CN106309366B - 一种用于光动力治疗的聚苯乙烯-聚丙烯酸纳米载药微球的制备方法 - Google Patents

一种用于光动力治疗的聚苯乙烯-聚丙烯酸纳米载药微球的制备方法 Download PDF

Info

Publication number
CN106309366B
CN106309366B CN201610832916.2A CN201610832916A CN106309366B CN 106309366 B CN106309366 B CN 106309366B CN 201610832916 A CN201610832916 A CN 201610832916A CN 106309366 B CN106309366 B CN 106309366B
Authority
CN
China
Prior art keywords
solution
added
water
polystyrene
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610832916.2A
Other languages
English (en)
Other versions
CN106309366A (zh
Inventor
王汉杰
侯贝贝
武玉东
张健
常津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201610832916.2A priority Critical patent/CN106309366B/zh
Publication of CN106309366A publication Critical patent/CN106309366A/zh
Application granted granted Critical
Publication of CN106309366B publication Critical patent/CN106309366B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • A61K41/0076PDT with expanded (metallo)porphyrins, i.e. having more than 20 ring atoms, e.g. texaphyrins, sapphyrins, hexaphyrins, pentaphyrins, porphocyanines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明涉及一种用于光动力治疗的聚苯乙烯‑聚丙烯酸纳米载药微球的制备方法。将谷氨酸十八烷基季铵盐溶液作为水相A,上转换纳米颗粒的三氯溶液作为油相B,在超声条件下,将油相B加入到水相A中形成分散的乳液;将乳液进行旋蒸后,即形成谷氨酸十八烷基季铵盐修饰的上转换纳米粒子溶液。在聚苯乙烯‑聚丙烯酸共聚物的四氢呋喃溶液作为溶液中加入酞菁锌的四氢呋喃溶液;再加入谷氨酸十八烷基季铵盐修饰的上转换纳米粒子溶液;将去离子水通过加入到上述溶液中。所得溶液;进行纯水透析,离心分离,得到聚苯乙烯‑聚丙烯酸纳米载药微球。制备过程简便,得到的纳米粒子平均粒径在60~120纳米之间,粒径可控,载药率达到18%。

Description

一种用于光动力治疗的聚苯乙烯-聚丙烯酸纳米载药微球的 制备方法
技术领域
本发明涉及一种用于光动力治疗的聚苯乙烯-聚丙烯酸纳米载药微球的制备方法,属于医药技术领域。
背景技术
恶性肿瘤是目前威胁人类健康及导致人类死亡率最为严重的疾病之一。手术治疗、化学疗法(化疗)以及放射疗法(放疗)是目前治疗恶性肿瘤的三大常用方法。手术治疗是肿瘤治疗的一种常见方法,对早期无转移的肿瘤,通过手术治疗可以切除癌变组织,取得良好的治疗效果。然而,对于中晚期的肿瘤,因癌细胞已经在体内扩散,仅通过手术治疗并不能够彻底根除恶性肿瘤。放疗是利用放射线的高组织穿透能力,使细胞内部发生电离,破坏细胞内DNA分子,从而杀死癌细胞的一种肿瘤治疗方法。放疗存在的主要问题在于其毒副作用明显,许多癌细胞类型对放疗不敏感及加速癌细胞扩散等。化疗是利用化学药物抑制或杀死癌细胞来治疗恶性肿瘤的一种常见的方法。但传统化疗存在化疗药物生物相容性差、靶向性差和毒副作用大等问题。
光动力疗法是除手术、放疗、化疗外,治疗恶性肿瘤的一种新兴的治疗方法。光动力治疗是利用特定波长的光激发光敏剂,在周围氧分子存在的条件下生成具有细胞毒性的氧自由基及单线态氧,从而杀死肿瘤细胞。在传统的光动力疗法中,光敏剂的激发光通常为紫外或者可见光,组织穿透深度有限,从而限制了光动力疗法在深部肿瘤治疗中的应用。且多数光敏剂存在水溶性差且容易聚集的问题,这也限制了直接静脉注射光敏剂的给药的方式。最为重要的是,由于光动力疗法产生的活性氧寿命极短(≤3.5μs)且传播距离有限(≤0.02μm),将导致其在细胞基质中极易消失。众所周知,理想的纳米药物载体应该具有水溶性和高的载药量,能够在体内保持稳定性,且在治疗过程中可以不断地产生活性氧杀死癌细胞。因此,研制一种新型的纳米药物载体,解决光敏剂药物水溶性差,提高载药量及组织穿透深度,具有重要的临床应用价值。
近红外光具有不容易被人体吸收的性质,比紫外光及可见光有更深的组织穿透能力,在生物医学领域应用广泛。将近红外光引入到光动力治疗中可以有效的解决传统光敏剂制剂激发光穿透渗透有限的问题,从而可将光动力治疗引入到深部肿瘤的治疗。上转换纳米晶是一类利用近红外光激发而短波长发射的纳米荧光材料,它具有窄发射峰,较大的反Stokes位移,荧光稳定性好,组织穿透能力深等优点,是一种备受关注的新型荧光探针。利用双亲性高分子形成胶束将上转换纳米粒子和光敏剂包裹起来制备纳米药物载体,不但可以解决光敏剂水溶性差,激发光组织穿透能力低等缺点,还可以实现肿瘤细胞的荧光成像。所以,本文拟采用一种双亲性高分子将上转换纳米粒子及光敏剂包裹起来,构建一种高稳定性、高载药量、多功能化的纳米药物递送系统,为恶性肿瘤的光动力治疗提供新方法。
发明内容
本发明的目的是设计并制备一种基于上转换发光技术的纳米药物递送系统,用于提高光敏剂药物的稳定性、载药量和激发光组织穿透深度。我们采用超声乳化法,用谷氨酸十八烷基季铵盐将上转换纳米粒子从油相转移到水相。然后利用纳米沉淀法使双亲性嵌段聚合物聚苯乙烯-聚丙烯酸(PS-PAA,PS:PAA 70,000:13,000)自组装形成胶束,将上转换纳米粒子和光敏剂包裹在胶束内,形成一种载有光敏剂及上转换纳米粒子的载药微球。该载药微球不但解决了光敏剂酞菁锌在体内水溶性较差的问题,同时由于包裹了上转换纳米粒子,还可以用于深部肿瘤的荧光成像及光动力治疗。本技术与现有的光敏剂纳米药物制剂相比,所制备的纳米粒子粒径更加均匀,载药量更高。后期活性氧实验证明该聚苯乙烯-聚丙烯酸纳米载药微球能够在980nm近红外激光照射下产生活性氧,具有很好的光动力治疗效果。
本发明的技术方案如下:
一种用于光动力治疗的聚苯乙烯-聚丙烯酸纳米载药微球的制备方法;其特征是步骤如下:
1)取10~15mg谷氨酸十八烷基季铵盐溶解到1mL的去离子水中,作为水相A;
2)将1~2mL的上转换纳米颗粒的环己烷溶液进行离心,沉淀重新分散于1mL三氯中形成油相B;
3)将水相A至于冰浴环境中,在超声条件下,按照体积分数比为油相B:水相A=1:2~4,将油相B加入到水相A中形成水油均匀分散的乳液;然后将乳液于旋转蒸发仪上进行旋蒸,当有机溶剂完全蒸发后,即形成谷氨酸十八烷基季铵盐修饰的上转换纳米粒子,此时溶液做为溶液C;
4)将1~2mg聚苯乙烯-聚丙烯酸共聚物溶解到1mL的四氢呋喃中形成溶液D;然后加入10~40μL的酞菁锌四氢呋喃溶液,搅拌30min后,将100~200μL溶液C通过10μL/s的滴加方式,加入到溶液D中;
5)然后将3~5mL的去离子水滴加到溶液D中;滴加完毕后,体系搅拌1h;再将所得溶液加入透析袋中,纯水透析12h;
6)透析完毕后,将产物离心除去,沉淀重新分散于于离子水中,所得样品即为聚苯乙烯-聚丙烯酸纳米载药微球。
所述的步骤4)中优选酞菁锌四氢呋喃溶液浓度为0.8~1mg/mL。
所述的步骤5)中3~5mL的去离子水滴加到溶液D中,优选前期滴加速率为10μL/s,待体系变为不透明时溶液时,滴加速率可变为200μL/s。
所述的聚谷氨酸十八烷基季铵盐溶液(水相A)的质量浓度优选为13~15mg/mL;所述的酞菁锌四氢呋喃溶液优选加入量为30~40μL;
制备得到的纳米粒子的载药率为8~18%,平均粒径在60~120nm之间。
上述的谷氨酸十八烷基季铵盐及上转换纳米粒子可以采用如下方法制备:
1)本发明所述的谷氨酸十八烷基季铵盐(OQPGA)按照文献报道的方式制得(Su W,Wang H,Sheng W,et al.PEG/RGD-modified magnetic polymeric liposomes forcontrolled drug release and tumor cell targeting[J].International Journal ofPharmaceutics,2012,426(1–2):170-181.)。具体为:将2g聚γ谷氨酸(γ-PGA),研磨成粉状,置于250mL四口烧瓶中,然后加入160mL异丙醇和10ml水进行搅拌,紧接着加入1.6g二甲基十八烷基环氧丙基氯化铵(QA),整个反应维持在25℃下反应48h。最后用分子量8000~14000的透析袋透析4天,得到的产物即为谷氨酸十八烷基季铵盐(OQPGA)。
2)上述上转换纳米粒子采用文献报道的溶剂热法制得(Wang H,Liu Z,Wang S,etal.MC540and upconverting nanocrystal coloaded polymeric liposome for near-infrared light-triggered photodynamic therapy and cell fluorescent imaging.[J].Acs Applied Materials&Interfaces,2014,6(5):3219-3225.)上转换纳米粒子NaYF4:Yb,Er具体合成步骤为800μL氯化镜(1M)水溶液,200μL氯化忆(1M)水溶液和200μL氯化饵(0.1M)水溶液加入到三口烧瓶中,升温到100℃蒸发稀土盐溶液中的水分,直至变成白色固体。然后将温度降到稍冷却80℃,加入6mL油酸及15mL十八烯后,升温到150℃使盐溶液完全溶解。温度再次降低到60℃,加入溶有100mg氢氧化钠、100mg氟化钠的5mL甲醇溶液。升高温度,除去甲醇,最后将温度升到120℃,抽真空20~30min。后体系通氩气,反应温度维持在300℃反应1h。最后经过离心洗涤,产物即为NaYF4:Yb,Er纳米粒子。
有益效果
本发明制备的用于光动力治疗的聚苯乙烯-聚丙烯酸纳米载药微球的优势:
1)本发明采用将上转换纳米粒子包进载光敏剂的聚苯乙烯-聚丙烯酸纳米微中,有效解决了传统光敏剂酞菁锌由于激发波长穿透深度小,从而导致活性氧产生效率低的缺点。
2)本发明所制备的聚苯乙烯-聚丙烯酸纳米载药微球粒径在60~120nm之间,粒径均匀。通过纳米粒子的被动靶向作用,可有效聚集于肿瘤组织,克服了传统酞菁锌制剂在体内水溶性差,容易团聚,不易到达肿瘤组织的缺点。
3)本发明制备的载药微球载药率可达18%,且制备过程简单快捷、制备周期短,产率高,稳定性好,适合大批量生产。
附图说明
图1:用于光动力治疗的聚苯乙烯-聚丙烯酸纳米载药微球的宏观照片。
图2:用于光动力治疗的聚苯乙烯-聚丙烯酸纳米载药微球的透射照片。
图3:用于光动力治疗的聚苯乙烯-聚丙烯酸纳米载药微球的载药量图。
图4:用于光动力治疗的聚苯乙烯-聚丙烯酸纳米载药微的活性氧产生验证图。
具体实施方式
下面的实施例中将对本发明作进一步的阐述,但本发明不限于此。
实施例1:
1)取10mg谷氨酸十八烷基季铵盐溶解到1mL的去离子水中,作为水相A;
2)将1mL的上转换纳米颗粒的环己烷溶液进行离心,沉淀重新分散于1mL三氯中形成油相B;
3)将水相A至于冰浴环境中,在超声条件下,按照体积分数比为油相B:水相A=1:2,将油相B加入到水相A中形成水油均匀分散的乳液;然后将乳液于旋转蒸发仪上进行旋蒸,当有机溶剂完全蒸发后,即形成谷氨酸十八烷基季铵盐修饰的上转换纳米
粒子,此时溶液做为溶液C;
4)将1mg聚苯乙烯-聚丙烯酸共聚物溶解到1mL的四氢呋喃中形成溶液D。然后加入10μL的酞菁锌四氢呋喃溶液(1mg/mL),搅拌30min后,将100μL溶液C通过10μL/s的缓慢滴加方式,加入到溶液D中;
5)然后将3mL的去离子水通过滴加方式加入到上述所得溶液中。滴加速率为先慢后快,前期滴加速率为10μL/s,待体系变为不透明时溶液时,滴加速率可变为200μL/s。滴加完毕后,体系搅拌1h。再将所得溶液加入透析袋中,纯水透析12h;
6)透析完毕后,将产物离心除去,沉淀重新分散于于离子水中,所得样品即为聚苯乙烯-聚丙烯酸纳米载药微球。制备得到的纳米粒子的载药率为8%,平均粒径为80nm。
实施例2:
1)取12mg谷氨酸十八烷基季铵盐溶解到1mL的去离子水中,作为水相A;
2)将1mL的上转换纳米颗粒的环己烷溶液进行离心,沉淀重新分散于1mL三氯中形成油相B;
3)将水相A至于冰浴环境中,在超声条件下,按照体积分数比为油相B:水相A=1:2,将油相B加入到水相A中形成水油均匀分散的乳液;然后将乳液于旋转蒸发仪上进行旋蒸,当有机溶剂完全蒸发后,即形成谷氨酸十八烷基季铵盐修饰的上转换纳米粒子,此时溶液做为溶液C;
4)将1mg聚苯乙烯-聚丙烯酸共聚物溶解到1mL的四氢呋喃中形成溶液D。然后加入20μL的酞菁锌四氢呋喃溶液(1mg/mL),搅拌30min后,将100μL溶液C通过10μL/s的缓慢滴加方式,加入到溶液D中;
5)然后将4mL的去离子水通过滴加方式加入到上述所得溶液中。滴加速率为先慢后快,前期滴加速率为10μL/s,待体系变为不透明时溶液时,滴加速率可变为200μL/s。滴加完毕后,体系搅拌1h。再将所得溶液加入透析袋中,纯水透析12h;
6)透析完毕后,将产物离心除去,沉淀重新分散于于离子水中,所得样品即为聚苯乙烯-聚丙烯酸纳米载药微球。可以的制备得到的纳米粒子的载药率为13%,平均粒径为120nm。图1为按照实施例2制备的聚苯乙烯-聚丙烯酸纳米载药微球的宏观照片,制备载药微球溶液呈蓝色,当受到980nm激光器照射时,可以发出绿色荧光。
实施例3:
1)取12mg谷氨酸十八烷基季铵盐溶解到1mL的去离子水中,作为水相A;
2)将1.5mL的上转换纳米颗粒的环己烷溶液进行离心,沉淀重新分散于1mL三氯中形成油相B;
3)将水相A至于冰浴环境中,在超声条件下,按照体积分数比为油相B:水相A=1:2,将油相B加入到水相A中形成水油均匀分散的乳液;然后将乳液于旋转蒸发仪上进行旋蒸,当有机溶剂完全蒸发后,即形成谷氨酸十八烷基季铵盐修饰的上转换纳米粒子,此时溶液做为溶液C;
4)将1mg聚苯乙烯-聚丙烯酸共聚物溶解到1mL的四氢呋喃中形成溶液D。然后加入20μL的酞菁锌四氢呋喃溶液(1mg/mL),搅拌30min后,将150μL溶液C通过10μL/s的缓慢滴加方式,加入到溶液D中;
5)然后将4mL的去离子水通过滴加方式加入到上述所得溶液中。滴加速率为先慢后快,前期滴加速率为10μL/s,待体系变为不透明时溶液时,滴加速率可变为200μL/s。滴加完毕后,体系搅拌1h。再将所得溶液加入透析袋中,纯水透析12h;
6)透析完毕后,将产物离心除去,沉淀重新分散于于离子水中,所得样品即为聚苯乙烯-聚丙烯酸纳米载药微球。制备得到的纳米粒子的载药率为14%,平均粒径为120nm。
实施例4:
1)取15mg谷氨酸十八烷基季铵盐溶解到1mL的去离子水中,作为水相A;
2)将2mL的上转换纳米颗粒的环己烷溶液进行离心,沉淀重新分散于1mL三氯中形成油相B;
3)将水相A至于冰浴环境中,在超声条件下,按照体积分数比为油相B:水相A=1:3,将油相B加入到水相A中形成水油均匀分散的乳液;然后将乳液于旋转蒸发仪上进行旋蒸,当有机溶剂完全蒸发后,即形成谷氨酸十八烷基季铵盐修饰的上转换纳米粒子,此时溶液做为溶液C;
4)将1.5mg聚苯乙烯-聚丙烯酸共聚物溶解到1mL的四氢呋喃中形成溶液D。然后加入30μL的酞菁锌四氢呋喃溶液(1mg/mL),搅拌30min后,将200μL溶液C通过10μL/s的缓慢滴加方式,加入到溶液D中;
5)然后将4mL的去离子水通过滴加方式加入到上述所得溶液中。滴加速率为先慢后快,前期滴加速率为10μL/s,待体系变为不透明时溶液时,滴加速率可变为200μL/s。滴加完毕后,体系搅拌1h。再将所得溶液加入透析袋中,纯水透析12h;
6)透析完毕后,将产物离心除去,沉淀重新分散于于离子水中,所得样品即为聚苯乙烯-聚丙烯酸纳米载药微球。制备得到的纳米粒子的载药率为17%,平均粒径为85nm。
实施例5:
1)取15mg谷氨酸十八烷基季铵盐溶解到1mL的去离子水中,作为水相A;
2)将2mL的上转换纳米颗粒的环己烷溶液进行离心,沉淀重新分散于1mL三氯中形成油相B;
3)将水相A至于冰浴环境中,在超声条件下,按照体积分数比为油相B:水相A=1:4,将油相B加入到水相A中形成水油均匀分散的乳液;然后将乳液于旋转蒸发仪上进行旋蒸,当有机溶剂完全蒸发后,即形成谷氨酸十八烷基季铵盐修饰的上转换纳米粒子,此时溶液做为溶液C;
4)将2mg聚苯乙烯-聚丙烯酸共聚物溶解到1mL的四氢呋喃中形成溶液D。然后加入40μL的酞菁锌四氢呋喃溶液(1mg/mL),搅拌30min后,将200μL溶液C通过10μL/s的缓慢滴加方式,加入到溶液D中;
5)然后将5mL的去离子水通过滴加方式加入到上述所得溶液中。滴加速率为先慢后快,前期滴加速率为10μL/s,待体系变为不透明时溶液时,滴加速率可变为200μL/s。滴加完毕后,体系搅拌1h。再将所得溶液加入透析袋中,纯水透析12h;
6)透析完毕后,将产物离心除去,沉淀重新分散于于离子水中,所得样品即为聚苯乙烯-聚丙烯酸纳米载药微球。制备得到的纳米粒子的载药率为18%,平均粒径为60nm。
实施例6:
形态观察、粒径其分布测定。
取样品溶液经9000转离心15min后,将沉淀物重新分散于8mL蒸馏水中,取10μL滴于碳支持膜上制样,在透射电镜下观察其形貌状态并拍照。所制得的纳米载药微球如图2所示。透射电镜下可以清楚的看到聚苯乙烯-聚丙烯酸共聚物通过自组装作用形成了纳米微球,粒径在60~120nm之间,上转换纳米粒子位于聚苯乙烯-聚丙烯酸微球的边缘,微球中间用于装载药物。
实施例7:
载药量的测定。
1)将聚苯乙烯-聚丙烯酸纳米载药微球制剂冻干后,称取一定质量M;然后加入一定体积V的二甲基亚砜(DMSO),使光敏剂酞菁锌和高分子全部释放出来;离心除去上转换纳米粒子,称的质量为M1,则光敏剂酞菁锌和高分子的总质量为M2=M一M1
2)用紫外一可见吸收光谱测得光敏剂酞菁锌吸光值A。根据光敏剂酞菁锌浓度同吸光值的标准曲线,计算出DMSO中酞菁锌的浓度C;根据浓度C和DMSO的体积V,可以计算得到酞菁锌的质量M3
3)载药率即可按照以下计算公式得到:
载药率(%)=酞菁锌质量/(酞菁锌质量+高分子质量)*100%=M3/M2*100%。
实验结果如图3所示,随着光敏剂加入量的不断增加,聚苯乙烯-聚丙烯酸纳米载药微球的载药量也逐渐增加。当光敏剂加入量在10~40μL(1mg/mL)时,聚苯乙烯-聚丙烯酸纳米载药微球的载药量在8~18%之间。当加入40μL光敏剂时,纳米微球的载药量达到最大值18%。
实施例8:
活性氧产生的验证。
光动力反应产生的活性氧可使9,10-蒽基-双(亚甲基)二丙二酸(活性氧探针)在430nm处的荧光发生淬灭。故将实验所得的聚苯乙烯-聚丙烯酸纳米载药微球至于石英皿中,加入200μL(10uM)9,10-蒽基-双(亚甲基)二丙二酸(ABDA)溶液。将石英皿至于980nm激光器照射下照射10min,记录随着照射时间变化荧光值的变化情况。
实验结果如图4所示,在0min时,活性氧探针9,10-蒽基-双(亚甲基)二丙二酸的在430nm处的荧光值最高,为5000a.u.。当聚苯乙烯-聚丙烯酸纳米载药微球受到980nm激光器照射时,活性氧探针在430nm处的荧光值随着时间的增加不断降低。10min后,其430nm处的荧光值降为2000a.u.。活性氧探针荧光随时间淬灭是因为上转换纳米粒子吸收了980nm激光器发出的近红外光,并将其转换为光敏剂可吸收的波长。光敏剂受到激发后同空气中氧分子反应产生了活性氧,从而使得9,10-蒽基-双(亚甲基)二丙二酸荧光发生淬灭。
述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (3)

1.一种用于光动力治疗的聚苯乙烯-聚丙烯酸纳米载药微球的制备方法;其特征是步骤如下:
1)取10~15mg谷氨酸十八烷基季铵盐溶解到1mL的去离子水中,作为水相A;
2)将1~2mL的上转换纳米颗粒的环己烷溶液进行离心,沉淀重新分散于1mL三氯甲烷中形成油相B;
3)将水相A至于冰浴环境中,在超声条件下,按照体积分数比为油相B:水相A=1:2~4,将油相B加入到水相A中形成水油均匀分散的乳液;然后将乳液于旋转蒸发仪上进行旋蒸,当有机溶剂完全蒸发后,即形成谷氨酸十八烷基季铵盐修饰的上转换纳米粒子,此时溶液做为溶液C;
4)将1~2mg聚苯乙烯-聚丙烯酸共聚物溶解到1mL的四氢呋喃中形成溶液D;然后加入10~40μL的酞菁锌四氢呋喃溶液,搅拌30min后,将100~200μL溶液C通过10μL/s的滴加方式,加入到溶液D中;
5)然后将3~5mL的去离子水滴加到溶液D中;滴加完毕后,体系搅拌1h;再将所得溶液加入透析袋中,纯水透析12h;
6)透析完毕后,将产物离心除去,沉淀重新分散于于离子水中,所得样品即为聚苯乙烯-聚丙烯酸纳米载药微球。
2.如权利要求1所述的方法,其特征是所述的步骤4)中酞菁锌四氢呋喃溶液浓度为0.8~1mg/mL。
3.如权利要求1所述的方法,其特征是所述的步骤5)中3~5mL的去离子水滴加到溶液D中,前期滴加速率为10μL/s,待体系变为不透明时溶液时,滴加速率变为200μL/s。
CN201610832916.2A 2016-09-19 2016-09-19 一种用于光动力治疗的聚苯乙烯-聚丙烯酸纳米载药微球的制备方法 Expired - Fee Related CN106309366B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610832916.2A CN106309366B (zh) 2016-09-19 2016-09-19 一种用于光动力治疗的聚苯乙烯-聚丙烯酸纳米载药微球的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610832916.2A CN106309366B (zh) 2016-09-19 2016-09-19 一种用于光动力治疗的聚苯乙烯-聚丙烯酸纳米载药微球的制备方法

Publications (2)

Publication Number Publication Date
CN106309366A CN106309366A (zh) 2017-01-11
CN106309366B true CN106309366B (zh) 2018-10-16

Family

ID=57787483

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610832916.2A Expired - Fee Related CN106309366B (zh) 2016-09-19 2016-09-19 一种用于光动力治疗的聚苯乙烯-聚丙烯酸纳米载药微球的制备方法

Country Status (1)

Country Link
CN (1) CN106309366B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108653734B (zh) * 2018-08-28 2020-04-03 北京化工大学 一种高效上转换纳米粒子光敏剂复合物及其制备方法与应用
CN109771659A (zh) * 2019-02-25 2019-05-21 天津大学 一种乏氧响应性纳米药物载体及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102573613A (zh) * 2009-10-21 2012-07-11 健康研究有限公司 用于增强肿瘤显像的paa纳米粒子
CN104623661A (zh) * 2015-02-16 2015-05-20 天津大学 基于上转换发光技术的酞菁锌高分子脂质体的制备方法
CN105381461A (zh) * 2015-11-12 2016-03-09 中国人民解放军第四军医大学 一种具有pH响应性及光敏性的抗菌材料及其制备方法
US9757357B2 (en) * 2011-05-06 2017-09-12 Tokyo Institute Of Technology Photodynamic therapy or diagnostic agent, using infrared-spectrum light

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102573613A (zh) * 2009-10-21 2012-07-11 健康研究有限公司 用于增强肿瘤显像的paa纳米粒子
US9757357B2 (en) * 2011-05-06 2017-09-12 Tokyo Institute Of Technology Photodynamic therapy or diagnostic agent, using infrared-spectrum light
CN104623661A (zh) * 2015-02-16 2015-05-20 天津大学 基于上转换发光技术的酞菁锌高分子脂质体的制备方法
CN105381461A (zh) * 2015-11-12 2016-03-09 中国人民解放军第四军医大学 一种具有pH响应性及光敏性的抗菌材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MC540 and Upconverting Nanocrystal Coloaded Polymeric Liposome for Near-Infrared Light-Triggered Photodynamic Therapy and Cell Fluorescent Imaging;Hanjie Wang, et al.;《ACS Applied Materials & Interfaces》;20141231;第6卷;第3219-3225页 *

Also Published As

Publication number Publication date
CN106309366A (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
Ning et al. Type-I AIE photosensitizer loaded biomimetic system boosting cuproptosis to inhibit breast cancer metastasis and rechallenge
Xue et al. Trojan Horse nanotheranostics with dual transformability and multifunctionality for highly effective cancer treatment
Qian et al. Light-activated hypoxia-responsive nanocarriers for enhanced anticancer therapy
Wang et al. In vivo therapeutic response monitoring by a self-reporting upconverting covalent organic framework nanoplatform
Wang et al. Biologically inspired polydopamine capped gold nanorods for drug delivery and light-mediated cancer therapy
Xiao et al. A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy
Fedoryshin et al. Near-infrared-triggered anticancer drug release from upconverting nanoparticles
Yang et al. Indocyanine green-modified hollow mesoporous Prussian blue nanoparticles loading doxorubicin for fluorescence-guided tri-modal combination therapy of cancer
Ding et al. Multifunctional core/satellite polydopamine@ Nd 3+-sensitized upconversion nanocomposite: A single 808 nm near-infrared light-triggered theranostic platform for in vivo imaging-guided photothermal therapy
Xia et al. An upconversion nanoparticle–zinc phthalocyanine based nanophotosensitizer for photodynamic therapy
Dou et al. Pb@ Au core–satellite multifunctional nanotheranostics for magnetic resonance and computed tomography imaging in vivo and synergetic photothermal and radiosensitive therapy
Wei et al. Dissolving microneedles integrated with pH-responsive micelles containing AIEgen with ultra-photostability for enhancing melanoma photothermal therapy
Wu et al. Light-activatable prodrug and AIEgen copolymer nanoparticle for dual-drug monitoring and combination therapy
Zheng et al. Biodegradable natural product-based nanoparticles for near-infrared fluorescence imaging-guided sonodynamic therapy
Song et al. Conjugated polymer nanoparticles with absorption beyond 1000 nm for NIR-II fluorescence imaging system guided NIR-II photothermal therapy
Wang et al. A triple-synergistic strategy for combinational photo/radiotherapy and multi-modality imaging based on hyaluronic acid-hybridized polyaniline-coated WS 2 nanodots
Wang et al. MC540 and upconverting nanocrystal coloaded polymeric liposome for near-infrared light-triggered photodynamic therapy and cell fluorescent imaging
Zhao et al. A photosensitizer discretely loaded nanoaggregate with robust photodynamic effect for local treatment triggers systemic antitumor responses
Sun et al. MnO 2 nanoflowers as a multifunctional nano-platform for enhanced photothermal/photodynamic therapy and MR imaging
Zheng et al. Persistent luminescent nanocarrier as an accurate tracker in vivo for near infrared-remote selectively triggered photothermal therapy
Liu et al. Degradable calcium phosphate-coated upconversion nanoparticles for highly efficient chemo-photodynamic therapy
Lv et al. Degradable magnetic-response photoacoustic/up-conversion luminescence imaging-guided photodynamic/photothermal antitumor therapy
Hu et al. Albumin coated trimethyl chitosan-based targeting delivery platform for photothermal/chemo-synergistic cancer therapy
Luo et al. A RBC membrane-camouflaged biomimetic nanoplatform for enhanced chemo-photothermal therapy of cervical cancer
Ge et al. Defect-related luminescent mesoporous silica nanoparticles employed for novel detectable nanocarrier

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder
CP02 Change in the address of a patent holder

Address after: 300350 Haijing garden, Haihe Education Park, Jinnan, Tianjin, 135, Tianjin University.

Patentee after: Tianjin University

Address before: 300072 Tianjin City, Nankai District Wei Jin Road No. 92, Tianjin University

Patentee before: Tianjin University

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181016