CN106334505B - 一种多相流混合反应通道及微反应器 - Google Patents

一种多相流混合反应通道及微反应器 Download PDF

Info

Publication number
CN106334505B
CN106334505B CN201610972169.2A CN201610972169A CN106334505B CN 106334505 B CN106334505 B CN 106334505B CN 201610972169 A CN201610972169 A CN 201610972169A CN 106334505 B CN106334505 B CN 106334505B
Authority
CN
China
Prior art keywords
channel
main road
bypass passage
branch
hybrid reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610972169.2A
Other languages
English (en)
Other versions
CN106334505A (zh
Inventor
李凤
李处来
杨志华
任苗苗
黄振
李鹏飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bold And Generous Chemical Engineering Technology Co Ltd In Shandong
Original Assignee
Bold And Generous Chemical Engineering Technology Co Ltd In Shandong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bold And Generous Chemical Engineering Technology Co Ltd In Shandong filed Critical Bold And Generous Chemical Engineering Technology Co Ltd In Shandong
Priority to CN201610972169.2A priority Critical patent/CN106334505B/zh
Publication of CN106334505A publication Critical patent/CN106334505A/zh
Application granted granted Critical
Publication of CN106334505B publication Critical patent/CN106334505B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00889Mixing

Abstract

本发明是关于一种多相流混合反应通道及微反应器,多相混合反应通道结构包括主路通道和至少一个的支路通道,每个所述支路通道与所述主路通道相交并在相交处连通、形成汇流混合区,且在所述主路通道中位于所述汇流混合区的位置还设置有沿所述主路通道中的反应流体的流动方向延伸的主路分流结构。其能够保证多种液体充分混合,从而提高反应物的收率。

Description

一种多相流混合反应通道及微反应器
技术领域
本发明涉及化工生产技术领域,特别是涉及一种多相流混合反应通道及微反应器。
背景技术
在化工或医药生产过程中,多种流体之间的反应工作大多是通过微反应器来进行混合实现的。
目前生产中所使用的微反应器均是采用将多种流体通过一个或多个通道依次注入到混合空间内,并在混合空间内对多种流体进行混合,通道结构比较简单。由于多种流体是在进入混合空间后进行静态自然混合,其存在容易出现多种流体的混合不充分,导致反应物的收率不高的缺点。
发明内容
有鉴于此,本发明提供一种多相流混合反应通道及微反应器主要目的在于能够保证多种流体充分混合,从而提高反应物的收率。
为达到上述目的,本发明主要提供如下技术方案:
一方面,本发明提供一种多相混合反应通道结构,包括主路通道和至少一个的支路通道,每个所述支路通道与所述主路通道相交并在相交处连通、形成汇流混合区,且在所述主路通道中位于所述汇流混合区的位置还设置有沿所述主路通道中的反应流体的流动方向延伸的主路分流结构。
较优地,所述主路分流结构包括至少一个的沿所述主路通道中反应流体流向延伸设置的主路分流槽,所述主路分流槽将所述主路通道分隔成允许反应流体通过的至少两个主路分流通道。
较优地,所述主路分流槽为多个、且彼此之间平行且相间隔地设置,相邻所述主路分流槽之间间隔相等的第一预设距离。
较优地,在所述支路通道中位于所述汇流混合区的位置还设置有沿所述支路通道中的反应流体的流向延伸的支路分流结构。
较优地,所述支路分流结构包括一个以上的支路分流槽,且沿所述支路通道中的反应流体的流向延伸布置,所述支路分流槽将所述支路通道分隔成两个以上平行的、允许反应流体通过的支路分流通道。
较优地,所述主路通道与所述支路通道均包括至少一个平面外表面,且所述主路通道与所述支路通道之间通过各自的平面外表面相互贴合地叠放在一起且通过相贴合面形成连通,在所述汇流混合区形成层叠式相接。
较优地,当具有主路分流通道和支路分流通道时:在所述主路通道的所述平面外表面上、与所述支路分流通道相对应位置形成与所述支路分流通道相通的第一连通通道;在所述支路通道的所述平面外表面上、与所述主路分流通道相对应位置形成与所述主路分流通道相通的第二连通通道。
较优地,所述支路分流通道的流体流向的末端设置为盲端,且与所述主路通道的一侧边相平齐。
较优地,所述支路通道与所述主路通道相接的位置设置为使得所述支路通道中的反应流体的流向与所述主路通道中的反应流体的流向相垂直。
一种微反应器,包括任一前述的多相混合反应通道结构。
借由上述技术方案,本发明一种多相流混合反应通道及微反应器至少具有下列优点:
本发明通过采用每个所述支路通道与所述主路通道相交并在相交处连通、形成汇流混合区,且在所述主路通道中位于所述汇流混合区的位置还设置有沿所述主路通道中的反应流体的流动方向延伸的主路分流结构的技术方案,能够保证多种液体充分混合,从而提高反应物的收率。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
图1是本发明的多相流混合反应通道一实施例的结构示意图;
图2是图1的俯视图;
其中,1-主路通道;11-主路通道入口;2-支路通道;21-支路通道入口;3-主路分流结构;31-主路分流槽;32-主路分流通道;4-支路分流结构;41-支路分流槽;42-支路分流通道。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1和图2所示,一种多相流混合反应通道,包括主路通道1和至少一个的支路通道2,每个支路通道2与主路通道1相交并在相交处连通、形成汇流混合区,且在主路通道1中位于汇流混合区的位置还设置有沿主路通道1中的反应流体的流动方向延伸的主路分流结构3。其中支路通道2的数量可以根据反应流体的数量来确定,例如反应流体的数量是三种,则支路通道2的数量为两个。由于流体之间反应会产生一定的热量,主路通道1和至少一个的支路通道2可根据使用需求,综合考虑换热及耐腐蚀性,合理选取材料,优选可采用金属等导热性能较好的材料制作,以利于散热。
使用时,多种流体可以通过主路通道1上的主路通道入口和支路通道2上的支路通道入口分别进入主路通道1和支路通道2,并在支路通道2与主路通道1形成的汇流混合区进行混合。这样注入主路通道1和支路通道2的流体,能够边注入边混合,这样能够保证流体之间充分混合,进而使其反应更充分,提高反应物的收率。
作为一种可实施方式,主路分流结构3包括至少一个的沿主路通道1中反应流体流向延伸设置的主路分流槽31,主路分流槽31将主路通道1分隔成允许反应流体通过的至少两个主路分流通道32。这样能够将主路通道1中的流体流分成至少两束流体流,然后在与支路通道2中的流体流混合,这样能够更有效地提高主路通道1中的流体和支路通道2中的流体混合的充分性。较优地,主路分流槽31为多个、且彼此之间平行且相间隔地设置,相邻主路分流槽31之间间隔相等的第一预设距离,即多个主路分流通道32相互平行,并依此等间距设置。
作为一种可实施方式,在支路通道2中位于汇流混合区的位置还设置有沿支路通道2中的反应流体的流向延伸的支路分流结构4。具体地,支路分流结构4包括一个以上的支路分流槽41,且沿支路通道中的反应流体的流向延伸布置,支路分流槽41将支路通道分隔成两个以上平行的、允许反应流体通过的支路分流通道42。这样能够将支路通道2中的流体流分成至少两束流体流,然后在与主路通道1中的流体流混合,这样能够更有效地提高主路通道1中的流体和支路通道2中的流体混合的充分性。优选地,支路分流槽41为多个、且彼此之间平行且相间隔地设置,相邻支路分流槽41之间间隔相等的第二预设距离,即多个支路分流通道42相互平行,并依此等间距设置。
较优地,主路通道1与支路通道2均包括至少一个平面外表面,且主路通道1与支路通道2之间通过各自的平面外表面相互贴合地叠放在一起且通过相贴合面形成连通,在汇流混合区形成层叠式相接。具体地,当具有主路分流通道32和支路通道2与主路通道1时:在主路通道1的平面外表面上、与支路分流通道42相对应位置形成与支路分流通道相通的第一连通通道(图未示出);在支路通道2的平面外表面上、与主路分流通道32相对应位置形成与主路分流通道32相通的第二连通通道(图未示出)。
优选地,支路分流通道42的流体流向的末端设置为盲端,且与主路通道1的一侧边相平齐。这样能够使该多相混合反应通道结构的外形更加规整。
较优地,支路通道2与主路通道1相接的位置设置为使得支路通道2中的反应流体的流向与主路通道1中的反应流体的流向相垂直。具体可以采用支路分流通道42与主路分流通道32相互垂直的设计方式。这样能够使支路通道2与主路通道1中的流体流能够相互垂直冲击,而这种冲击力能够产生搅拌的效果,从而使混合效果更佳。
为实现发明目的本发明还提供一种微反应器,包括以上任意技术特征的多相混合反应通道结构。
综上所述,本领域技术人员容易理解的是,在不冲突的前提下,上述各有利方式可以自由地组合、叠加。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (6)

1.一种多相流混合反应通道,其特征在于:包括主路通道和至少一个的支路通道,每个所述支路通道与所述主路通道相交并在相交处连通、形成汇流混合区,且在所述主路通道中位于所述汇流混合区的位置还设置有沿所述主路通道中的反应流体的流动方向延伸的主路分流结构;
在所述支路通道中位于所述汇流混合区的位置还设置有沿所述支路通道中的反应流体的流向延伸的支路分流结构;
所述主路分流结构包括至少一个的沿所述主路通道中反应流体流向延伸设置的主路分流槽,所述主路分流槽将所述主路通道分隔成允许反应流体通过的至少两个主路分流通道;
所述支路分流结构包括一个以上的支路分流槽,且沿所述支路通道中的反应流体的流向延伸布置,所述支路分流槽将所述支路通道分隔成两个以上平行的、允许反应流体通过的支路分流通道;
所述主路通道与所述支路通道均包括至少一个平面外表面,且所述主路通道与所述支路通道之间通过各自的平面外表面相互贴合地叠放在一起且通过相贴合面形成连通,在所述汇流混合区形成层叠式相接。
2.根据权利要求1所述的多相流混合反应通道,其特征在于:所述主路分流槽为多个、且彼此之间平行且相间隔地设置,相邻所述主路分流槽之间间隔相等的第一预设距离。
3.根据权利要求1所述的多相流混合反应通道,其特征在于:当具有主路分流通道和支路分流通道时:在所述主路通道的所述平面外表面上、与所述支路分流通道相对应位置形成与所述支路分流通道相通的第一连通通道;在所述支路通道的所述平面外表面上、与所述主路分流通道相对应位置形成与所述主路分流通道相通的第二连通通道。
4.根据权利要求1所述的多相流混合反应通道,其特征在于:所述支路分流通道的流体流向的末端设置为盲端,且与所述主路通道的一侧边相平齐。
5.根据权利要求1-4之一所述的多相流混合反应通道,其特征在于:所述支路通道与所述主路通道相接的位置设置为使得所述支路通道中的反应流体的流向与所述主路通道中的反应流体的流向相垂直。
6.一种微反应器,其特征在于:包括权利要求1-5之一所述的多相流混合反应通道。
CN201610972169.2A 2016-10-31 2016-10-31 一种多相流混合反应通道及微反应器 Active CN106334505B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610972169.2A CN106334505B (zh) 2016-10-31 2016-10-31 一种多相流混合反应通道及微反应器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610972169.2A CN106334505B (zh) 2016-10-31 2016-10-31 一种多相流混合反应通道及微反应器

Publications (2)

Publication Number Publication Date
CN106334505A CN106334505A (zh) 2017-01-18
CN106334505B true CN106334505B (zh) 2019-04-19

Family

ID=57841793

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610972169.2A Active CN106334505B (zh) 2016-10-31 2016-10-31 一种多相流混合反应通道及微反应器

Country Status (1)

Country Link
CN (1) CN106334505B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108854891B (zh) * 2018-07-19 2023-10-24 常州那央生物科技有限公司 一种微反应芯片和其制备方法以及微流体混合方法
CN111208282B (zh) * 2020-01-14 2021-12-24 安徽奇书生物科技有限公司 一种多通道混流注入型灌流显微镜

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1736577A (zh) * 2005-07-08 2006-02-22 清华大学 一种多通道微结构反应器
CN105056820A (zh) * 2015-07-10 2015-11-18 清华大学 一种串联放大的微结构装置
CN206121719U (zh) * 2016-10-31 2017-04-26 山东豪迈化工技术有限公司 一种多相流混合反应通道及微反应器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012025224A1 (en) * 2010-08-24 2012-03-01 Chemtrix B.V. Micro-fluidic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1736577A (zh) * 2005-07-08 2006-02-22 清华大学 一种多通道微结构反应器
CN105056820A (zh) * 2015-07-10 2015-11-18 清华大学 一种串联放大的微结构装置
CN206121719U (zh) * 2016-10-31 2017-04-26 山东豪迈化工技术有限公司 一种多相流混合反应通道及微反应器

Also Published As

Publication number Publication date
CN106334505A (zh) 2017-01-18

Similar Documents

Publication Publication Date Title
US20170216796A1 (en) Fluid mixing device
US20140290786A1 (en) Microfluidic channel and microfluidic device
CN106334505B (zh) 一种多相流混合反应通道及微反应器
CN105664773A (zh) 平面被动式微混合器
US20190030503A1 (en) Hollow chamber x-mixer heat exchanger
CN105170207B (zh) 一种基于支路结构的微液滴控制芯片
CN103638853A (zh) 一种s型被动式微混合器
CN105126687B (zh) 一种分合式被动微混合器
CN106492718B (zh) 一种芯片型微反应通道及微反应器
CN206121719U (zh) 一种多相流混合反应通道及微反应器
CN112755867B (zh) 一种微混合芯片、微混合装置
CN108201847A (zh) 基于成涡结构强化混合的圆弧挡板平面被动式微混合器
CN208320829U (zh) 一种微流控长液路混合器
CN205055990U (zh) 新型微反应器反应通道结构
CN204429262U (zh) 微反应器
CN205886751U (zh) 被动式微流体混合器
JP3810778B2 (ja) 平板静止型混合器
CN110681298B (zh) 3d层流微混合器
CN102233241A (zh) 一种基于成涡结构强化混合的平面被动式微混合器
KR101666425B1 (ko) 미세 유로 반응기
CN110052297A (zh) 用于流体混匀的微流控芯片和多组分流体混匀方法
CN206381935U (zh) 一种3d不对称分合结构被动式微混合器
JP2015533648A (ja) 混合機
CN108201848A (zh) 一种3d不对称分合结构被动式微混合器
CN204429263U (zh) 微通道反应器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant