程流场模型采用的计算方程为连续介质的水流平衡方程,方程表达式如下:
其中,Ss为弹性给水度,H为含水层水位,t为疏放水时间,W为单位体积疏降水量。
(d)根据拟开采工作面区域水文地质资料确定所述初始流场模型和所述三维水文地质概化模型的水文地质边界条件和初始条件;
(e)根据拟开采工作面所属矿井勘探、补勘及建设期间的抽水、放水和注水试验资料进行含水层参数识别与分区,确定初始流场及富水性分区,并求算各分区的含水层参数,并将拟合后的分区参数赋值到初始流场;
(f)基于含水层分区参数和拟开采工作面地面和井下钻孔出水情况,确定拟开采工作面开采前预疏降单孔最大出水量;
(g)根据所述拟开采工作面三维水文地质概化模型计算获得不同疏水强度下的拟开采工作面开采前疏水终态流场分布情况,进而获得拟开采工作面开采前疏水强度S与含水层终态水位h函数关系S=f(h),其中,S单位为m3/h,h单位为MPa;
(h)基于所述拟开采工作面的开采工艺参数和不同疏水强度下的采前疏水终态流场计算结果建立工作面矩形开采区域的面状井群采动流场模型;
(i)根据所述矩形开采区域的面状井群采动流场模型计算得到拟开采工作面顶板采动裂缝发育至最大高度后的涌水量,进而获得不同工作面涌水量与拟开采工作面开采前疏水终态水位函数关系Q=g(h),其中,Q单位为m3/h,h单位为MPa;
(j)依据拟开采工作面排水能力及S=f(h)和Q=g(h)确定拟开采工作面开采前预疏降安全水位和疏降强度。
在上述顶板含水层采前预疏降安全水位确定方法步骤(a)中,所述地质条件包括拟开采工作面采动裂缝发育范围内的含水层初始水位、含水层厚度、给水度、渗透系数和补给条件;所述开采工艺参数包括回采工艺、拟开采工作面规模、排水能力和采厚。
在上述顶板含水层采前预疏降安全水位确定方法步骤(b)中,所述水文地质概化模型为承压含水层的三维空间非稳定流模型,所述承压含水层的三维空间非稳定流模型假定拟开采工作面开始回采一定距离后,覆岩破断失稳、垮落,采动裂缝成为导水通道,开采区域的各单元均为抽采井,拟开采工作面开采空间即为降落漏斗的中心,工作面涌水量即为各井点抽采量之和。
在上述顶板含水层采前预疏降安全水位确定方法中,所述拟开采工作面三维水文地质概化模型和矩形开采区域的面状井群采动流场模型构建和计算均通过数值模拟方法进行。
在上述顶板含水层采前预疏降安全水位确定方法中,所述Q=g(w)表达式为:
7Q3-6×103Q2+2×106Q=1.8×108+108w,
所述S=f(h)表达式为:
3S3-3.3×103S2+1.3×106S=8.6×108-106w。
本发明的上述技术方案相比现有技术具有以下优点:
1)本发明提供的顶板含水层采前预疏降安全水位确定方法,由于通过建立数学模型,并将开采区域的流场变化过程分为三个阶段,初始流场、疏降流场和采动流场,分别构建初始流场模型、承压含水层的三维空间非稳定流模型和矩形开采区域的面状井群采动流场模型,因此,本发明能够在合理假定的情况下,较为准确的模拟整个流场变化趋势,进而确定各参数之间的函数关系。
2)本发明提供的顶板含水层采前预疏降安全水位确定方法,由于利用数学模型理论计算,按照流场变化规律,依次获得拟开采工作面开采前疏水强度与含水层终态水位函数关系和不同工作面涌水量与拟开采工作面开采前疏水终态水位函数关系,进而确定工作面排水能力与终态水位的函数关系,即可根据工作面排水能力确定安全水位,因此,本发明能够通过准确性高,而又直观简洁的方法确定采前预疏降安全水位。
3)本发明提供的顶板含水层采前预疏降安全水位确定方法,由于根据拟开采工作面所属矿井勘探、补勘及建设期间的抽水、放水和注水试验资料对含水层参数进行识别与分区,进而确定初始流场及富含水分区,因此,本发明计算分析结果具有更高的可靠性和准确度。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将对本发明实施方式作进一步地详细描述。
所述顶板含水层采前预疏降安全水位确定方法,包括如下步骤:
(a)确定拟开采工作面的地质条件和开采条件;地质条件具体为:拟开采工作面的直接充水含水层为顶板砂岩含水层,该含水层厚度0~45m,平均约25m,单位涌水量0.5~1.9l/s.m,渗透系数0.4~8.3m/d,属中等至强富水含水层,含水层最大水压超过4MPa,掘进期间揭露该含水层的钻孔最大稳定出水量达50m3/h;开采条件具体为:主采煤层11#煤层,平均煤厚10.7m,埋深约300m,属近水平煤层,覆岩属软弱类型,应用综放开采工艺,工作面正常排水能力为600m3/h,考虑到水泵的工作效率、工作面作业环境和工作面排水富余系数,实际排水能力按360m3/h考虑;
(b)根据拟开采工作面的开采工艺参数确定覆岩破坏高度和采前疏放水目标含水层,根据钻孔柱状资料和区域水文地质资料应用GMS数值模拟软件构建三维地质模型,用于模拟拟开采工作面预疏放前的初始流场状态、预疏放过程疏降流场状态和拟开采工作面开采过程中的采动流场状态;
(c)所述拟开采工作面初始流场模型、采前预疏降流场模型和工作面采动过程流场模型采用的计算方程为连续介质的水流平衡方程,方程表达式如下:
(d)根据拟开采工作面水文地质资料确定所述初始流场模型和所述承压含水层的三维空间非稳定流模型的水文地质边界条件;
(e)根据拟开采工作面所属矿井勘探、补勘及建设期间的抽水、放水和注水试验资料进行含水层参数识别与分区,确定初始流场及富含水分区,并求算各分区的含水层参数,并将拟合后的分区参数赋值到初始流场;
(f)基于含水层分区参数和拟开采工作面地面和井下钻孔出水情况,确定拟开采工作面开采前预疏降单孔最大出水量;
(g)根据所述拟开采工作面三维水文地质概化模型计算获得不同疏水强度下的拟开采工作面开采前疏水终态流场分布情况,进而获得拟开采工作面开采前疏水强度S与含水层终态水位h函数关系S=f(h),其中,Q单位为m3/h,h单位为MPa,所述S=f(h)表达式为:
3S3-3.3×103S2+1.3×106S=8.6×108-106w;
(h)基于所述拟开采工作面的开采工艺参数和不同疏水强度下的采前疏水终态流场计算结果建立工作面矩形开采区域的面状井群采动流场模型;
(i)根据所述矩形开采区域的面状井群采动流场模型计算得到拟开采工作面顶板采动裂缝发育至最大高度后的涌水量,进而获得不同工作面涌水量与拟开采工作面开采前疏水终态水位函数关系Q=g(h),其中,Q单位为m3/h,h单位为MPa,所述Q=g(h)表达式为:
7Q3-6×103Q2+2×106Q=1.8×108+108w;
(j)依据拟开采工作面实际排水能力及S=f(h)和Q=g(h)表达式确定拟开采工作面开采前预疏降安全水位为1.35MPa,疏降强度应大于300m3/h。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明的保护范围之中。

Claims (4)

1.一种顶板含水层采前预疏降安全水位确定方法,其特征在于:包括如下步骤:
(a)确定拟开采工作面的地质条件和开采工艺参数;
(b)根据拟开采工作面的开采工艺参数确定覆岩破坏高度和采前疏放水目标含水层,根据钻孔柱状资料和区域水文地质资料构建三维地质模型,用于模拟拟开采工作面预疏放前的初始流场状态、预疏放过程疏降流场状态和拟开采工作面开采过程中的采动流场状态;
(c)所述拟开采工作面初始流场模型、采前预疏降流场模型和工作面采动过程流场模型采用的计算方程为连续介质的水流平衡方程,方程表达式如下:
(d)根据拟开采工作面区域水文地质资料确定所述初始流场模型和所述三维水文地质概化模型的水文地质边界条件和初始条件;
(e)根据拟开采工作面所属矿井勘探、补勘及建设期间的抽水、放水和注水试验资料进行含水层参数识别与分区,确定初始流场及富水性分区,并求算各分区的含水层参数,并将拟合后的分区参数赋值到初始流场;
(f)基于含水层分区参数和拟开采工作面地面和井下钻孔出水情况,确定拟开采工作面开采前预疏降单孔最大出水量;
(g)根据所述拟开采工作面三维水文地质概化模型计算获得不同疏水强度下的拟开采工作面开采前疏水终态流场分布情况,进而获得拟开采工作面开采前疏水强度S与含水层终态水位h函数关系S=f(h),其中,S单位为m3/h,h单位为MPa;
(h)基于所述拟开采工作面的开采工艺参数和不同疏水强度下的采前疏水终态流场计算结果建立工作面矩形开采区域的面状井群采动流场模型;
(i)根据所述矩形开采区域的面状井群采动流场模型计算得到拟开采工作面顶板采动裂缝发育至最大高度后的涌水量,进而获得不同工作面涌水量与拟开采工作面开采前疏水终态水位函数关系Q=g(h),其中,Q单位为m3/h,h单位为MPa;
(j)依据拟开采工作面排水能力及S=f(h)和Q=g(h)确定拟开采工作面开采前预疏降安全水位和疏降强度。
2.根据权利要求1所述的顶板含水层采前预疏降安全水位确定方法,其特征在于:在步骤(b)中,所述水文地质概化模型为承压含水层的三维空间非稳定流模型,模型将含水层划分为若干单元,所述承压含水层的三维空间非稳定流模型假定拟开采工作面开始回采一定距离后,覆岩破断失稳、垮落,采动裂缝成为导水通道,每一个单元均为抽采井,拟开采工作面开采空间即为降落漏斗的中心,工作面涌水量即为各井点抽采量之和。
3.根据权利要求1或2所述的顶板含水层采前预疏降安全水位确定方法,其特征在于:所述拟开采工作面三维水文地质概化模型和矩形开采区域的面状井群开采模型构建和计算均通过数值模拟方法进行。
4.根据权利要求1或2所述的顶板含水层采前预疏降安全水位确定方法,其特征在于:所述Q=g(h)表达式为:
7Q3-6×103Q2+2×106Q=1.8×108+108w,
所述S=f(h)表达式为:
3S3-3.3×103S2+1.3×106S=8.6×108-106w。
CN201610714589.0A 2016-08-25 2016-08-25 一种顶板含水层采前预疏降安全水位确定方法 Expired - Fee Related CN106354911B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610714589.0A CN106354911B (zh) 2016-08-25 2016-08-25 一种顶板含水层采前预疏降安全水位确定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610714589.0A CN106354911B (zh) 2016-08-25 2016-08-25 一种顶板含水层采前预疏降安全水位确定方法

Publications (2)

Publication Number Publication Date
CN106354911A CN106354911A (zh) 2017-01-25
CN106354911B true CN106354911B (zh) 2019-04-30

Family

ID=57844822

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610714589.0A Expired - Fee Related CN106354911B (zh) 2016-08-25 2016-08-25 一种顶板含水层采前预疏降安全水位确定方法

Country Status (1)

Country Link
CN (1) CN106354911B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107740707B (zh) * 2017-08-13 2020-09-15 煤炭科学技术研究院有限公司 一种深部高承压水下厚煤层开采水害防治方法
CN108955649B (zh) * 2018-05-21 2020-06-16 中国矿业大学 一种煤矿工作面顶板过程涌水量的预测方法
CN112502775B (zh) * 2020-11-06 2023-04-28 扎赉诺尔煤业有限责任公司 一种半固结砂岩含水层疏水降压方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010051175A (ja) * 2008-08-26 2010-03-11 Kajima Corp 植栽基盤
JP5052559B2 (ja) * 2009-04-07 2012-10-17 飛島建設株式会社 多層帯水層の間隙水圧測定方法
CN105046060A (zh) * 2015-06-24 2015-11-11 中国矿业大学 一种煤层底板高承压水井下单孔疏降优化方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010051175A (ja) * 2008-08-26 2010-03-11 Kajima Corp 植栽基盤
JP5052559B2 (ja) * 2009-04-07 2012-10-17 飛島建設株式会社 多層帯水層の間隙水圧測定方法
CN105046060A (zh) * 2015-06-24 2015-11-11 中国矿业大学 一种煤层底板高承压水井下单孔疏降优化方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
梅河矿区砂砾含水层下残采综放工作面防溃泥突水技术及实践;张玉军;《煤矿开采》;20131031;76-79页
浅埋深倾斜煤层综采顶板水害评价与防治技术研究;吴江杰;《煤炭技术》;20150430;234-236页

Also Published As

Publication number Publication date
CN106354911A (zh) 2017-01-25

Similar Documents

Publication Publication Date Title
AU2013252230B2 (en) Method for distributed storage and use of underground water in mine
CN106703883B (zh) 一种个性化确定采煤工作面底板突水危险等级的方法
CN106337426B (zh) 一种增加承压水地层基坑抗突涌稳定性的降水方法
Zhang et al. A case study of gas drainage to low permeability coal seam
CN103226732B (zh) 一种基于gms的矿区不同开采中段的地下水渗流场预测方法
CN201037819Y (zh) 松散承压含水层载荷传递作用的实验装置
Wang et al. Damage and failure evolution mechanism for coal pillar dams affected by water immersion in underground reservoirs
CN102799955B (zh) 突水系数小于0.06MPa/m区底板突水评价三图法
CN104453834A (zh) 一种井组注采关系优化调整方法
CN106354911B (zh) 一种顶板含水层采前预疏降安全水位确定方法
CN109519156A (zh) 一种边水砂岩气藏水驱剖面模型渗流实验方法
CN109441450A (zh) 一种覆岩水文地质条件扰动下煤水双资源矿井开采模式
CN102862775B (zh) 一种矿井地下水的分布式存储方法
CN105354365A (zh) 间接充水含水层突水危险性综合评价方法及系统
CN110067597A (zh) 一种矿井俯角负压探放老空区积水的方法
CN205536681U (zh) 一种花岗岩类带脉状构造型地热田的压力回灌系统
CN109446602A (zh) 一种地面垂直钻孔抽采特厚煤层瓦斯的数值试验方法
CN108343470B (zh) 一种地下水封洞库水幕系统的自然补水方法
CN110749533B (zh) 一种基于等效隔水层厚度的保水采煤判别方法
CN107506609A (zh) 一种干旱‑半干旱区煤炭开采生态环境破坏等级划分方法
CN115099092B (zh) 基于三维建模的尾矿库渗流计算方法
CN116227710A (zh) 生态脆弱区煤层采动下生态水位变异程度预测方法及系统
CN109899037A (zh) 一种大倾角煤层开采过程中及开采后的瓦斯抽采方法
RU2477792C1 (ru) Способ определения высоты зоны водопроводящих трещин над выработанным пространством на пластовых месторождениях
CN108505980A (zh) 一种注水开发油藏的地下能量利用水平评价方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190430

Termination date: 20200825

CF01 Termination of patent right due to non-payment of annual fee