CN106324620A - Tropospheric zenith delay method based not on real-time measurement of surface meteorological data - Google Patents
Tropospheric zenith delay method based not on real-time measurement of surface meteorological data Download PDFInfo
- Publication number
- CN106324620A CN106324620A CN201610623962.1A CN201610623962A CN106324620A CN 106324620 A CN106324620 A CN 106324620A CN 201610623962 A CN201610623962 A CN 201610623962A CN 106324620 A CN106324620 A CN 106324620A
- Authority
- CN
- China
- Prior art keywords
- parameters
- following formula
- model
- calculate
- longitude
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000005259 measurement Methods 0.000 title claims abstract description 11
- 102100033814 Alanine aminotransferase 2 Human genes 0.000 claims abstract description 11
- 101000779415 Homo sapiens Alanine aminotransferase 2 Proteins 0.000 claims abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 239000005436 troposphere Substances 0.000 claims description 5
- 230000000052 comparative effect Effects 0.000 abstract 1
- 238000004364 calculation method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000001934 delay Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005305 interferometry Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/03—Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
- G01S19/07—Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Complex Calculations (AREA)
Abstract
Description
技术领域technical field
本发明涉及卫星导航和对流层大气测量等相关领域,具体涉及一种精确的、不依赖于地表气象数据实时测量的对流层天顶延迟方法。The invention relates to related fields such as satellite navigation and tropospheric atmospheric measurement, and in particular to a tropospheric zenith delay method that is accurate and does not depend on real-time measurement of surface meteorological data.
背景技术Background technique
随着科学技术的发展,全球导航卫星系统(Global Navigation SatelliteSystem,GNSS)在军事和民用领域得到了广泛应用,其能够给用户提供精确的导航、定位以及授时等服务。With the development of science and technology, Global Navigation Satellite System (GNSS) has been widely used in military and civilian fields, which can provide users with accurate navigation, positioning and timing services.
在GNSS服务过程中,对流层的不均匀性造成GNSS服务所用电波的速度减慢以及路径发生弯曲,减慢的速度和弯曲的路径均导致电波在时间上产生延迟。在精确计算时间延迟过程中,一般将时间的延迟等效为路径的增加。研究表明,延迟在对流层天顶方向上约为2.3m,当电磁波入射角减少到10°左右时,量级进一步增大到20m。因此,对流层延迟在GNSS服务过程中必须进行相应的补偿。同时,在天波雷达的目标探测、甚长基线干涉测量(verylong baseline interferometry,VLBI)、地基GPS水汽反演和预报等领域中,对流层延迟估计和预测亦是一项具有重要意义的工作。During the GNSS service process, the inhomogeneity of the troposphere causes the speed of the radio wave used by the GNSS service to slow down and the path to bend. Both the slowed speed and the curved path cause the wave to be delayed in time. In the process of accurately calculating the time delay, the time delay is generally equivalent to the increase of the path. Studies have shown that the delay is about 2.3m in the direction of the tropospheric zenith, and when the incident angle of electromagnetic waves is reduced to about 10°, the magnitude further increases to 20m. Therefore, tropospheric delay must be compensated accordingly during GNSS service. At the same time, in the fields of sky-wave radar target detection, very long baseline interferometry (VLBI), ground-based GPS water vapor retrieval and forecasting, the estimation and prediction of tropospheric delay is also a work of great significance.
目前,计算对流层延迟的主要手段是利用映射函数将电波在对流层天顶方向的延迟(以下简称天顶延迟),在入射角方向上进行映射。映射函数的数值一般仅与位置和电波入射角相关。因此,精确计算天顶延迟在对流层延迟估计和预测中至关重要,相关文献表明,天顶延迟模型主要利用实时气象数据建立或对多年实测天顶延迟数值进行拟合。前者以霍普菲尔德(Hopfield)模型和萨斯塔莫伊宁(Saastamoinen)模型等为代表,后者以国际全球卫星对流层(International Global GPS troposphere,IGGtrop)模型等为代表。At present, the main method for calculating the tropospheric delay is to use a mapping function to map the delay of radio waves in the direction of the tropospheric zenith (hereinafter referred to as the zenith delay) to the direction of the incident angle. The value of the mapping function is generally only related to the position and the incident angle of the radio wave. Therefore, accurate calculation of zenith delay is very important in the estimation and prediction of tropospheric delay. Relevant literature shows that the zenith delay model is mainly established by real-time meteorological data or fitted to multi-year measured zenith delay values. The former is represented by the Hopfield model and the Saastamoinen model, and the latter is represented by the International Global GPS troposphere (IGGtrop) model.
其中,Hopfield和Saastamoinen等模型的建立必须实时获取的地表温度、气压以及水气压等气象参数,故模型对地面设备的依赖较大。IGGtrop模型利用余弦函数对5年的实测天顶延迟数据进行拟合,最终将天顶延迟表述为时间、海拔以及经纬度的函数。IGGtrop模型的建立仅是对以往数据的拟合,并未研究大气折射率等因素的变化规律。在应用过程中,IGGtrop模型整年的平均误差虽然较低,但在估计某一时刻延迟的精度欠佳,故该模型的时间分辨率差。Among them, the establishment of models such as Hopfield and Saastamoinen must obtain meteorological parameters such as surface temperature, air pressure, and water pressure in real time, so the models rely heavily on ground equipment. The IGGtrop model uses a cosine function to fit the measured zenith delay data for 5 years, and finally expresses the zenith delay as a function of time, altitude, and latitude and longitude. The establishment of the IGGtrop model is only a fitting of previous data, and does not study the changing laws of atmospheric refractive index and other factors. In the process of application, although the average error of the IGGtrop model throughout the year is low, the accuracy of estimating the delay at a certain moment is not good, so the time resolution of the model is poor.
可以看出,上述天顶延迟模型均存在相应的不足:基于实时地表气象数据建立的模型对地面设备依赖较大;而对实测数据拟合的模型时间分辨率较低。因此,亟需寻求一种精度和分辨率均较高,且不依赖于地表气象数据实时测量的对流层天顶延迟估计方法。It can be seen that the above-mentioned zenith delay models all have corresponding deficiencies: the models established based on real-time surface meteorological data rely heavily on ground equipment; while the time resolution of the model fitted to the measured data is low. Therefore, there is an urgent need to seek a method for estimating tropospheric zenith delays with high accuracy and resolution that does not depend on real-time measurement of surface meteorological data.
发明内容Contents of the invention
为了实现上述目的,本发明提供一种不依赖地表气象数据实时测量,且时间分辨率和精度均较高的对流层天顶延迟估计方法。In order to achieve the above object, the present invention provides a method for estimating tropospheric zenith delay that does not rely on real-time measurement of surface meteorological data and has high time resolution and accuracy.
本发明不依赖地表气象数据实时测量的对流层天顶延迟方法,包括下列2个步骤The present invention does not rely on the tropospheric zenith delay method of real-time measurement of surface meteorological data, comprising the following two steps
步骤1:获取气象数据Step 1: Get weather data
确定接收机所在位置的经纬度λ以及海拔h0参数;根据经纬度在全球气压温度2(Global Pressure and Temperature 2,GPT2)模型提供的1°×1°网格中选择距离接收机最近的四个端点,并通过GPT2模型提供的模型参数A0、A1、A2、B1、B2,结合下式计算得到四端点的气温T、气压p、比湿Q等对流层参数Determine the latitude and longitude of the receiver's location λ and altitude h 0 parameters; according to the longitude and latitude, select the four endpoints closest to the receiver in the 1°×1° grid provided by the Global Pressure and Temperature 2 (Global Pressure and Temperature 2, GPT2) model, and use the GPT2 model to provide The model parameters A 0 , A 1 , A 2 , B 1 , and B 2 are combined with the following formula to calculate the tropospheric parameters such as air temperature T, air pressure p, and specific humidity Q at the four endpoints
式中,r(t)表示t时刻的气象参数;doy表示简化儒略日;当气压p和水汽压ew0的单位取mbar时,Q表示为:In the formula, r(t) represents the meteorological parameters at time t; doy represents the simplified Julian day; when the unit of air pressure p and water vapor pressure e w0 is mbar, Q is expressed as:
根据求得的四端点气象参数T、p以及ew0,结合下式,双线性内插出该点的气象数据Z参数Z包含温度T0,气压P0、水汽压ew0的信息According to the obtained meteorological parameters T, p and e w0 of the four endpoints, combined with the following formula, the meteorological data Z of this point can be obtained by bilinear interpolation Parameter Z Contains information of temperature T 0 , air pressure P 0 , water vapor pressure e w0
式中,Z0,0、Z0,1、Z1,1、Z1,0分别表示各端点的气象数据;λ分别表示经纬度;参数Q0,0、Q0,1、Q1,1、Q1,0用下式求得,即In the formula, Z 0,0 , Z 0,1 , Z 1,1 , Z 1,0 represent the meteorological data of each endpoint respectively; λ respectively represent latitude and longitude; parameters Q 0,0 , Q 0,1 , Q 1,1 , Q 1,0 are obtained by the following formula, namely
式中,p=(λ-λ00)/(λ11-λ00);其中的参数λ00、表示网格中左下角端点的经纬度;参数λ11、表示网格中右上角的经纬度;In the formula, p=(λ-λ 00 )/(λ 11 -λ 00 ); The parameters λ 00 , Indicates the latitude and longitude of the endpoint in the lower left corner of the grid; the parameters λ 11 , Indicates the latitude and longitude of the upper right corner in the grid;
步骤2:将获取的气象参数输入到Hopfield模型,计算得到天顶延迟,具体如下:Step 2: Input the obtained meteorological parameters into the Hopfield model, and calculate the zenith delay, as follows:
将步骤1中得到的地表温度T0带入下式计算干、湿大气的层顶高度hd、hw Put the surface temperature T 0 obtained in step 1 into the following formula to calculate the top height h d and h w of the dry and wet atmosphere
将步骤1中得到的地表处的温度T0、气压P0、水汽压ew0带入下式计算干、湿大气的初始折射指数Nd0、Nw0 Put the temperature T 0 , air pressure P 0 , and water vapor pressure e w0 at the surface obtained in step 1 into the following formula to calculate the initial refractive index N d0 and N w0 of the dry and wet atmosphere
将上述步骤中得到的Nd0、Nw0以及hd、hw,结合下式,计算对流层任意高为h处的干、湿折射指数Ndh、Nwh Combine the N d0 , N w0 , h d , h w obtained in the above steps with the following formula to calculate the dry and wet refractive indices N dh , N wh at any height h in the troposphere
式中,h0表示当地的海拔高度;利用干、湿折射指数Ndh、Nwh和干、湿大气的层顶高度hd、hw结合下式估计对流层天顶干、湿延迟 In the formula, h 0 represents the local altitude; use the dry and wet refractive index N dh , N wh and the layer top height h d , h w of the dry and wet atmosphere in combination with the following formula to estimate the dry and wet delay of the tropospheric zenith
根据计算得到天顶总延迟DS。according to Calculate the zenith total delay D S .
通过上述计算过程,本发明即可获得任意经纬度在任意时刻的天顶延迟,且不依赖于地面气象测量设备。Through the above calculation process, the present invention can obtain the zenith delay at any time at any latitude and longitude, and does not depend on ground meteorological measuring equipment.
附图说明Description of drawings
图1示出本发明不依赖地表气象数据实时测量的对流层天顶延迟方法原理图;Fig. 1 shows the principle diagram of the tropospheric zenith delay method that does not rely on surface meteorological data real-time measurement of the present invention;
图2示出双线性内插示意图;Figure 2 shows a schematic diagram of bilinear interpolation;
图3示出利用GPT2模型双线性内插我国部分测站在2012年的气象数据误差图;Fig. 3 shows the meteorological data error map of some observation stations in my country in 2012 using the GPT2 model bilinear interpolation;
图4示出本发明方法与Hopfield模型计算我国部分测站在2012年的天顶延迟误差对比图;Fig. 4 shows that the method of the present invention and the Hopfield model calculate the zenith delay error comparison chart of some stations in my country in 2012;
图5示出了本发明方法预测某点在2016年全年气象参数和天顶延迟结果图。Fig. 5 shows the result map of forecasting a certain point in the year of 2016 by the method of the present invention in terms of meteorological parameters and zenith delay results.
图中:BJFS为北京房山测站;TWTF为台湾桃园测站;WUHN为湖北武汉测站;XIAN为陕西西安测站。In the figure: BJFS is Beijing Fangshan Station; TWTF is Taiwan Taoyuan Station; WUHN is Hubei Wuhan Station; XIAN is Shaanxi Xi’an Station.
具体实施方式detailed description
下面结合附图,详细介绍本发明的具体实施步骤。The specific implementation steps of the present invention will be described in detail below in conjunction with the accompanying drawings.
图1示出本发明不依赖地表气象数据实时测量的对流层天顶延迟方法的原理图。从图1中可以看出,本发明利用双线性内插算法结合GPT2模型得到Hopfield模型所需的气象参数,最终根据Hopfield模型得到天顶延迟,包括2个步骤。Fig. 1 shows a schematic diagram of the tropospheric zenith delay method for real-time measurement independent of surface meteorological data according to the present invention. It can be seen from Fig. 1 that the present invention uses a bilinear interpolation algorithm combined with the GPT2 model to obtain the meteorological parameters required by the Hopfield model, and finally obtains the zenith delay according to the Hopfield model, including two steps.
步骤1:获取气象数据Step 1: Get Weather Data
确定接收机所在位置的经纬度λ以及海拔h0等参数;根据经纬度在GPT2模型提供的1°×1°网格中选择距离接收机最近的四个端点,并通过GPT2模型提供的模型参数A0、A1、A2、B1、B2(取自GPT2模型数据库),结合下式计算得到四端点的气温T、气压p、比湿Q等对流层参数。Determine the latitude and longitude of the receiver's location λ and altitude h 0 and other parameters; select the four endpoints closest to the receiver in the 1°×1° grid provided by the GPT2 model according to the latitude and longitude, and use the model parameters A 0 , A 1 , A 2 , B 1 , B 2 (taken from the GPT2 model database), combined with the following formula to calculate the tropospheric parameters such as temperature T, air pressure p, and specific humidity Q of the four endpoints.
式中,r(t)表示t时刻的气象参数;doy表示简化儒略日。当气压p和水汽压ew0的单位取mbar时,Q可表示为:In the formula, r(t) represents the meteorological parameters at time t; doy represents the simplified Julian day. When the unit of air pressure p and water vapor pressure e w0 is mbar, Q can be expressed as:
根据求得的四端点气象参数T、p以及ew0结合下式双线性内插出该点的气象数据Z参数Z包含温度T0,气压P0、水汽压ew0的信息。According to the obtained four-terminal meteorological parameters T, p and e w0 combined with the following formula bilinear interpolation to get the meteorological data Z of this point Parameter Z Contains information of temperature T 0 , air pressure P 0 , and water vapor pressure e w0 .
式中,Z0,0、Z0,1、Z1,1、Z1,0分别表示各端点的气象数据;λ分别表示经纬度。参数Q0,0、Q0,1、Q1,1、Q1,0可用下式求得,即In the formula, Z 0,0 , Z 0,1 , Z 1,1 , Z 1,0 represent the meteorological data of each endpoint respectively; λ represents latitude and longitude respectively. Parameters Q 0,0 , Q 0,1 , Q 1,1 , Q 1,0 can be obtained by the following formula, namely
式中,p=(λ-λ00)/(λ11-λ00);其中的参数λ00、表示网格中左下角端点(如图2中端点1)的经纬度;参数λ11、表示网格中右上角(如图2中端点3)的经纬度。In the formula, p=(λ-λ 00 )/(λ 11 -λ 00 ); The parameters λ 00 , Indicates the latitude and longitude of the lower left corner endpoint (endpoint 1 in Figure 2) in the grid; the parameters λ 11 , Indicates the latitude and longitude of the upper right corner in the grid (endpoint 3 in Figure 2).
图3示出利用GPT2模型双线性内插我国部分测站2012年的气象数据误差,从图3中可以看出,该气象数据获取方法在我国四个测站的精度均符合要求。Figure 3 shows the bilinear interpolation of the meteorological data errors of some stations in my country in 2012 using the GPT2 model. It can be seen from Figure 3 that the accuracy of the meteorological data acquisition method in the four stations in my country meets the requirements.
步骤2:将获取的气象参数输入到Hopfield模型,计算得到天顶延迟。具体如下:Step 2: Input the acquired meteorological parameters into the Hopfield model to calculate the zenith delay. details as follows:
将步骤1中得到的地表温度T0带入下式计算干、湿大气的层顶高度hd、hw。Put the surface temperature T 0 obtained in step 1 into the following formula to calculate the top height h d and h w of the dry and wet atmosphere.
将步骤1中得到的地表处的温度T0、气压P0、水汽压ew0带入下式计算干、湿大气的初始折射指数Nd0、Nw0。Put the surface temperature T 0 , air pressure P 0 , and water vapor pressure e w0 obtained in step 1 into the following formula to calculate the initial refractive index N d0 and N w0 of the dry and wet atmosphere.
将上述步骤中得到的Nd0、Nw0以及hd、hw结合下式计算对流层任意高为h处的干、湿折射指数Ndh、Nwh。Combine N d0 , N w0 , h d , h w obtained in the above steps with the following formula to calculate the dry and wet refractive indices N dh , N wh at any height h in the troposphere.
式中,h0表示当地的海拔高度。利用干、湿折射指数Ndh、Nwh和hd、hw结合下式估计对流层天顶干、湿延迟 In the formula, h 0 represents the local altitude. Using the dry and wet refractive indices N dh , N wh and h d , h w combined with the following formula to estimate the dry and wet delays of the tropospheric zenith
根据计算得到天顶总延迟DS。according to Calculate the zenith total delay D S .
图4示出上述天顶延迟计算方法与Hopfield模型计算2012年的我国部分测站天顶延迟误差对比,从图4中可以看出,本发明提出的不依赖地表气象数据实时测量模型与传统Hopfield模型具有相当的精度。因此,在包括北斗卫星导航系统在内的全球导航卫星系统中,此组合模型有着广泛的应用前景。Fig. 4 shows that the above-mentioned zenith delay calculation method and the Hopfield model calculate the zenith delay error comparison of some stations in my country in 2012. As can be seen from Fig. 4, the real-time measurement model independent of surface meteorological data proposed by the present invention and the traditional Hopfield The model has considerable accuracy. Therefore, in the global navigation satellite system including the Beidou satellite navigation system, this combined model has a broad application prospect.
本发明的一个应用实例如下:An application example of the present invention is as follows:
利用GPS卫星对地面用户设备进行授时,授时接收机位于0#(34.28°N,109.03°E),海拔390m。此情况的2016年全年的天顶延迟预测过程如下:Use GPS satellites to provide time service to ground user equipment, and the time service receiver is located at 0# (34.28°N, 109.03°E), with an altitude of 390m. The zenith delay prediction process for the whole year of 2016 in this case is as follows:
首先,按照0#的经纬度在GPT2模型中进行网格查询,此时在双线性内插过程中对应的四端点坐标分别为1#(33.5N,108.5E);2#(34.5N,108.5E);3#(34.5N,109.5E);4#(33.5N,109.5E);然后,根据GPT2模型提供的A0、A1、A2、B1、B2等参数结合doy预测四端点在2016年的气压、气温以及水汽压等,并利用得到的气象参数对0#进行双线性内插;最后,将插值出的气象数据输入到Hopfield模型,预测全年的天顶延迟,图5反应了预测的气象数据以及天顶延迟结果。First, perform grid query in the GPT2 model according to the latitude and longitude of 0#. At this time, the coordinates of the four endpoints corresponding to the bilinear interpolation process are 1# (33.5N, 108.5E); 2# (34.5N, 108.5 E); 3#(34.5N, 109.5E); 4#(33.5N, 109.5E); Then, according to the parameters such as A 0 , A 1 , A 2 , B 1 , B 2 provided by the GPT2 model combined with doy prediction four The air pressure, temperature, and water vapor pressure of the endpoint in 2016, and use the obtained meteorological parameters to perform bilinear interpolation on 0#; finally, input the interpolated meteorological data into the Hopfield model to predict the annual zenith delay, Figure 5 reflects the forecasted meteorological data and the zenith delay results.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610623962.1A CN106324620A (en) | 2016-08-02 | 2016-08-02 | Tropospheric zenith delay method based not on real-time measurement of surface meteorological data |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610623962.1A CN106324620A (en) | 2016-08-02 | 2016-08-02 | Tropospheric zenith delay method based not on real-time measurement of surface meteorological data |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106324620A true CN106324620A (en) | 2017-01-11 |
Family
ID=57739730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610623962.1A Pending CN106324620A (en) | 2016-08-02 | 2016-08-02 | Tropospheric zenith delay method based not on real-time measurement of surface meteorological data |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106324620A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106802425A (en) * | 2017-01-22 | 2017-06-06 | 武汉大学 | A kind of integration method for estimating zenith tropospheric delay |
CN106814373A (en) * | 2017-01-22 | 2017-06-09 | 武汉大学 | Weighted Atmospheric Temperature Used is estimated and tropospheric delay integration method |
CN108920414A (en) * | 2018-05-18 | 2018-11-30 | 中国人民解放军61540部队 | A kind of utilizing meteorological date calculates the new method of local Zenith tropospheric wet stack emission |
CN111126466A (en) * | 2019-12-16 | 2020-05-08 | 西安科技大学 | Multi-source PWV data fusion method |
CN111241718A (en) * | 2019-12-27 | 2020-06-05 | 广东电网有限责任公司电力科学研究院 | Zenith troposphere wet delay calculation method and related device |
CN111273318A (en) * | 2020-02-25 | 2020-06-12 | 东南大学 | A Parabola-Based Calculation Method for Regional Tropospheric Wet Delay |
CN111273319A (en) * | 2020-02-25 | 2020-06-12 | 东南大学 | A calculation method of regional tropospheric wet delay based on cosine function |
CN111382507A (en) * | 2020-03-04 | 2020-07-07 | 山东大学 | Global troposphere delay modeling method based on deep learning |
CN111896977A (en) * | 2019-05-06 | 2020-11-06 | 千寻位置网络有限公司 | Troposphere wet delay precision calculation method and system, and troposphere wet delay positioning method and system |
CN114019585A (en) * | 2021-10-11 | 2022-02-08 | 武汉大学 | A CORS network FKP solution method for high-precision positioning in areas with large height differences |
CN114624790A (en) * | 2021-07-15 | 2022-06-14 | 自然资源部第一海洋研究所 | Wet delay height correction method based on three-dimensional meteorological model |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008051568A (en) * | 2006-08-23 | 2008-03-06 | Furuno Electric Co Ltd | Positioning system, method, and program |
CN103323888A (en) * | 2013-04-24 | 2013-09-25 | 东南大学 | Method for eliminating delay errors of troposphere of GNSS atmospheric probing data |
-
2016
- 2016-08-02 CN CN201610623962.1A patent/CN106324620A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008051568A (en) * | 2006-08-23 | 2008-03-06 | Furuno Electric Co Ltd | Positioning system, method, and program |
CN103323888A (en) * | 2013-04-24 | 2013-09-25 | 东南大学 | Method for eliminating delay errors of troposphere of GNSS atmospheric probing data |
Non-Patent Citations (4)
Title |
---|
JIAN-JING LIU等: ""Bilinear interpolation of geomagnetic field"", 《2010 INTERNATIONAL CONFERENCE ON COMPUTER APPLICATION AND SYSTEM MODELING》 * |
刘强等: ""对流层双向时间比对及其时延误差分析"", 《测绘学报》 * |
姚宜斌等: ""两种精华的对流层延迟改正模型"", 《地球物理学报》 * |
陈西宏等: ""对流层散射双向时间比对中对流层斜延迟估计"", 《国防科技大学学报》 * |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106802425A (en) * | 2017-01-22 | 2017-06-06 | 武汉大学 | A kind of integration method for estimating zenith tropospheric delay |
CN106814373A (en) * | 2017-01-22 | 2017-06-09 | 武汉大学 | Weighted Atmospheric Temperature Used is estimated and tropospheric delay integration method |
CN106802425B (en) * | 2017-01-22 | 2019-07-23 | 武汉大学 | A kind of integration method for estimating zenith tropospheric delay |
CN106814373B (en) * | 2017-01-22 | 2019-09-10 | 武汉大学 | Weighted Atmospheric Temperature Used estimation and tropospheric delay integration method |
CN108920414A (en) * | 2018-05-18 | 2018-11-30 | 中国人民解放军61540部队 | A kind of utilizing meteorological date calculates the new method of local Zenith tropospheric wet stack emission |
CN108920414B (en) * | 2018-05-18 | 2022-03-29 | 中国人民解放军61540部队 | Novel method for calculating local zenith troposphere wet delay by utilizing meteorological data |
CN111896977A (en) * | 2019-05-06 | 2020-11-06 | 千寻位置网络有限公司 | Troposphere wet delay precision calculation method and system, and troposphere wet delay positioning method and system |
CN111896977B (en) * | 2019-05-06 | 2024-03-29 | 千寻位置网络有限公司 | Troposphere wet delay precision calculation method and system and positioning method and system thereof |
CN111126466A (en) * | 2019-12-16 | 2020-05-08 | 西安科技大学 | Multi-source PWV data fusion method |
CN111241718B (en) * | 2019-12-27 | 2021-09-03 | 广东电网有限责任公司电力科学研究院 | Zenith troposphere wet delay calculation method and related device |
CN111241718A (en) * | 2019-12-27 | 2020-06-05 | 广东电网有限责任公司电力科学研究院 | Zenith troposphere wet delay calculation method and related device |
CN111273319B (en) * | 2020-02-25 | 2021-11-26 | 东南大学 | Cosine function-based regional troposphere wet delay calculation method |
CN111273318B (en) * | 2020-02-25 | 2021-10-19 | 东南大学 | Regional troposphere wet delay calculation method based on parabola |
CN111273318A (en) * | 2020-02-25 | 2020-06-12 | 东南大学 | A Parabola-Based Calculation Method for Regional Tropospheric Wet Delay |
CN111273319A (en) * | 2020-02-25 | 2020-06-12 | 东南大学 | A calculation method of regional tropospheric wet delay based on cosine function |
CN111382507A (en) * | 2020-03-04 | 2020-07-07 | 山东大学 | Global troposphere delay modeling method based on deep learning |
CN114624790A (en) * | 2021-07-15 | 2022-06-14 | 自然资源部第一海洋研究所 | Wet delay height correction method based on three-dimensional meteorological model |
CN114624790B (en) * | 2021-07-15 | 2023-09-12 | 自然资源部第一海洋研究所 | Wet delay altitude correction method based on three-dimensional meteorological model |
CN114019585A (en) * | 2021-10-11 | 2022-02-08 | 武汉大学 | A CORS network FKP solution method for high-precision positioning in areas with large height differences |
CN114019585B (en) * | 2021-10-11 | 2024-06-11 | 武汉大学 | High-precision positioning CORS network FKP resolving method for large-height-difference region |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106324620A (en) | Tropospheric zenith delay method based not on real-time measurement of surface meteorological data | |
CN114518586B (en) | GNSS precise single-point positioning method based on spherical harmonic expansion | |
CN103323888B (en) | Method for eliminating delay errors of troposphere of GNSS atmospheric probing data | |
CN111539109B (en) | Real-time high-precision global multi-dimensional troposphere zenith delay grid model construction method | |
Chen et al. | Voxel-optimized regional water vapor tomography and comparison with radiosonde and numerical weather model | |
CN109543353B (en) | Three-dimensional water vapor inversion method, device, equipment and computer readable storage medium | |
CN104777488B (en) | Zenith tropospheric delay modeling method, device and measuring method, device | |
Yao et al. | Global empirical model for mapping zenith wet delays onto precipitable water | |
CN104965207B (en) | A kind of acquisition methods of zone convection layer zenith delay | |
CN103558609B (en) | The method of GPS (Global Position System) tropospheric zenith delay correction | |
Liu et al. | An analysis of GPT2/GPT2w+ Saastamoinen models for estimating zenith tropospheric delay over Asian area | |
CN108169776A (en) | Ionosphere delay error modification method based on background model and measured data | |
Yao et al. | GGOS tropospheric delay forecast product performance evaluation and its application in real-time PPP | |
CN110568459A (en) | Real-time Monitoring Method of Regional Ionospheric TEC Based on IGS and CORS Stations | |
CN111126466B (en) | Multi-source PWV data fusion method | |
CN110378540A (en) | A kind of Weighted Atmospheric Temperature Used calculation method suitable for Beibu Bay, guangxi area | |
CN101893712B (en) | A Fitting Method for Precise Orbit Determination of Geostationary Satellites | |
CN109917494A (en) | Rainfall forecast method, apparatus, equipment and storage medium | |
CN105738934A (en) | Un-differenced real-time kinematic (URTK) fuzziness rapid fixing method with additional atmosphere information dynamic constraint | |
CN115061167A (en) | Troposphere delay correction method suitable for short-distance large-altitude-difference RTK | |
CN113960635A (en) | A Tropospheric Delay Correction Method Considering Diurnal Variation | |
CN106802425B (en) | A kind of integration method for estimating zenith tropospheric delay | |
CN113639893A (en) | A Method for Obtaining Near-Earth Weighted Average Temperature Information Based on Multiple Meteorological Factors | |
CN110288117B (en) | A regional reconstruction method for critical frequency of ionospheric parameters | |
Zhang et al. | A new four-layer inverse scale height grid model of china for zenith tropospheric delay correction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20170111 |
|
WD01 | Invention patent application deemed withdrawn after publication |