CN106349010B - A method of producing cyclohexanol - Google Patents

A method of producing cyclohexanol Download PDF

Info

Publication number
CN106349010B
CN106349010B CN201510555503.XA CN201510555503A CN106349010B CN 106349010 B CN106349010 B CN 106349010B CN 201510555503 A CN201510555503 A CN 201510555503A CN 106349010 B CN106349010 B CN 106349010B
Authority
CN
China
Prior art keywords
reaction
cyclohexanol
cyclohexyl
ester
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510555503.XA
Other languages
Chinese (zh)
Other versions
CN106349010A (en
Inventor
宗保宁
曾建立
杜泽学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Original Assignee
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Research Institute of Petroleum Processing, China Petroleum and Chemical Corp filed Critical Sinopec Research Institute of Petroleum Processing
Publication of CN106349010A publication Critical patent/CN106349010A/en
Application granted granted Critical
Publication of CN106349010B publication Critical patent/CN106349010B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/04Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides onto unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/09Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/128Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by alcoholysis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/128Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by alcoholysis
    • C07C29/1285Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by alcoholysis of esters of organic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/29Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/09Preparation of carboxylic acids or their salts, halides or anhydrides from carboxylic acid esters or lactones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/03Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D201/00Preparation, separation, purification or stabilisation of unsubstituted lactams
    • C07D201/02Preparation of lactams
    • C07D201/04Preparation of lactams from or via oximes by Beckmann rearrangement
    • C07D201/06Preparation of lactams from or via oximes by Beckmann rearrangement from ketones by simultaneous oxime formation and rearrangement
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D223/00Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom
    • C07D223/02Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom not condensed with other rings
    • C07D223/06Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D223/08Oxygen atoms
    • C07D223/10Oxygen atoms attached in position 2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention provides one kind using cyclohexyl carboxylate as raw material, under near critical or super critical condition, the method for preparing cyclohexanol by ester exchange reaction, this method does not use catalyst, it does not need to separate reaction product during the reaction, lower alcohol ester ratio can be used, and have the characteristics that fast reaction rate, high conversion rate, selectivity are good, post-processing is simple.

Description

A method of producing cyclohexanol
Technical field
The present invention relates to a kind of methods for producing cyclohexanol, in particular to a kind of to pass through under near critical or super critical condition Ester exchange reaction is come the method that produces cyclohexanol.
Background technique
Cyclohexanol is a kind of widely used industrial chemicals and solvent, for example, cyclohexanol at high temperature (such as 150 DEG C~ 300 DEG C) it dehydration can occur prepares cyclohexene.In the numerous on the way of cyclohexanol, it is most important that produce the main of nylon 6 Intermediate cyclohexanone.
Since nylon comes out, DuPont, DSM, Monsanto, BASF, Sumitomo, eastern beautiful, Asahi Chemical Industry etc. are world-famous Chemical company is all devoted for years in the exploitation of cyclohexanol (ketone) production technology.Currently, the industrial process of cyclohexanol (ketone) has Phenol hydrogenation method, cyclohexane oxidation process and cyclohexene hydration method.
Phenol hydrogenation method is earliest industrialized cyclohexanol production method, due to being limited by the short and expensive of starting phenol Catalytic hydrogenation is expensive and the influence of the unfavorable factors such as the easy carbon distribution of catalyst, new device generally do not use phenol to add Hydrogen method.Cyclohexane oxidation process is current main cyclohexanol production method, this method there are the problem of it is very much, such as conversion ratio compared with It is low, selectivity is poor, not environmentally, it is dangerous etc..Hexamethylene is utilized since there is these problems, Japanese Asahi Kasei Corporation is developed Alkene hydration prepares the new process of cyclohexanol, and the mild reaction condition, selectivity are very high, hydrogen consumption is lower, overall process does not almost have There is three waste discharge, defect is that raw material must use the cyclohexene of high-purity, operating process complexity, conversion per pass very low.
Ethyl cyclohexyl ester through hydrogenation is a kind of emerging cyclohexanol production method, although with cyclohexanol production method before It compares, the reaction conversion ratio and selectivity of this method are all very high, and technique and operating process are greatly simplified, but hydrogenation reaction The cost of requirement, investment and the operation of equipment is still relatively high, and furthermore hydrogenation process will necessarily also consume hydrogen source.
CN103232325A discloses one kind using cyclohexyl carboxylate as raw material, under catalytic condition, passes through ester exchange reaction The method for preparing cyclohexanol.The ester exchange reaction of catalysis generally can be divided into biological enzyme, acid catalysis and three kinds of base catalysis, existing Document about catalyzed transesterification focuses primarily upon production biodiesel.These documents show that biological enzyme is due to mesh Before be difficult to solve the problems, such as catalyst higher cost and be easy inactivation, therefore in a short time still can not industrial applications;It is acid catalyzed Reaction rate is slower, and also results in serious equipment corrosion and disposal of pollutants using acid catalyst, the alcohol in reaction system It may also happen that etherification reaction under acid catalysed conditions;Base catalysis has the advantages that reaction condition is mild, rate is fast, but it is only fitted For the raw material of purity is high, acid and/or water cannot be especially contained in raw material, otherwise can be had an adverse effect to base catalyst.This Outside, if using homogeneous catalysis, there must be a post-processing steps such as neutralization, washing, drying, and heterogeneous catalysis (solid catalysis Agent) at present still in the commerical test stage, the report of heterogeneous catalysis industrial application is had no in document.In addition, ester exchange reaction It needs to separate part reaction product or using higher alcohol in the ester-exchange reaction of catalysis for balanced reaction Ester is than come the conversion ratio that improves reaction.
Summary of the invention
For aforementioned the deficiencies in the prior art, the present invention provides one kind using cyclohexyl carboxylate as raw material, near critical or surpasses Under critical condition, the method for preparing cyclohexanol by ester exchange reaction, this method does not use catalyst, does not divide during the reaction From reaction product, lower alcohol ester ratio can be used, and there is fast reaction rate, high conversion rate, selective good, post-processing simply Feature.
Main contents of the invention are as follows.
1. a kind of method for producing cyclohexanol, comprising:
(1) near critical or it is postcritical under the conditions of, transesterification occurs for the unitary alkanol of cyclohexyl carboxylate and C1~C6 Reaction;With
(2) reaction product of step (1) is separated, obtains cyclohexanol.
2. according to 1 method, which is characterized in that in step (1), the cyclohexyl carboxylate is cyclohexyl formate or acetic acid Cyclohexyl.
3. according to aforementioned any method, which is characterized in that in step (1), the unitary alkanol of the C1~C6 is first Alcohol or ethyl alcohol.
4. according to aforementioned any method, which is characterized in that in step (1), reaction condition are as follows: reaction temperature is 220 DEG C ~300 DEG C, preferably 260 DEG C~280 DEG C;Reaction pressure is 2MPa~25MPa, preferably 4MPa~10MPa.
5. according to aforementioned any method, which is characterized in that in step (1), using continuous reaction, feed volume air speed For 0.1h-1~10h-1, preferably 0.2h-1~5h-1
6. according to aforementioned any method, which is characterized in that in step (1), the molar ratio of alcohol and ester is 1~50:1, excellent It is selected as 1~10:1, more preferably 3~6:1.
7. according to aforementioned any method, which is characterized in that in the reaction product of step (1), the quality containing water and water Score is less than 20%;In the reaction product of preferred steps (1), the mass fraction containing water and water is 0.005%~10%;It is more excellent In the reaction product for selecting step (1), the mass fraction containing water and water is 0.01%~5%.
8. a kind of method for producing cyclohexanone, including cyclohexanone is prepared by cyclohexanol, which is characterized in that the cyclohexanol by Any one of 1 to 7 is made.
9. a kind of method for producing caprolactam, including caprolactam is prepared by cyclohexanone, which is characterized in that the hexamethylene Ketone method as described in 8 is made.
10. a kind of method for producing adipic acid, including adipic acid is prepared by cyclohexanol, which is characterized in that the cyclohexanol It is made by any one of 1 to 7.
Compared with prior art, the present invention has the advantage that.
1, using cyclohexyl carboxylate as raw material, ester exchange reaction occurs under near critical or super critical condition to produce hexamethylene Alcohol, reaction rate, conversion ratio and selectivity are all very high;
2, using cyclohexyl carboxylate as raw material, ester exchange reaction occurs under near critical or super critical condition to produce hexamethylene Alcohol is without the use of catalyst, is not required to separate reaction product in reaction, lower alcohol ester ratio, and last handling process letter can be used It is single, it is not required to the post-processing step that washing etc. generates the three wastes;
3, the technological equipment investment and operating cost of transesterification are lower than cyclohexyl carboxylate hydrogenation technique;
4, for integrated artistic route, hydrogen consumption of the invention is lower;
Specific embodiment
In the present invention, ester exchange reaction refers to the ester group exchange reaction occurred between carboxylate and alcohol.
In the present invention, all pressure are gauge pressure.
In the context of the present specification, other than the content clearly stated, any matters or item that do not mention are equal It is directly applicable in those of known in the art without carrying out any change.Moreover, any embodiment described herein can be with It is freely combined with one or more other embodiments described herein, the technical solution or technical idea being consequently formed are accordingly to be regarded as A part of the original disclosure of the present invention or original description, and it is not considered as the new content for not disclosing or being expected herein, Unless those skilled in the art think that the combination is obvious unreasonable.
Numerical point disclosed in this specification includes not only specifically disclosed numerical point, further includes the end of each numberical range Point, the range of these numerical point institute any combination are regarded as the range or technical characteristic that the present invention is disclosed or recorded, no By whether separately disclosing these numerical value pair herein.All features disclosed in this invention can in any combination, these combinations It should be understood content that is presently disclosed or recording, unless those skilled in the art think that the combination is obviously unreasonable.
It is known in the art, ester exchange reaction occurs at supercritical conditions using grease and methanol, biological bavin can be produced Oil.In general, which needs to carry out at supercritical conditions, can just realize satisfactory results, and (or sub- near critical It is critical) under the conditions of, the reaction rate of transesterification is still relatively slow, for example when being in 200 DEG C~230 DEG C, temperature is not up to methanol 239.4 DEG C of critical-temperature, ester exchange reaction rate at this time is lower, and the rapeseed oil after one hour there are about 68%~70% is converted to Fatty acid methyl ester;When temperature reaches 270 DEG C, the conversion ratio of rapeseed oil is not still high;And when temperature reaches 300 DEG C or more, instead Rate is answered to significantly improve, conversion ratio when four minutes can increase to 80%~95%.This field is it is also known that cyclohexanol is easy to send out Raw dehydration, it is strong endothermic reaction (reaction heat 34.3kJ/mol) that dehydration of cyclohexanol, which generates cyclohexene, therefore increases temperature Be conducive to dehydration of cyclohexanol and generate cyclohexene, is often dehydrated between 150 DEG C~300 DEG C using cyclohexanol in practice, in laboratory Or it is small-scale on prepare cyclohexene.The inventors discovered that making carboxylic acid under the hot conditions of near critical or supercritical reaction When ester exchange reaction occurs for ester, almost without side reaction generation, and even if under the conditions of near-critical, the ester of cyclohexyl carboxylate Transesterification reaction rate is still quite fast, has thus completed the present invention.
The present invention provides a kind of methods for producing cyclohexanol, comprising:
(1) near critical or it is postcritical under the conditions of, transesterification occurs for the unitary alkanol of cyclohexyl carboxylate and C1~C6 Reaction;With
(2) reaction product of step (1) is separated, obtains cyclohexanol.
According to the present invention, the cyclohexyl carboxylate is preferably the cyclohexyl of the straight-chain monobasic carboxylic acid of C1~C22, more preferably For the cyclohexyl of the straight-chain monobasic carboxylic acid of C1~C10, further preferably cyclohexyl formate or cyclohexyl acetate.
According to the present invention, the near critical or postcritical condition may is that reaction temperature is 100 DEG C~400 DEG C, excellent It is selected as 150 DEG C~350 DEG C, more preferably 200 DEG C~300 DEG C;Reaction pressure be 0.5MPa~40MPa, preferably 1MPa~ 20MPa, more preferably 2MPa~16MPa.Optimize reaction condition are as follows: reaction temperature be 220 DEG C~300 DEG C, preferably 260 DEG C~ 280℃;Reaction pressure is 2MPa~25MPa, preferably 4MPa~10MPa.
According to the present invention, the near critical condition are as follows: reaction temperature be 220 DEG C~280 DEG C, preferably 240 DEG C~280 ℃;Reaction pressure is 4MPa to less than critical pressure, preferably 6MPa to less than critical pressure.
According to the present invention, the mode of operation of step (1) both can also use continous way using intermittent.Between When formula of having a rest is reacted, the reaction time is 0.1h~10h, preferably 0.5h~5h;When using continuous reaction, Feed space velocities selection 0.1h-1~10h-1, preferably 0.2h-1~5h-1
According to the present invention, in step (1), tank reactor or tubular reactor can be used.
According to the present invention, in step (1), the molar ratio of alcohol and ester is 1~50:1, preferably 2~10:1, more preferably 3 ~6:1.
According to the present invention, in the reaction product of step (1), the mass fraction containing water and water is less than 20%;Preferred steps (1) in reaction product, the mass fraction containing water and water is 0.001%~10%;The reaction product of more preferable step (1) In, the mass fraction containing water and water is 0.01%~5%.According to the present invention, the water in the reaction product is that raw material is brought into And/or generate in reaction process.In a kind of situation, the water in the reaction product is partly or entirely in reaction process It generates.
According to the present invention, the cyclohexyl carboxylate is made by carboxylic acid and hexamethylene alkene reaction.
The present invention also provides using cyclohexanol as raw material, the method for producing cyclohexanone, caprolactam or adipic acid respectively, this Partial content belongs to the prior art, and the present invention repeats no more this.
By the following examples, the present invention is further illustrated.
Embodiment 1
By methanol (water content 0.079%) and cyclohexyl acetate, (ethyl cyclohexyl ester content is 99.35%, acetic acid content 0.023%) it is pumped into tubular reactor according to the ratio of alcohol ester molar ratio 8:1, is 1h in 250 DEG C, 5MPa and Feed space velocities-1Item It is reacted under part, collecting reaction product, the conversion ratio for analyzing cyclohexyl acetate is 98.57%, and the selectivity of cyclohexanol is 99.38%, water in products divides content to be 0.056%, and cyclohexene is not detected in ether content 0.02% from product.
Embodiment 2
By methanol (water content 0.079%) and cyclohexyl acetate, (ethyl cyclohexyl ester content is 99.35%, acetic acid content 0.023%) it is pumped into tubular reactor according to the ratio of alcohol ester molar ratio 2:1, is 0.5h in 200 DEG C, 8MPa and Feed space velocities-1's Under the conditions of react, collecting reaction product, the conversion ratio for analyzing cyclohexyl acetate is 94.42%, and the selectivity of cyclohexanol is 99.83%, water in products divides content to be 0.031%, and cyclohexene is not detected in ether content 0.03% from product.
Embodiment 3
By methanol (water content 0.079%) and cyclohexyl acetate, (ethyl cyclohexyl ester content is 99.35%, acetic acid content 0.023%) it is pumped into tubular reactor according to the ratio of alcohol ester molar ratio 4:1, is 1.0h in 260 DEG C, 6MPa and Feed space velocities-1's Under the conditions of react, collecting reaction product, the conversion ratio for analyzing cyclohexyl acetate is 99.23%, and the selectivity of cyclohexanol is 99.54%, water in products divides content to be 0.043%, and cyclohexene is not detected in ether content 0.02% from product.
Embodiment 4
By methanol (water content 0.079%) and cyclohexyl acetate, (ethyl cyclohexyl ester content is 99.59%, acetic acid content 0.149%) it is pumped into tubular reactor according to the ratio of alcohol ester molar ratio 5:1, is 2.0h in 250 DEG C, 7MPa and Feed space velocities-1's Under the conditions of react, collecting reaction product, the conversion ratio for analyzing cyclohexyl acetate is 99.38%, and the selectivity of cyclohexanol is 99.34%, water in products divides content to be 0.065%, and cyclohexene is not detected in ether content 0.02% from product.
Under reaction mass and proportion same as before, identical reaction condition, with carbon steel test piece detection reaction mass Corrosivity, the results showed that corrosion is less than 0.075mm/a.
Embodiment 5
The cyclohexyl acetate that methanol and rectifying obtain is pumped into tubular reactor according to the ratio of alcohol ester molar ratio 3:1, 250 DEG C, 16MPa and Feed space velocities are 1.5h-1Under conditions of react, collecting reaction product analyzes the conversion ratio of cyclohexyl acetate It is 97.42%, the selectivity of cyclohexanol is 99.47%, and cyclohexene is not detected in ether content 0.02% in product from product.
Embodiment 6
The cyclohexyl acetate that methanol and rectifying obtain is pumped into tubular reactor according to the ratio of alcohol ester molar ratio 10:1, 300 DEG C, 12MPa and Feed space velocities are 5h-1Under conditions of react, collecting reaction product, the conversion ratio for analyzing cyclohexyl acetate is 99.70%, the selectivity of cyclohexanol is 98.35%, and cyclohexene is not detected in ether content 0.03% in product from product.
Embodiment 7
By methanol (water content 1.253%) and cyclohexyl acetate, (ethyl cyclohexyl ester content is 99.59%, acetic acid content 0.149%) it is pumped into tubular reactor according to the ratio of alcohol ester molar ratio 5:1, is 2h in 260 DEG C, 5MPa and Feed space velocities-1Item It is reacted under part, collecting reaction product, the conversion ratio for analyzing cyclohexyl acetate is 99.57%, and the selectivity of cyclohexanol is 99.23%, water in products divides content to be 0.67%, and cyclohexene is not detected in ether content 0.03% from product.
Embodiment 8
By methanol (water content 1.253%) and cyclohexyl acetate, (ethyl cyclohexyl ester content is 99.59%, acetic acid content 0.149%) it is pumped into tubular reactor according to the ratio of alcohol ester molar ratio 6:1, is 0.5h in 260 DEG C, 2MPa and Feed space velocities-1's Under the conditions of react, collecting reaction product, the conversion ratio for analyzing cyclohexyl acetate is 96.37%, and the selectivity of cyclohexanol is 99.65%, water in products divides content to be 0.73%, and cyclohexene is not detected in ether content 0.02% from product.
Embodiment 9
By ethyl alcohol (water content 0.434%) and cyclohexyl acetate, (ethyl cyclohexyl ester content is 99.35%, acetic acid content 0.023%) it is pumped into tubular reactor according to the ratio of alcohol ester molar ratio 4:1, is 1.0h in 260 DEG C, 6MPa and Feed space velocities-1's Under the conditions of react, collecting reaction product, the conversion ratio for analyzing cyclohexyl acetate is 98.23%, and the selectivity of cyclohexanol is 99.65%, water in products divides content to be 0.24%, and cyclohexene is not detected in ether content 0.03% from product.
Embodiment 10
By ethyl alcohol (water content 0.434%) and cyclohexyl acetate, (ethyl cyclohexyl ester content is 99.59%, acetic acid content 0.149%) it is pumped into tubular reactor according to the ratio of alcohol ester molar ratio 3:1, is 3h in 220 DEG C, 10MPa and Feed space velocities-1's Under the conditions of react, collecting reaction product, the conversion ratio for analyzing cyclohexyl acetate is 97.39%, and the selectivity of cyclohexanol is 99.78%, water in products divides content to be 0.23%, and cyclohexene is not detected in ether content 0.04% from product.
Under reaction mass and proportion same as before, identical reaction condition, with carbon steel test piece detection reaction mass Corrosivity, the results showed that corrosion is less than 0.075mm/a.
Embodiment 11
By ethyl alcohol (water content 5.264%) and cyclohexyl acetate, (ethyl cyclohexyl ester content is 99.35%, acetic acid content 0.023%) it is pumped into tubular reactor according to the ratio of alcohol ester molar ratio 4:1, is 1.0h in 280 DEG C, 5MPa and Feed space velocities-1's Under the conditions of react, collecting reaction product, the conversion ratio for analyzing cyclohexyl acetate is 93.83%, and the selectivity of cyclohexanol is 99.54%, water in products divides content to be 2.59%, and cyclohexene is not detected in ether content 0.03% from product.
Embodiment 12
By ethyl alcohol (water content 5.264%) and cyclohexyl acetate, (ethyl cyclohexyl ester content is 99.59%, acetic acid content 0.149%) it is pumped into tubular reactor according to the ratio of alcohol ester molar ratio 5:1, is 2h in 240 DEG C, 8MPa and Feed space velocities-1Item It is reacted under part, collecting reaction product, the conversion ratio for analyzing cyclohexyl acetate is 94.11%, and the selectivity of cyclohexanol is 99.49%, water in products divides content to be 3.26%, and cyclohexene and acetic acid is not detected in ether content 0.03% from product.
Embodiment 13
The methanol used is the super dry methanol that firsthand water content is 28 μ g/g, and cyclohexyl acetate then obtains for rectifying Cyclohexyl acetate, first with sodium carbonate and calcium chloride deacidification, water removal, then the smart acetic acid without acetic acid and water being evaporated under reduced pressure Cyclohexyl.The smart cyclohexyl acetate that super dry methanol and rectifying obtain is pumped into pipe reaction according to the ratio of alcohol ester molar ratio 4:1 Device is 1h in 260 DEG C, 6MPa and Feed space velocities-1Under conditions of react, collecting reaction product analyzes the conversion of cyclohexyl acetate Rate is 87.63%, and the selectivity of cyclohexanol is 99.32%, and water in products divides content to be 0.003%, ether content 0.02%, from production Cyclohexene is not detected in object.

Claims (9)

1. a kind of method for producing cyclohexanol, comprising: (1) near critical or it is postcritical under the conditions of, cyclohexyl carboxylate and C1~ Ester exchange reaction occurs for the unitary alkanol of C6;In the reaction product of this step, the mass fraction containing water and water be 0.01%~ 5%;In this step, reaction condition are as follows: reaction temperature is 220 DEG C~300 DEG C, and reaction pressure is 4MPa~10MPa;(2) to step Suddenly the reaction product of (1) is separated, and obtains cyclohexanol.
2. according to the method for claim 1, which is characterized in that in step (1), the cyclohexyl carboxylate is acid cyclohexyl Ester or cyclohexyl acetate.
3. according to the method for claim 1, which is characterized in that in step (1), the unitary alkanol of the C1~C6 is Methanol or ethyl alcohol.
4. according to the method for claim 1, which is characterized in that in step (1), reaction temperature is 220 DEG C~280 DEG C;Instead It answers pressure to be more than or equal to 4MPa, and is less than critical pressure.
5. according to the method for claim 1, which is characterized in that in step (1), using continuous reaction, feed volume is empty Speed is 0.2h-1~5h-1
6. according to the method for claim 1, which is characterized in that in step (1), the molar ratio of alcohol and ester is 3~6:1.
7. a kind of method for producing cyclohexanone, including, the first step obtains cyclohexanol by legal system either in claim 1 to 6; Second step prepares cyclohexanone by cyclohexanol.
8. a kind of method for producing caprolactam, including, the first step obtains hexamethylene by legal system either in claim 1 to 6 Alcohol;Second step prepares cyclohexanone by cyclohexanol;Third step prepares caprolactam by cyclohexanone.
9. a kind of method for producing adipic acid, including, the first step obtains cyclohexanol by legal system either in claim 1 to 6; Second step prepares adipic acid by cyclohexanol.
CN201510555503.XA 2015-07-13 2015-09-01 A method of producing cyclohexanol Active CN106349010B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510408071 2015-07-13
CN201510408071X 2015-07-13

Publications (2)

Publication Number Publication Date
CN106349010A CN106349010A (en) 2017-01-25
CN106349010B true CN106349010B (en) 2019-09-24

Family

ID=57842780

Family Applications (4)

Application Number Title Priority Date Filing Date
CN201510555502.5A Active CN106349019B (en) 2015-07-13 2015-09-01 A method of producing cyclohexanol
CN201510555503.XA Active CN106349010B (en) 2015-07-13 2015-09-01 A method of producing cyclohexanol
CN201510555822.0A Active CN106349011B (en) 2015-07-13 2015-09-01 A method of producing cyclohexanol
CN201510555710.5A Active CN106349063B (en) 2015-07-13 2015-09-01 A method of producing cyclohexanol

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201510555502.5A Active CN106349019B (en) 2015-07-13 2015-09-01 A method of producing cyclohexanol

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN201510555822.0A Active CN106349011B (en) 2015-07-13 2015-09-01 A method of producing cyclohexanol
CN201510555710.5A Active CN106349063B (en) 2015-07-13 2015-09-01 A method of producing cyclohexanol

Country Status (1)

Country Link
CN (4) CN106349019B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106349019B (en) * 2015-07-13 2019-09-24 中国石油化工股份有限公司 A method of producing cyclohexanol
CN108003018B (en) * 2017-12-26 2021-01-15 浙江新和成股份有限公司 Method and equipment for preparing cyclopentanol under supercritical condition
CN110615736B (en) * 2018-06-20 2021-01-26 中国科学院大连化学物理研究所 Preparation method of dicarboxylic acid
CN111574346A (en) * 2020-05-14 2020-08-25 南京延长反应技术研究院有限公司 External micro-interface strengthening system and method for preparing cyclohexanone by esterification method
CN114621077B (en) * 2020-12-10 2023-07-25 中国科学院大连化学物理研究所 Industrial adipic acid preparation method and equipment
CN114621051A (en) * 2020-12-10 2022-06-14 中国科学院大连化学物理研究所 Method and device for industrially preparing cyclohexanol
CN114621052A (en) * 2020-12-10 2022-06-14 中国科学院大连化学物理研究所 Method and device for industrially preparing cyclohexanol

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1381434A (en) * 2001-04-18 2002-11-27 中国石油化工股份有限公司 Process for preparing cyclohexanone by dehydrogenating cyclohexanol
CN103232325A (en) * 2013-04-18 2013-08-07 湖南长岭石化科技开发有限公司 Method for preparing cyclohexanol from cyclohexene
CN106349063A (en) * 2015-07-13 2017-01-25 中国石油化工股份有限公司 Method for producing cyclohexanol

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103657658B (en) * 2012-09-18 2015-11-25 中国石油化工股份有限公司 Carboxylic ester hydrogenation catalyst and prepare the method for cyclohexanol and ethanol

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1381434A (en) * 2001-04-18 2002-11-27 中国石油化工股份有限公司 Process for preparing cyclohexanone by dehydrogenating cyclohexanol
CN103232325A (en) * 2013-04-18 2013-08-07 湖南长岭石化科技开发有限公司 Method for preparing cyclohexanol from cyclohexene
CN106349063A (en) * 2015-07-13 2017-01-25 中国石油化工股份有限公司 Method for producing cyclohexanol
CN106349011A (en) * 2015-07-13 2017-01-25 中国石油化工股份有限公司 Method for producing cyclohexanol
CN106349019A (en) * 2015-07-13 2017-01-25 中国石油化工股份有限公司 Method for producing cyclohexanol

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
利用废弃油脂生产生物柴油的SRCA技术工业应用及其生命周期分析;杜泽学等;《石油学报(石油加工)》;20120625;第28卷(第3期);第353-361页,摘要,第354页左栏第4段-右栏第4段,第355页右栏第1-2段,第356页第1-4段 *

Also Published As

Publication number Publication date
CN106349019B (en) 2019-09-24
CN106349011A (en) 2017-01-25
CN106349019A (en) 2017-01-25
CN106349011B (en) 2019-09-24
CN106349063B (en) 2019-09-24
CN106349063A (en) 2017-01-25
CN106349010A (en) 2017-01-25

Similar Documents

Publication Publication Date Title
CN106349010B (en) A method of producing cyclohexanol
JP2016041679A (en) Method for producing glucaric acid
CN104725229A (en) Method for preparing polyoxymethylene dimethyl ether carboxylate and methyl methoxy acetate
CN106946706A (en) A kind of method that dimethyl carbonate is prepared by carbon dioxide and the direct reaction of methanol
CN104725230A (en) Method for preparing polyoxymethylene dimethyl ether carboxylate and methyl methoxy acetate
CN102649081B (en) Reducing method for preparation of ethylene glycol catalyst by oxalate through hydrogenation
CN106431920B (en) The method that synthesis gas prepares dimethyl oxalate and by-product dimethyl carbonate
CN101412661B (en) Solid-state cardanol and preparation thereof
CN104725225A (en) Method for preparing polyoxymethylene dimethyl ether carboxylate and methyl methoxy acetate
CN103772174B (en) The method that acetone is prepared in aqueous isopropanol low-temperature gaseous phase dehydrogenation
CN103864587A (en) Method for synthesizing 2-ethyl-2-hexenal
CN114057564B (en) Method for hydrolyzing glycollate based on carbonic acid system as traceless catalyst
CN104557390A (en) Method for coproducing and synthesizing liquid methane from methanol purge gas
CN103272579A (en) Catalyst for oriented synthesis of isobutanol by synthesis gas as well as preparation method and application of catalyst
CN104311404A (en) Method for producing cinnamyl aldehyde
CN110526807A (en) A kind of hydroformylation reaction prepares the continuous reaction apparatus and method of aldehyde
CN104311394B (en) A kind of method of phenol deoxidation
CN111217771B (en) Method for directly epoxidation of propylene and molecular oxygen
CN106946678A (en) A kind of method that cyclohexane oxide solution decomposes preparing cyclohexanone and cyclohexanol
CN101380576B (en) Catalyst for hydrogenolysis of rare glycerol to produce diatomic alcohol and preparation method thereof
CN106631771B (en) Acrylic acid synthesis method
CN114539026B (en) Method for synthesizing 1, 2-pentanediol by using ethanol and 1, 2-propanediol as raw materials
CN108774135A (en) A kind of preparation method of 5- hydroxyl methyls
CN111233660A (en) Method for producing glycolic acid
CN203174007U (en) Ethylene glycol rectification device system in ethylene glycol production industry through synthesis gas

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant