CN106326188A - 基于反向学习半径粒子群优化的任务划分系统及其方法 - Google Patents

基于反向学习半径粒子群优化的任务划分系统及其方法 Download PDF

Info

Publication number
CN106326188A
CN106326188A CN201610796407.9A CN201610796407A CN106326188A CN 106326188 A CN106326188 A CN 106326188A CN 201610796407 A CN201610796407 A CN 201610796407A CN 106326188 A CN106326188 A CN 106326188A
Authority
CN
China
Prior art keywords
task
splitting scheme
backward learning
radius
scheme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610796407.9A
Other languages
English (en)
Other versions
CN106326188B (zh
Inventor
张兴明
祁晓峰
龙伟军
高彦钊
黄雅静
魏帅
沈剑良
宋克
于洪
李沛杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PLA Information Engineering University
Original Assignee
PLA Information Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PLA Information Engineering University filed Critical PLA Information Engineering University
Priority to CN201610796407.9A priority Critical patent/CN106326188B/zh
Publication of CN106326188A publication Critical patent/CN106326188A/zh
Application granted granted Critical
Publication of CN106326188B publication Critical patent/CN106326188B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/76Architectures of general purpose stored program computers
    • G06F15/78Architectures of general purpose stored program computers comprising a single central processing unit
    • G06F15/7867Architectures of general purpose stored program computers comprising a single central processing unit with reconfigurable architecture
    • G06F15/7871Reconfiguration support, e.g. configuration loading, configuration switching, or hardware OS
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/76Architectures of general purpose stored program computers
    • G06F15/78Architectures of general purpose stored program computers comprising a single central processing unit
    • G06F15/7867Architectures of general purpose stored program computers comprising a single central processing unit with reconfigurable architecture
    • G06F15/7871Reconfiguration support, e.g. configuration loading, configuration switching, or hardware OS
    • G06F15/7882Reconfiguration support, e.g. configuration loading, configuration switching, or hardware OS for self reconfiguration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2117/00Details relating to the type or aim of the circuit design
    • G06F2117/08HW-SW co-design, e.g. HW-SW partitioning

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Machine Translation (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

本发明涉及一种基于反向学习半径粒子群优化的任务划分系统及其方法,该系统包含半径粒子群优化模块、判决器模块及反向学习模块,半径粒子群优化模块根据服务请求及任务属性,评价候选划分方案,设计适应函数,动态分区域计算区域最优任务划分方案,选取全局最优任务划分方案;判决器模块记录划分方案,判断是否陷入局部限值,若是则触发反向学习模块,否则不触发反向学习模块,继续进行半径粒子群优化;反向学习模块对划分方案进行退化,将退化结果反馈给半径粒子群优化模块,继续求解任务划分方案。本发明通过半径粒子群优化求解全局最优任务划分方案,有效提高求解精度;通过反向学习机制将划分方案进行退化,克服局部极值问题,提高任务划分质量,系统执行性能显著提高。

Description

基于反向学习半径粒子群优化的任务划分系统及其方法
技术领域
本发明属于嵌入式系统软硬件协同设计任务划分技术领域,特别涉及一种基于反向学习半径粒子群优化的任务划分系统及其方法。
背景技术
任务划分是可重构片上系统中软硬件协同设计的关键步骤,其数学模型属于多目标优化问题。求解任务划分方案去最初采用手工方法,随着系统复杂性增加,任务划分问题变得越来越复杂,研究人员使用自动化的方法解决任务划分问题。广义的任务划分问题将应用程序抽象为任务图G={V,E},G是一个有向无环图,包含一组N个节点V和若干个有向边E,每个节点vi∈V,i∈N表示一个需要在处理器中执行的计算任务,每条有向边eij∈E表示数据从任务i通过总线传输到任务j,任务vi的属性包括vi={xi,TSi,THi,ESi,EHi,Ai},xi表示任务vi的候选划分位置,在任务划分为二向划分时,xi={0,1},xi=1表示任务vi在软件计算部件中执行,xi=0表示任务vi在硬件计算部件中执行,TSi,THi分别表示任务vi在软件计算部件和硬件计算部件中的执行时间,ESi,EHi分别表示任务vi在软件计算部件和硬件计算部件中的能耗,Ai表示任务vi在硬件计算部件中执行时需要的硬件面积资源,硬件面积资源通常意味着系统设计时的成本开销。一般而言,任务划分的目标是在系统约束条件范围内,减少任务执行时间和能耗,达到提高系统性能的目的。对于嵌入式系统中的任务二向划分,即求解出最优方案X,X={x1,x2,...,xN}。即将任务图G中节点集合V划分为{Vs,Vh}。Vs表示在CPU执行的任务集合,Vh表示在FPGA中执行的任务集合,Vs∪Vh=V且
传统的基于线性规划任务划分方法,通过求解多项式得到满足系统条件(时间、功耗、成本)的划分方案,这种求解方法的优点是可以求得最优解。但是在大规模任务个数下,该类算法求得最优解的代价是执行较长时间,无法满足可重构系统执行多个应用程序时的实时性要求。因此,目前研究流行的方法是使用以粒子群优化为代表的启发式算法快速求解任务划分方案。粒子群算法是一种新颖的基于种群更新的启发式算法,该方法通过随机初始化粒子的个体位置并在更新粒子的过程中搜索群体的最优位置,从而求得全局最优解。在每一代,粒子的更新速度和位置在个体历史最优解和全局最优解的指导下进行更新。粒子群算法用来求解多目标优化问题,具有参数简单,收敛迅速的优点,但是其求得的近似解质量较差。一方面该算法求解范围较小,精度不高,易错过最优解;另一方面局部极值问题会导致求解过早收敛。
在经典的PSO任务划分算法中,每个粒子代表一种候选划分方案,随机生成m个候选划分方案X1,X2,...,Xm,任务个数为N,即Xi={xi1,xi2,...,xid,...,xiN}是N维向量,处在欧氏空间RN中,xid是Xi的第d个元素。粒子群群体通过不断迭代,更新划分方案,迭代次数为K∈N*,当前迭代次数k∈[1,K]。每个xid对应一个更新速度vid,更新速度向量为Vi={vi1,vi2,...,vid,...,viN}。更新速度决定候选划分方案更新速度,该速度要控制在一定的范围|vid|<vmaxd,即速度阈值向量为Vmax={v1max,...,vdmax,...,vNmax}。粒子群算法通过适应函数f(X)评价候选划分方案,找到适应值最好的划分方案。f(X)由划分问题的目标函数式(4)确定,用以度量候选方案适应系统约束条件的程度。是Xi更新过程中适应值最优的划分方案。是在集合中,适应值最优的划分方案。每次迭代,候选划分方案参考指导更新方向。在第k代时,xid和vid对应表示为更新公式如下:
PSO任务划分算法的更新公式由三部分构成,第一部分是惯性部分,参数ω是惯性因子,用以衡量当前的更新速度对更新的影响;第二部分是自我认知部分,反映了粒子对自身历史经验的记忆;第三部分是社会认知部分,反映了粒子间协同合作与知识共享的种群历史经验;参数c1、c2是学习因子,分别表示个体最优值和全局最优值对种群更新方向的影响,r1、r2是[0,1]之间的随机数。基于粒子群优化的任务划分方法虽然能够快速求解划分方案,但这种方法只能求得最优划分方案的近似解。由于求解范围较小、求解精度不足和局部极值问题,粒子群优化任务划分算法还没有很好地解决近似解质量问题的技术方案。
发明内容
为克服现有技术中的不足,本发明提供一种基于反向学习半径粒子群优化的任务划分系统及其方法,通过动态半径粒子群优化扩展求解范围,并提高求解精度;通过反向学习机制解决局部极值问题,从而提高求解质量和系统性能。
按照本发明所提供的设计方案,一种基于反向学习半径粒子群优化的任务划分系统,包含半径粒子群优化模块、判决器模块及反向学习模块,其中,半径粒子群优化模块,根据接收到的任务划分的服务请求及每个任务属性,根据任务属性评价候选划分方案,设计粒子群算法的适应函数,动态分区域计算区域最优任务划分方案,并从区域最优值中选取全局最优任务划分方案,并输出给判决器模块;判决器模块,记录半径粒子群优化模块计算得到的划分方案,并判断其是否陷入局部限值,若是,则触发反向学习模块,否则,不触发反向学习模块,继续进行半径粒子群优化;反向学习模块,采用反向学习机制对划分方案进行退化,使其跳出局部限值,并将退化结果反馈给半径粒子群优化模块,半径粒子群优化模块根据反馈的退化结果继续求解任务划分方案并输出。
上述的,任务属性至少包含任务在软硬件中的执行时间、功耗、成本。
上述的,适应函数还包含惩罚机制,当候选划分方案未超出系统可使用硬件面积资源,则适应值随硬件面积资源利用程度以指数函数形式减小,当候选划分方案超出系统可使用硬件面积资源,则适应值依据当前迭代次数迅速增加。
一种基于反向学习半径粒子群优化的任务划分方法,具体包含如下步骤:
步骤1、根据接收到的任务划分的服务请求及每个任务属性,初始化任务划分方案集合,根据硬件面积资源、执行时间和能耗,评价候选划分方案,确定粒子群算法的适应函数;
步骤2、根据粒子群算法的适应函数确定当前划分方案的适应值
步骤3、利用动态半径,依据迭代次数,动态调整每个候选划分方案的区域大小,采用贪心策略求解区域最优解,从这些区域最优解中求解出全局最优解,在求解过程中若粒子种群陷入局部限值时,则进入步骤4,触发反向学习机制,否则,进入步骤5;
步骤4、对陷入局部极值的任务划分方案采取反向学习机制,通过粒子的初始最差位置和个体历史最差位置通过反向学习更新公式进行迭代,若迭代次数满足反向学习次数L,则返回步骤2执行,否则,继续进行反向学习;
步骤5、结束并输出任务划分的最终方案,全局最优解即为任务划分的最终方案。
上述的,步骤1中初始化任务划分方案结合包含如下内容:假设任务个数为D,则任务划分方案是D维向量,初始化划分方案个数N,迭代次数K,任务划分方案集合和相应的更新速度Vi k,i∈N,k∈K,其中,表示第k代时的第i个划分方案,Vi k表示第k代时的第i个划分方案的更新速度,在初始化时和Vi k应为和Vi 0,适应函数表示为:
其中,A(x)、T(x)、E(x)分别表示任务在硬件面积资源、任务执行时间和能耗开销,δA、δT和δT是硬件面积资源、任务执行时间和能耗开销的归一化因子,δA=max{maxA-Amax,Amax-minA},δT=maxT-minT,δE=maxE-minE,a、b和c分别为对应的影响因子,惩罚因子
上述的,所述步骤2具体内容如下:根据适应函数:
确定当前划分方案的适应值
上述的,步骤3具体包含如下内容:
步骤3.1、比较每一代找到迭代过程中使最小的及各划分方案历史最优解,由表示;
步骤3.2、根据当前迭代次数k,设置动态半径r,r的表达式如下:
r = K - k K · N ;
步骤3.3、规定划分方案之间的距离通过欧式距离表示,以为圆心,在半径r的区域内找到适应值最小的区域最优划分方案使得
步骤3.4、在区域最优划分方案中,找到适应值最小的全局最优划分方案
步骤3.5、根据半径粒子群优化更新公式更新划分方案和更新速度Vi k+1,更新公式如下:
v i d k + 1 = ω · v i d k + c 1 r 1 ( X i d R - x i d k ) + c 2 r 2 ( X g d * - x i d k ) x i d k + 1 = x i d k + v i d k + 1
其中,各向量的下标d∈N,表示向量的第d个元素,ω是惯性因子,c1和c2是学习因子,r1和r2是0到1之间的随机数;
步骤3.6、判断当前迭代次数是否已经到达预设值K。如果是,转到步骤5,输出当前认为的全局最优划分方案作为任务划分的最优解决方案;否则,转到步骤4,判断是否陷入局部限制。
上述的,步骤4具体包含如下内容:
步骤4.1、设置计数器,当计数器记录到连续迭代P次未发生改变,P=K/5取整,则认为陷入局部极值,执行下一步骤,触发反向学习机制;否则,转到步骤2,继续进行动态半径粒子群优化求解;
步骤4.2、初始化反向学习机制,将触发反向学习机制时的第k代划分方案集合和更新速度Vi k赋值给反向学习初始化的初始化反向学习次数L,最差划分方案Wi l,i∈N,l∈L,Wi l表示第l次反向学习时第i个划分方案历史最差的划分方案;
步骤4.3、从Wi 0中随机选择初始最差划分方案;
步骤4.4、根据反向学习公式更新划分方案和更新速度反向学习更新公式如下:
v R i d l + 1 = ω · v R i d l + c 3 r 3 ( x R i d l - W i d l ) + c 4 r 4 ( x R i d l - W i d 0 ) x R i d l + 1 = x R i d l + v R i d l + 1 ;
步骤4.5、从各划分方案中,找到相应的适应值最大的历史最差解Wi l+1
步骤4.6、判断反向学习是否结束,若反向学习次数达到L,则返回并令 跳转到步骤2;否则跳转到步骤4.3,继续进行反向学习。
优选的,步骤4.2中:在反向学习初始化时,Wi 0是从中随机选择两两之间距离大于排异半径的划分方案集合,其中,若集合内划分方案个数不足N,则随机生成满足条件的划分方案填满Wi 0;反向学习初始化后,Wi l表示的历史最差划分方案。
本发明的有益效果:
1、本发明通过动态半径分区域选取区域最优的任务划分方案,并从区域最优值中选取全局最优任务划分方案,与现有技术相比,动态半径粒子群优化扩展了求解范围,并且在算法出去加速了求解速度,在算法后期提高了求解精度。
2、本发明在判定结果陷入局部极值后,通过反向学习机制将划分方案进行退化,克服局部极值问题;经过反向学习后的划分方案集合能够在此基础上进行深度求解,从而阶段性地提高了任务划分质量,系统执行性能显著提高。
附图说明:
图1为本发明的系统原理图;
图2为本发明的方法流程示意图;
图3为实施例四的流程示意图。
具体实施方式:
下面结合附图和技术方案对本发明作进一步详细的说明,并通过优选的实施例详细说明本发明的实施方式,但本发明的实施方式并不限于此。
实施例一,参见图1所示,一种基于反向学习半径粒子群优化的任务划分系统,包含半径粒子群优化模块、判决器模块及反向学习模块,其中,半径粒子群优化模块,根据接收到的任务划分的服务请求及每个任务属性,根据任务属性评价候选划分方案,设计粒子群算法的适应函数,动态分区域计算区域最优任务划分方案,并从区域最优值中选取全局最优任务划分方案,并输出给判决器模块;判决器模块,记录半径粒子群优化模块计算得到的划分方案,并判断其是否陷入局部限值,若是,则触发反向学习模块,否则,不触发反向学习模块,继续进行半径粒子群优化;反向学习模块,采用反向学习机制对划分方案进行退化,使其跳出局部限值,并将退化结果反馈给半径粒子群优化模块,半径粒子群优化模块根据反馈的退化结果继续求解任务划分方案并输出,与现有技术相比,动态半径粒子群优化扩展了求解范围,并且在算法出去加速了求解速度,在算法后期提高了求解精度。
实施例二,与实施例一基本相同,不同之处在于:任务属性至少包含任务在软硬件中的执行时间、功耗、成本。
适应函数还包含惩罚机制,当候选划分方案未超出系统可使用硬件面积资源,则适应值随硬件面积资源利用程度以指数函数形式减小,当候选划分方案超出系统可使用硬件面积资源,则适应值依据当前迭代次数迅速增加,迭代次数较小时,惩罚力度小,允许超出可使用硬件面积资源较小的候选划分方案通过自我更新修正错误,迭代次数较大时,惩罚力度大,不再容忍错误候选划分方案。
实施例三,参见图2所示,一种基于反向学习半径粒子群优化的任务划分方法,具体包含如下步骤:
步骤1、根据接收到的任务划分的服务请求及每个任务属性,初始化任务划分方案集合,根据硬件面积资源、执行时间和能耗,评价候选划分方案,确定粒子群算法的适应函数;
步骤2、根据粒子群算法的适应函数确定当前划分方案的适应值
步骤3、利用动态半径,依据迭代次数,动态调整每个候选划分方案的区域大小,采用贪心策略求解区域最优解,从这些区域最优解中求解出全局最优解,在求解过程中若粒子种群陷入局部限值时,则进入步骤4,触发反向学习机制,否则,进入步骤5;
步骤4、对陷入局部极值的任务划分方案采取反向学习机制,通过粒子的初始最差位置和个体历史最差位置通过反向学习更新公式进行迭代,若迭代次数满足反向学习次数L,则返回步骤2执行,否则,继续进行反向学习;
步骤5、结束并输出任务划分的最终方案,全局最优解即为任务划分的最终方案。
通过动态半径分区域选取区域最优的任务划分方案,并从区域最优值中选取全局最优任务划分方案,与现有技术相比,动态半径粒子群优化扩展了求解范围,并且在算法出去加速了求解速度,在算法后期提高了求解精度;在判定结果陷入局部极值后,通过反向学习机制将划分方案进行退化,克服局部极值问题;经过反向学习后的划分方案集合能够在此基础上进行深度求解,从而阶段性地提高了任务划分质量,系统执行性能显著提高。
实施例四,参见图3所示,一种基于反向学习半径粒子群优化的任务划分方法,具体包含如下步骤:
步骤1、根据接收到的任务划分的服务请求及每个任务属性,初始化任务划分方案集合,根据硬件面积资源、执行时间和能耗,评价候选划分方案,确定粒子群算法的适应函数,假设任务个数为D,则任务划分方案是D维向量,初始化划分方案个数N,迭代次数K,任务划分方案集合和相应的更新速度Vi k,i∈N,k∈K,其中,表示第k代时的第i个划分方案,Vi k表示第k代时的第i个划分方案的更新速度,在初始化时和Vi k应为和Vi 0,适应函数表示为:
其中,A(x)、T(x)、E(x)分别表示任务在硬件面积资源、任务执行时间和能耗开销,δA、δT和δT是硬件面积资源、任务执行时间和能耗开销的归一化因子,δA=max{maxA-Amax,Amax-minA},δT=maxT-minT,δE=maxE-minE,a、b和c分别为对应的影响因子,惩罚因子
步骤2、根据粒子群算法的适应函数确定当前划分方案的适应值
步骤3、利用动态半径,依据迭代次数,动态调整每个候选划分方案的区域大小包含如下内容:
步骤3.1、比较每一代找到迭代过程中使最小的及各划分方案历史最优解,由表示;
步骤3.2、根据当前迭代次数k,设置动态半径r,r的表达式如下:
r = K - k K · N ;
步骤3.3、规定划分方案之间的距离通过欧式距离表示,以为圆心,在半径r的区域内找到适应值最小的区域最优划分方案使得
步骤3.4、在区域最优划分方案中,找到适应值最小的全局最优划分方案
步骤3.5、根据半径粒子群优化更新公式更新划分方案和更新速度Vi k+1,更新公式如下:
v i d k + 1 = ω · v i d k + c 1 r 1 ( X i d R - x i d k ) + c 2 r 2 ( X g d * - x i d k ) x i d k + 1 = x i d k + v i d k + 1
其中,各向量的下标d∈N,表示向量的第d个元素,ω是惯性因子,c1和c2是学习因子,r1和r2是0到1之间的随机数;
步骤3.6、判断当前迭代次数是否已经到达预设值K。如果是,转到步骤5,输出当前认为的全局最优划分方案作为任务划分的最优解决方案;否则,转到步骤4,判断是否陷入局部限制。
步骤4、对陷入局部极值的任务划分方案采取反向学习机制,具体包含内容如下:
步骤4.1、设置计数器,当计数器记录到连续迭代P次未发生改变,P=K/5取整,则认为陷入局部极值,执行下一步骤,触发反向学习机制;否则,转到步骤2,继续进行动态半径粒子群优化求解;
步骤4.2、初始化反向学习机制,将触发反向学习机制时的第k代划分方案集合和更新速度Vi k赋值给反向学习初始化的初始化反向学习次数L,最差划分方案Wi l,i∈N,l∈L,Wi l表示第l次反向学习时第i个划分方案历史最差的划分方案;在反向学习初始化时,Wi 0是从中随机选择两两之间距离大于排异半径的划分方案集合,其中,若集合内划分方案个数不足N,则随机生成满足条件的划分方案填满Wi 0;反向学习初始化后,Wi l表示的历史最差划分方案;
步骤4.3、从Wi 0中随机选择初始最差划分方案;
步骤4.4、根据反向学习公式更新划分方案和更新速度反向学习更新公式如下:粒子之间的距离采用欧式距离,为保证初始最差粒子能将结果拉出局部限值,在选择初始最差粒子时,初始最差粒子之间的距离大于预设的距离在反向学习机制中,更新速度阈值增加为RVmax=2·Vmax,使得候选划分方案在初始最差粒子Wi 0和个体历史最差粒子Wi k的牵引下,加速跳出局部极值;
步骤4.5、从各划分方案中,找到相应的适应值最大的历史最差解Wi l+1
步骤4.6、判断反向学习是否结束,若反向学习次数达到L,则返回并令 跳转到步骤2;否则跳转到步骤4.3,继续进行反向学习。
步骤5、结束并输出任务划分的最终方案,全局最优解即为任务划分的最终方案。
本发明中,首先初始化任务划分方案集合,设计粒子群方法的适应函数,采用半径粒子群优化逐代更新任务划分方案,从硬件面积资源、执行时间和能耗三个方面评价候选划分方案,进行归一化处理,综合设计适应函数,在设计过程中,考虑到划分方案若超出系统可提供的硬件面积资源,任务将无法运行,因此,在对硬件面积资源评价时增加惩罚机制;其次,利用动态半径,以“分而治之”思想,分区域选取区域最优值,并从区域最优值中选取全局最优值,一般,在算法初期,Pi距离最优解较远,使用较大的半径在Pi局部搜索有利于结果快速收敛;在算法后期,Pi距离最优划分解较近,通过缩小半径提高搜索精度,依据迭代次数,动态调整每个候选划分方案的区域大小,从这些区域的最优解中评选出全局最优解,作为指导求解的方向。动态半径随迭代次数进行线性变化,更新如式如下:粒子之间的距离采用欧式距离;在半径r范围内,以当前粒子个体最优值为圆心,随机选取该粒子的邻居;采用贪心策略找到该区域的最优解粒子更新公式变化为:结合反向学习机制,当种群陷入局部极值时,触发反向学习机制,帮助种群跳出局部极值,对反向学习后的划分方案继续求解,直至迭代次数达到预设值,从而提高求解精度、求解质量和系统性能。
本发明不局限于上述具体实施方式,本领域技术人员还可据此做出多种变化,但任何与本发明等同或者类似的变化都应涵盖在本发明权利要求的范围内。

Claims (9)

1.一种基于反向学习半径粒子群优化的任务划分系统,其特征在于:包含半径粒子群优化模块、判决器模块及反向学习模块,其中,半径粒子群优化模块,根据接收到的任务划分的服务请求及每个任务属性,根据任务属性评价候选划分方案,设计粒子群算法的适应函数,动态分区域计算区域最优任务划分方案,并从区域最优值中选取全局最优任务划分方案,并输出给判决器模块;判决器模块,记录半径粒子群优化模块计算得到的划分方案,并判断其是否陷入局部限值,若是,则触发反向学习模块,否则,不触发反向学习模块,继续进行半径粒子群优化;反向学习模块,采用反向学习机制对划分方案进行退化,使其跳出局部限值,并将退化结果反馈给半径粒子群优化模块,半径粒子群优化模块根据反馈的退化结果继续求解任务划分方案并输出。
2.根据权利要求1所述的基于反向学习半径粒子群优化的任务划分系统,其特征在于:任务属性至少包含任务在软硬件中的执行时间、功耗、成本。
3.根据权利要求1所述的基于反向学习半径粒子群优化的任务划分系统,其特征在于:适应函数还包含惩罚机制,当候选划分方案未超出系统可使用硬件面积资源,则适应值随硬件面积资源利用程度以指数函数形式减小,当候选划分方案超出系统可使用硬件面积资源,则适应值依据当前迭代次数迅速增加。
4.一种基于反向学习半径粒子群优化的任务划分方法,其特征在于:具体包含如下步骤:
步骤1、根据接收到的任务划分的服务请求及每个任务属性,初始化任务划分方案集合,根据硬件面积资源、执行时间和能耗,评价候选划分方案,确定粒子群算法的适应函数;
步骤2、根据粒子群算法的适应函数确定当前划分方案的适应值
步骤3、利用动态半径,依据迭代次数,动态调整每个候选划分方案的区域大小,采用贪心策略求解区域最优解,从这些区域最优解中求解出全局最优解,在求解过程中若粒子种群陷入局部限值时,则进入步骤4,触发反向学习机制,否则,进入步骤5;
步骤4、对陷入局部极值的任务划分方案采取反向学习机制,通过粒子的初始最差位置和个体历史最差位置通过反向学习更新公式进行迭代,若迭代次数满足反向学习次数L,则返回步骤2执行,否则,继续进行反向学习;
步骤5、结束并输出任务划分的最终方案,全局最优解即为任务划分的最终方案。
5.根据权利要求4所述的基于反向学习半径粒子群优化的任务划分方法,其特征在于:步骤1中初始化任务划分方案结合包含如下内容:假设任务个数为D,则任务划分方案是D维向量,初始化划分方案个数N,迭代次数K,任务划分方案集合和相应的更新速度Vi k,i∈N,k∈K,其中,表示第k代时的第i个划分方案,Vi k表示第k代时的第i个划分方案的更新速度,在初始化时和Vi k应为和Vi 0,适应函数表示为:
其中,A(x)、T(x)、E(x)分别表示任务在硬件面积资源、任务执行时间和能耗开销,δA、δT和δT是硬件面积资源、任务执行时间和能耗开销的归一化因子,δA=max{maxA-Amax,Amax-minA},δT=maxT-minT,δE=maxE-minE,a、b和c分别为对应的影响因子,惩罚因子
6.根据权利要求5所述的基于反向学习半径粒子群优化的任务划分方法,其特征在于:步骤2具体内容如下:根据适应函数:
确定当前划分方案的适应值
7.根据权利要求5所述的基于反向学习半径粒子群优化的任务划分方法,其特征在于:步骤3具体包含如下内容:
步骤3.1、比较每一代找到迭代过程中使最小的及各划分方案历史最优解,由表示;
步骤3.2、根据当前迭代次数k,设置动态半径r,r的表达式如下:
r = K - k K · N ;
步骤3.3、规定划分方案之间的距离通过欧式距离表示,以为圆心,在半径r的区域内找到适应值最小的区域最优划分方案使得
步骤3.4、在区域最优划分方案中,找到适应值最小的全局最优划分方案
步骤3.5、根据半径粒子群优化更新公式更新划分方案和更新速度更新公式如下:
v id k + 1 = ω · v id k + c 1 r 1 ( X id R - x id k ) + c 2 r 2 ( X gd * - x id k ) x id k + 1 = x id k + v id k + 1
其中,各向量的下标d∈N,表示向量的第d个元素,ω是惯性因子,c1和c2是学习因子,r1和r2是0到1之间的随机数;
步骤3.6、判断当前迭代次数是否已经到达预设值K,如果是,转到步骤5,输出当前认为的全局最优划分方案作为任务划分的最优解决方案;否则,转到步骤4,判断是否陷入局部限制。
8.根据权利要求5所述的基于反向学习半径粒子群优化的任务划分方法,其特征在于:步骤4具体包含如下内容:
步骤4.1、设置计数器,当计数器记录到连续迭代P次未发生改变,P=K/5取整,则认为陷入局部极值,执行下一步骤,触发反向学习机制;否则,转到步骤2,继续进行动态半径粒子群优化求解;
步骤4.2、初始化反向学习机制,将触发反向学习机制时的第k代划分方案集合和更新速度Vi k赋值给反向学习初始化的初始化反向学习次数L,最差划分方案Wi l,i∈N,l∈L,Wi l表示第l次反向学习时第i个划分方案历史最差的划分方案;
步骤4.3、从Wi 0中随机选择初始最差划分方案;
步骤4.4、根据反向学习公式更新划分方案和更新速度反向学习更新公式如下:
v Rid l + 1 = ω · v Rid l + c 3 r 3 ( x Rid l - W id l ) + c 4 r 4 ( x Rid l - W id 0 ) x Rid l + 1 = x Rid l + v Rid l + 1 ;
步骤4.5、从各划分方案中,找到相应的适应值最大的历史最差解Wi l+1
步骤4.6、判断反向学习是否结束,若反向学习次数达到L,则返回并令跳转到步骤2;否则跳转到步骤4.3,继续进行反向学习。
9.根据权利要求8所述的基于反向学习半径粒子群优化的任务划分方法,其特征在于:步骤4.2中:在反向学习初始化时,Wi 0是从中随机选择两两之间距离大于排异半径的划分方案集合,其中,若集合内划分方案个数不足N,则随机生成满足条件的划分方案填满Wi 0;反向学习初始化后,Wi l表示的历史最差划分方案。
CN201610796407.9A 2016-08-31 2016-08-31 基于反向学习半径粒子群优化的任务划分系统及其方法 Active CN106326188B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610796407.9A CN106326188B (zh) 2016-08-31 2016-08-31 基于反向学习半径粒子群优化的任务划分系统及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610796407.9A CN106326188B (zh) 2016-08-31 2016-08-31 基于反向学习半径粒子群优化的任务划分系统及其方法

Publications (2)

Publication Number Publication Date
CN106326188A true CN106326188A (zh) 2017-01-11
CN106326188B CN106326188B (zh) 2019-05-07

Family

ID=57786571

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610796407.9A Active CN106326188B (zh) 2016-08-31 2016-08-31 基于反向学习半径粒子群优化的任务划分系统及其方法

Country Status (1)

Country Link
CN (1) CN106326188B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110161461A (zh) * 2019-03-28 2019-08-23 南京工程学院 一种水下传感网络节点自定位方法
CN111859688A (zh) * 2020-07-27 2020-10-30 浙江量大智能科技有限公司 一种基于压抑心理函数的多飞行器协同追溯气味源方法
CN113222259A (zh) * 2021-05-18 2021-08-06 盐城工学院 一种用于工程造价的进度管理系统
CN114599004A (zh) * 2022-01-28 2022-06-07 北京邮电大学 一种基站布局方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090046602A1 (en) * 1991-05-13 2009-02-19 Broadcom Corporation Radio frequency local area network
CN105426954A (zh) * 2015-08-20 2016-03-23 武汉科技大学 一种基于多策略协同作用的粒子群优化的方法
CN105468452A (zh) * 2014-09-04 2016-04-06 中国联合网络通信集团有限公司 一种资源池的分配方法及资源调度器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090046602A1 (en) * 1991-05-13 2009-02-19 Broadcom Corporation Radio frequency local area network
CN105468452A (zh) * 2014-09-04 2016-04-06 中国联合网络通信集团有限公司 一种资源池的分配方法及资源调度器
CN105426954A (zh) * 2015-08-20 2016-03-23 武汉科技大学 一种基于多策略协同作用的粒子群优化的方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110161461A (zh) * 2019-03-28 2019-08-23 南京工程学院 一种水下传感网络节点自定位方法
CN111859688A (zh) * 2020-07-27 2020-10-30 浙江量大智能科技有限公司 一种基于压抑心理函数的多飞行器协同追溯气味源方法
CN113222259A (zh) * 2021-05-18 2021-08-06 盐城工学院 一种用于工程造价的进度管理系统
CN114599004A (zh) * 2022-01-28 2022-06-07 北京邮电大学 一种基站布局方法和装置
CN114599004B (zh) * 2022-01-28 2024-01-05 北京邮电大学 一种基站布局方法和装置

Also Published As

Publication number Publication date
CN106326188B (zh) 2019-05-07

Similar Documents

Publication Publication Date Title
CN110110862A (zh) 一种基于适应性模型的超参数优化方法
CN106326188A (zh) 基于反向学习半径粒子群优化的任务划分系统及其方法
CN108364016A (zh) 基于多分类器的渐进式半监督分类方法
CN106022463A (zh) 基于改进粒子群算法的个性化学习路径优化方法
CN103279746B (zh) 一种基于支持向量机的人脸识别方法及系统
CN109862532B (zh) 轨道交通状态监测多传感器节点布局优化方法及系统
CN106228265B (zh) 基于改进粒子群优化的总拖期运输计划调度方法
CN110851566A (zh) 一种改进的可微分网络结构搜索的方法
CN106022465A (zh) 改进人工蜂群优化的极限学习机方法
CN106529732A (zh) 基于神经网络与随机前沿分析的碳排放效率预测方法
CN111062462A (zh) 基于差分进化算法的局部搜索和全局搜索融合方法及系统
CN104657745B (zh) 一种已标注样本的维护方法及双向学习交互式分类方法
CN106569954A (zh) 一种基于kl散度的多源软件缺陷预测方法
CN113887748B (zh) 在线联邦学习任务分配方法、装置、联邦学习方法及系统
Zhang et al. A PSO-Fuzzy group decision-making support system in vehicle performance evaluation
Guoli et al. The improved research on k-means clustering algorithm in initial values
CN105550711A (zh) 一种基于萤火虫算法的选择性集成学习方法
CN105955921A (zh) 基于自动发现抽象动作的机器人分层强化学习初始化方法
Michelakos et al. A hybrid classification algorithm evaluated on medical data
CN109074348A (zh) 用于对输入数据集进行迭代聚类的设备和迭代方法
CN104462853A (zh) 用于电子病历特征提取的种群精英分布云协同均衡方法
CN107194155A (zh) 一种基于小数据集和贝叶斯网络的威胁评估建模方法
Triguero et al. A combined mapreduce-windowing two-level parallel scheme for evolutionary prototype generation
CN113780146B (zh) 基于轻量化神经架构搜索的高光谱图像分类方法及系统
CN115936058A (zh) 一种基于图注意力网络的多智能体迁移强化学习方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant