CN106303901A - 一种无线传感网中基于协同过滤的可靠数据融合优化方法 - Google Patents

一种无线传感网中基于协同过滤的可靠数据融合优化方法 Download PDF

Info

Publication number
CN106303901A
CN106303901A CN201510250936.4A CN201510250936A CN106303901A CN 106303901 A CN106303901 A CN 106303901A CN 201510250936 A CN201510250936 A CN 201510250936A CN 106303901 A CN106303901 A CN 106303901A
Authority
CN
China
Prior art keywords
data
node
link
sigma
scoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510250936.4A
Other languages
English (en)
Other versions
CN106303901B (zh
Inventor
余利
董晓林
郝花雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN201510250936.4A priority Critical patent/CN106303901B/zh
Publication of CN106303901A publication Critical patent/CN106303901A/zh
Application granted granted Critical
Publication of CN106303901B publication Critical patent/CN106303901B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种无线传感网中基于协同过滤的可靠数据融合优化方法。该方法采用层次化逻辑结构设计,分别从传感器节点自身数据融合的可靠性和链路传输可靠性两方面优化网络性能。对突发的非线性的噪声数据采用拉普拉斯函数而非高斯函数进行噪声过滤。在敌对环境下,为提高数据融合精确度,避免恶意节点的大量入侵而干扰真实信息,我们采用信息量向量计算感知数据的相似度,并加权平均进行数据融合;为增强传输可靠性,采用链路检测模型对链路预测。当链路故障时,簇首发送PROB消息告知故障链路或者故障节点的邻居节点,邻居节点重新感知重要数据,以防重要数据的丢失。该方法有效解决了无线传感网中节点部署的密度大、数据冗余度高、能量有限和易遭攻击等问题。

Description

一种无线传感网中基于协同过滤的可靠数据融合优化方法
技术领域
本发明涉及一种无线传感网中基于协同过滤的可靠数据融合优化方法,属于无线通信技术与计算机网络的交叉领域。
背景技术
随着无线传感网应用的普及,如环境监测、智能家居、车载网络、远程医疗等。当前对无线传感网的研究热度也愈演愈烈,而传感器是无线传感网中不可或缺的组成部分,由于传感器节点仅用有限能量的电池供电。在能量约束的前提下,其需要感知和传输大量的环境数据转发给给所在簇的簇首节点或基站(sink节点)。而相邻的传感器节点感知的数据通常是高度相关,甚至是相同的,这造成网络中感知的冗余数据过多,对网络性能造成极大的影响,因此数据融合技术的提出对无线传感网络的能耗、通信开销和数据精确度等网络性能有了重大的改善,对无线传感网络应用的普及具有重要的理论和实用价值。
在无线传感网中,数据融合的方法很多。Fu-Kai Chan等提出粒子滤波算法。其使用蒙特卡罗方法实现最优的递归贝叶斯估计,并选用合适的重要性函数代替状态后验概率分布,是非高斯非线性状态下的“最优”滤波器。该方案已发表于Proc.2011 IEEEVehicular-Technology Conf.(VTC)。但负责存储、计算的传感器节点的通信开销能耗也会增加。Yuan Fei等人提出数据密度相关度的聚类算法进行数据融合,该方法主要采用聚类的思想,对所感知的数据采用密度相关性进行融合。该方法已发表于IEEE Sensors Journal,2014,vol.14(4),pp:1089-1098。仅仅采用数据密度相关度,较少考虑到历史可信度,而且,没有对以检测出的恶意传感节点采用相应的策略。在敌对环境下,节点一旦被敌方捕获,敌方恶意修改数据,并以最大或者最小的评分数值参与融合,导致基准平均值的偏离,从而降低数据融合的准确性。传统的融合方法,普遍以求和、最值等作为融合参考依据,没有考虑到恶意节点入侵和链路传输故障的因素,这导致网络易遭攻击,融合数据准确度降低,冗余度高等现象。
发明内容
技术问题:本发明针对上述方案中存在的不足,提出了一种无线传感网中基于协同过滤的可靠数据融合优化方法,即CFRA算法。该方法不仅均衡了网络能耗,提高了网络性能,而且,最大化的提高了数据融合的可靠性。
技术方案:本发明提出一种无线传感网中基于协同过滤的可靠数据融合优化方法,该方法分别从传感器节点自身数据融合的可靠性和链路传输的可靠性两方面同时优化网络性能。对突发的非线性的噪声数据,采用拉普拉斯函数而非高斯函数进行噪声过滤。在敌对环境下,为提高数据融合精确度,避免恶意节点的大量入侵而干扰真实数据,采用信息量向量计算感知数据的相似度,并加权平均进行数据融合;为增强数据传输可靠性,我们采用链路检测模型对链路传输检测,当链路故障时,簇首发送PROB消息告知故障链路或者故障节点的邻居节点,邻居节点重新感知重要数据,以防重要数据的丢失。该方法有效解决了无线传感网中节点部署的密度大、数据冗余度高、能量有限和易遭攻击等问题。
假设N个传感器节点对D个不同的数据的特征属性构造一个节点-数据矩阵S。sn,d=x(x∈{1,2,...,smax}),表示节点n对数据属性d的评分,sn,d的默认值为0。节点-数据矩阵表示如下:
S=[n1,…,nN]T,ni=[s1,1,..Si,m,Si,n,..,Si,D]T,i=1,..,p,q,..,N,(p≠q).
S=[d1,...,dD]T,dj=[S1,j,..Sp,j,Sq,j..,SN,j]T,j=1,..,m,n,..,D,(m≠n).
其中,ni表示某一节点对所有数据属性的评分,dj表示所有的节点对某一数据属性的评分。
单个传感器节点对感知的数据,采用修正的余弦计算其数据间的相似度,由公式(1)计算。
sim = Σ p ∈ S mn ( S p , m - S ‾ m ) ( S p , n - S ‾ n ) Σ p ∈ S m ( S p , m - S ‾ m ) 2 Σ p ∈ S n ( S p , n - S ‾ n ) 2 - - - ( 1 )
其中,Sp,m和Sp,n表示节点p分别对数据m和数据n评分。Smn表示Sm和Sn的评分集合。分别表示对数据m和n的平均评分。
在敌对环境下,当某个节点因外界因素遭遇入侵,成为恶意节点时,这类节点通常干扰其他节点对数据的真实评分的评分态度。对于这种突发的干扰噪声,我们采用信息量向量计算数据相似度。节点p的信息量向量Rp定义如下:
R p = [ S p , 1 , . . . , S p , D ] T = [ sgn ( S p , 1 - μ ^ 1 ) * I ( S p , 1 ) , . . . , sgn ( S p , D - μ ^ D ) * I ( S p , D ) ] T , p = 1 , . . . , N
其中,表示节点p对数据j的态度。根据数据j的平均态度,对做出正或负的态度表示。I(Sp,j)是对Sp,j评分的信息量,由公式(2)计算。
I ( S p , j ) = - ln ( f ( S = S p , j | μ ^ j , b ^ j ) ) = ln ( 2 b ^ j ) + | S p , J - μ ^ j | b ^ j - - - ( 2 )
公式(2)中μj和bj采用拉普拉斯概率密度函数进行最大释然估计,由公式(4-5)计算。
假定S1,j,S2,j,…,SN,j是独立且服从均匀分布的样本。其概率密度函数表达式由公式(3)计算。
f ( S | &mu; , b ) = 1 2 b exp ( - | S - &mu; | b ) = 1 2 b exp ( - &mu; - S b ) ( S < &mu; ) exp ( - S - &mu; b ) ( S > &mu; ) - - - ( 3 )
其中,μ是一个位置参数,b>0是一个范围参数。
&mu; ^ j = 1 D &Sigma; j = 1 D S p , j - - - ( 4 )
b ^ j = 1 D &Sigma; j = 1 D | S p , j - &mu; ^ j | - - - ( 5 )
基于信息量向量计算节点间的相似度,由公式(6)计算。
sim I ( n p , n q ) = &Sigma; ( i | S p , j , S q , j &NotEqual; 0 ) R p , j * R q , j &Sigma; { i | S p , j , S q , j &NotEqual; 0 } R 2 p , j &CenterDot; &Sigma; { i | S p , j , S q , j &NotEqual; 0 } S 2 q , j - - - ( 6 )
为防止敌方设置多个恶意节点,构造虚假数据,形成评分过高的干扰,最终导致真实数据丢失,我们采用降低权重因子过高的约束方法。由公式(7)计算。
sim &prime; I ( n p , n q ) = Min ( | I n p I I n q | , &eta; ) &eta; sim I ( n p , n q ) - - - ( 7 )
其中,是节点np和nq协作的评分数。若其小于η,则这些节点的相似度将会降低,此方式有效避免了节点过度评估数据的相似度。最后,加权平均进行融合,由公式(8)计算。
w &prime; = 1 N &Sigma; i = 1 N w i - - - ( 8 )
其中,当(7)式大于零时,wi=sim′I(np,nq);否则,w1=0。
当sink节点入侵检测到没有恶意的节点时,簇首采用修正的余弦计算节点间相似度,由公式(9)计算。
sim = &Sigma; j &Element; S pq ( S p , j - S &OverBar; p ) ( S p , j - S &OverBar; q ) &Sigma; j &Element; S p ( S p , j - S &OverBar; p ) 2 &Sigma; p &Element; S q ( S p , j - S &OverBar; q ) 2 - - - ( 9 )
其中,Sp,j和Sn,j分别表示节点p和q节点对数据j评分。Spq表示Sp和Sq的评分集合。节点p和q对数据的平均评分。
链路传输可靠性,由链路传输模型进行检测。链路检测模型为:
&theta; &le; P xy / d xy &alpha; &epsiv; 0 + &Sigma; L gh &Element; &psi; xy - { L xy } P gh / d gh &alpha; - - - ( 10 )
其中,ψxy表示链路并发传输的链路集合,Lxy表示链路集合。Pxy和Pgh分别表示链路Lxy和Lgh的发射器的传输功率。dxy(dgh)表示链路Lxy(Lgh)发射器与其接收器之间的距离。α表示路径衰减率(取值范围一般在2-6之间)。ε0为高斯白噪声,θ是信号干扰噪声率(SINR)成功传输的阈值(θ≥1)。当SINR≥θ时,链路Lxy传输正常。
该方法的具体步骤如下:
S1:普通的传感器节点感知数据;
S2:采用公式(1)计算数据间的相似度,加权融合数据;
S3:转发数据信息给簇首;
S4:簇首判断S3数据包中的源节点是否隶属于本簇,若是,转S5和转S6;否则,转S10;
S5:判断是否有链路传输的故障信息,若是,则发送信息给其邻居节点重新感知数据,转S1;否则,转S10;
S6:判断是否有恶意节点,若是,采用公式(2)-(6)计算节点间的相似度,并用公式(7)-(8)降低评分权重进行加权融合数据,转S7;否则,采用公式(9)计算节点间的相似度,加权融合后转S7;
S7:转发S6融合后的数据给sink节点;
S8:sink节点判断链路传输是否故障,若是,转S3;否则,转S10;
S9:sink节点检测传感器节点是否为恶意节点,若是,转S3,否则,转S10;
S10:不作响应。
检测是否存在恶意节点,具体步骤如下:
D1:用相同权重初始化网络;
D2:通过计算相似的其他节点所得评分的平均评分,由公式(11)估计出未知数据的评分;
S q , m ^ = &Sigma; d = 1 D sim m , d S q , d &OverBar; &Sigma; d = 1 D | sim m , d | - - - ( 11 )
其中,表示节点q对数据属性d的平均评分。
D3:由D1计算得出的某个节点对某项数据的特征属性的预期评分与实际数据评分作差;
D4:对D2得出的差值与经验阈值比较,若差值小于经验阈值,则该节点不是恶意节点,不作响应;否则,将该节点标记为恶意节点,并将信息转发给所在簇的簇首;
D5:重复步骤D2-D4,直到遍历完网络中所有节点为止。
D6:输出是否存在恶意节点的信息。
与现有的数据融合技术相比,本发明的创新点在于在节点数据融合过程中引入了协同过滤的融合方法,并在链路传输过程中采用链路检测模型进行检测链路传输的可靠性,实现了恶意节点入侵防护和链路传输故障的预测,提高了数据融合的双重可靠性和网络能效。
附图说明
图1为一种无线传感网中基于协同过滤的可靠数据融合优化方法的网络模型图;
图2为一种无线传感网中基于协同过滤的可靠数据融合优化方法的算法流程图;
图3为OPNET仿真平台的节点模型图;
图4为所述方法与LEACH协议的剩余能量方差的比较示意图;
图5为所述方法与LEACH协议融合精确度的比较示意图;
具体实施方式
下面结合附图和具体实施方式,对本发明作进一步说明。
基本思想:本发明提供一种无线传感网中基于协同过滤的可靠数据融合优化方法,该方法对突发的非线性的噪声数据,采用拉普拉斯函数而非高斯函数进行噪声过滤。在敌对环境下,我们采用信息量向量来计算感知数据的相似度,并加权平均进行数据融合以提高数据融合精确度;为增强数据传输可靠性,采用链路检测模型对链路预测。当链路故障时,簇首发送PROB消息告知故障链路的其他相邻节点,并让邻居节点重新获取数据,以防重要数据的丢失。因此,该方法有效降低了数据冗余,节约能耗,并提高了数据及网络的可靠性。
数据结构设计如下:PROB消息的包格式
固定字段:
Sid Did SeqNum
可变字段:
Sid、Did和Lid分别表示源id,目的id和链路id;NeighID表示一维数组,存储邻居节点id;SeqNum表示序列号;Payload表示数据载荷;N_Nor和L_Nor均为布尔型,分别表示节点和链路是否正常;Cid为整型,表示簇首id。
本发明采用OPNET仿真平台,仿真环境参数配置:节点总数为1000,网络大小为200平方米的区域内,网络拓扑随机配置,感知数据的大小默认为2048bits,报告间隔为0.2s,仿真时间为300s,路由协议采用LEACH,该协议核心是采用分簇结构路由数据。数据传输率为1Mbps,节点通信半径为50m,节点初始能量为50J,节点成功传输k比特数据的总能耗为50nJ/bit,更新周期为0.8s,感知数据大小默认1KB,消息报文大小默认128B。
本发明是采用LEACH协议的路由方法,对于分簇方法,请参见:Asaduzzaman,Kong,Hyung Yun.Energy efficient cooperative LEACHprotocol for wireless sensor networks[J].Journal of IEEECommunications and networks,2010,12(4),pp:358-365.
图1给出该方法在分簇基础上构建的网络模型图。普通传感器节点将融合的数据发送给所在簇的簇首,由簇首将二次融合后的数据发送给基站。
图2给出无线传感网中基于协同过滤的可靠数据融合优化算法的流程图。传感器采用公式(1)计算数据间的相似度,加权融合数据,并将融合后的数据转发给簇首,簇首根据信息中的Cid,判断是否属于本簇。若属于本簇,则依据链接检测模型判断链路是否存在故障信息,同时依据恶意节点检测算法判断节点是否为恶意节点。若存在链路故障,则发送PROB消息给邻居节点,告知其重新感知数据。否则,不作响应。若存在恶意节点,则采用协同过滤方法进行数据融合,并将融合后的数据转发给sink;否则,采用公式(9)计算节点间的相似度,加权融合后转发数据给sink节点。在无能量约束的sink节点处设置恶意节点入侵检测算法和链路预测模型。并将检测的结果以PROB消息发送给网络中所有的簇首节点。
图3给出无线传感网中基于协同过滤的可靠数据融合优化方法在OPNET仿真平台中的节点模型图。在应用层中,包含传感器模块和应用管理模块,该层主要对特殊的应用进行内网处理;在路由层中,采用LEACH协议和所述的CFRA算法路由。在数据链路层,采用IEEE 802.11实现和提供相应的接口。在物理层,采用WLAN接收器和WLAN发送器进行数据的收发。
图4给出所述方法与LEACH协议的剩余能量方差的比较示意图。显然,一种无线传感网中基于协同过滤的可靠数据融合优化方法的剩余能量方差在链路故障率高于0.05之后,其剩余能量方差均低于LEACH的剩余能量方差,说明剩余能量比较稳定,该方法对网络能耗起到了的均衡作用。随着链路故障率的增加,LEACH的剩余能量波动较大。
所述方法与LEACH协议的融合精确度的比较关系如图5所示,我们采用sink节点的均方差(SMS)来度量最终结果的精确度。
SMS = 1 T &Sigma; t = 1 N ( T t - C ) 2 / N + &sigma; - - - ( 12 )
其中,C表示源节点的真实值。Tt表示t时刻sink点融合后的值。N表示选取的时间点。σ表示由链路可靠性带来的随机误差。
图5表明:随着链路故障率的增加,无线传感网中基于协同过滤的可靠数据融合优化方法的融合精确度比LEACH的高了近0.6倍。而且该方法随着链路故障率的增加,融合精确度的下降率相对缓慢,说明该方法在节点自身和链路传输两方面进行增加可靠性,有效提高了数据融合的精确度和网络可靠性。
上述描述仅作为本发明可实施的技术方案提出,不作为对其技术方案本身的单一限制条件。

Claims (9)

1.一种无线传感网中基于协同过滤的可靠数据融合优化方法,其特征在于,采用层次化逻辑结构设计,分别从传感器节点自身数据融合的可靠性和链路传输的可靠性两方面优化网络性能。
2.根据权利要求1所述的一种无线传感网中基于协同过滤的可靠数据融合优化方法,其特征在于,基于协同过滤方法的融合模型:假设N个传感器对D个不同的数据特征属性构造一个节点-数据矩阵S。sn,d=x(x∈{1,2,...,smax}),表示节点n对数据属性d的评分,sn,d的默认值为0。节点-数据矩阵表示如下:
S=[n1,...,nN]T,ni=[Si,1,..Si,m,Si,n,..,Si,D]T,i=1,..,p,q,..,N,(p≠q).
S=[d1,...,dD]T,dj=[S1,j,..Sp,j,Sq,j..,SN,j]T,j=1,..,m,n,..,D,(m≠n).
其中,ni表示某一节点对所有数据属性的评分,dj表示所有的节点对某一数据属性的评分。
单个传感器节点对感知的数据,采用修正的余弦计算其数据间的相似度。
sim = &Sigma; p &Element; S mn ( S p , m - S &OverBar; m ) ( S p , n - S &OverBar; n ) &Sigma; p &Element; S m ( S p , m - S &OverBar; m ) 2 &Sigma; p &Element; S n ( S p , n - S &OverBar; n ) 2 - - - ( 1 )
其中,Sp,m和Sp,n表示节点p分别对数据m和n的评分。Smn表示Sm和Sn的评分集合。分别表示对数据m和n的平均评分。
在敌对环境下,当节点因外界因素遭遇入侵,成为恶意节点时,这类节点通常干扰其他节点对数据的真实评分的评分态度。对这种突发的干扰噪声,我们采用信息量向量计算数据相似度。节点p的信息量向量Rp定义如下:
R p = [ S p , 1 , . . . , S p , D ] T = [ sgn ( S p , 1 - &mu; ^ 1 ) * I ( S p , 1 ) , . . . , sgn ( S p , D - &mu; ^ D ) * I ( S p , D ) ] T , p = 1 , . . . , N
其中,表示节点p对数据j的态度。由数据j的平均态度,对做出正或负的态度表示。I(Sp,j)是对Sp,j评分的信息量。
I ( S p , j ) = - ln ( f ( S = S p , j | &mu; ^ j , b ^ j ) ) = ln ( 2 b ^ j ) + | S p , j - &mu; ^ j | b ^ j - - - ( 2 )
3.根据权利要求1所述的一种无线传感网中基于协同过滤的可靠数据融合优化方法,其特征在于,所述公式(2)中μj和bj采用拉普拉斯概率密度函数进行最大释然估计,由公式(4-5)计算。
假定S1,j,S2,j,...,SN,j是独立且服从均匀分布的样本。其概率密度函数表达式为:
f ( S | &mu; , b ) = 1 2 b exp ( - | S - &mu; | b ) = 1 2 b exp ( - &mu; - S b ) ( S < &mu; ) exp ( - S - &mu; b ) ( S > &mu; ) - - - ( 3 )
其中,μ是一个位置参数,b>0是一个范围参数。
&mu; ^ j = 1 D &Sigma; j = 1 D S p , j - - - ( 4 )
b ^ j = 1 D &Sigma; j = 1 D | S p , j - &mu; ^ j | - - - ( 5 )
4.根据权利要求1所述的一种无线传感网中基于协同过滤的可靠数据融合优化方法,其特征在于,基于信息量向量计算节点间相似度。
Sim I ( n p , n q ) = &Sigma; { i | S p , j , S q , j &NotEqual; 0 } R p , j * R q , j &Sigma; { i | S p , j , S q , j &NotEqual; 0 } R 2 p , j &CenterDot; &Sigma; { i | S p , j , S q , j &NotEqual; 0 } R 2 q , j - - - ( 6 )
5.根据权利要求1所述的一种无线传感网中基于协同过滤的可靠数据融合优化方法,其特征在于,为防止敌方设置多个恶意节点,构造虚假数据,形成评分过高的干扰,最终导致真实数据丢失。我们采用降低权重因子过高的约束方法。
sim &prime; I ( n p , n q ) = Min I n p I I n q , &eta; &eta; sim I ( n p , n q )
其中, I n p I I n q 是节点np和nq协作评分数。若其小于η,则这些节点的相似度将会降低。此方式有效避免了节点过度评估数据间相似度。
6.根据权利要求1所述的一种无线传感网中基于协同过滤的可靠数据融合优化方法,其特征在于,所述的加权平均融合如下:
w &prime; = 1 N &Sigma; i = 1 N w i - - - ( 8 )
其中,当(7)式大于零时,wi=sim′I(np,nq`);否则,wi=0。
当sink节点检测到不存在恶意节点时,簇首采用修正的余弦计算节点间相似度。
sim = &Sigma; j &Element; S pq ( S p , j - S &OverBar; p ) ( S q , j - S &OverBar; q ) &Sigma; j &Element; S p ( S p , j - S &OverBar; p ) 2 &Sigma; j &Element; S q ( S q , j - S &OverBar; q ) 2 - - - ( 9 )
其中,Sp,j和Sn,j分别表示节点p和q对数据j评分。Spq表示Sp和Sq的评分集合。节点p和q对数据的平均评分。
7.根据权利要求1所述的一种无线传感网中基于协同过滤的可靠数据融合优化方法,其特征在于,所述的链路传输可靠性,由链路传输模型检测。链路检测模型为:
&theta; &le; P xy | d xy a &epsiv; 0 + &Sigma; L gh &Element; &psi; xy - { L xy } P gh / d gh a - - - ( 10 )
其中,ψxy表示链路并发传输的链路集合,Lxy表示链路集合。Pxy和Pgh分别表示链路Lxy和Lgh的发射器的传输功率。dxy(dgh)表示链路Lxy(Lgh)发射器与其接收器之间的距离。α表示路径衰减率(取值范围一般在2-6之间)。ε0为高斯白噪声,θ是信号干扰噪声率(SINR)成功传输的阈值(θ≥1)。当SINR≥θ时,链路Lxy传输正常。
8.根据权利要求1所述的一种无线传感网中基于协同过滤的可靠数据融合优化方法,其特征在于,该方法的具体步骤如下:
S1:普通的传感器节点感知数据;
S2:采用公式(1)计算数据间的相似度,加权融合数据;
S3:转发数据信息给簇首;
S4:簇首判断S3数据包中的源节点是否隶属于本簇,若是,转S5和转S6;否则,转S10;
S5:判断是否有链路传输的故障信息,若是,则发送信息给其邻居节点重新感知数据,转S1;否则,转S10;
S6:判断是否有恶意节点,若是,采用公式(2)-(6)计算节点间的相似度,并用公式(7)-(8)降低评分权重进行加权融合数据,转S7;否则,采用公式(9)计算节点间的相似度,加权融合后转S7;
S7:转发S6融合后的数据给sink节点;
S8:sink节点判断链路传输是否故障,若是,转S3;否则,转S10;
S9:sink节点检测传感器节点是否为恶意节点,若是,转S3,否则,转S10;
S10:不作响应。
9.根据权利要求1所述的一种无线传感网中基于协同过滤的可靠数据融合优化方法,其特征在于,所述的是否存在恶意节点,具体检测步骤如下:
D1:用相同权重初始化网络;
D2:通过计算相似的其他节点所得评分的平均评分,由公式(11)估计出未知数据的评分;
S q , m ^ = &Sigma; d = 1 D sim m , d S q , d &OverBar; &Sigma; d = 1 D | sim m , d | - - - ( 11 )
其中,表示节点q对数据属性d的平均评分。
D3:由D1计算得出的某个节点对某项数据的特征属性的预期评分与实际数据评分作差;
D4:对D2得出的差值与经验阈值比较,若差值小于经验阈值,则该节点不是恶意节点,不作响应;否则,将该节点标记为恶意节点,并将信息转发给所在簇的簇首;
D5:重复步骤D2-D4,直到遍历完网络中所有节点为止。
D6:输出是否存在恶意节点的信息。
CN201510250936.4A 2015-05-18 2015-05-18 一种无线传感网中基于协同过滤的可靠数据融合优化方法 Expired - Fee Related CN106303901B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510250936.4A CN106303901B (zh) 2015-05-18 2015-05-18 一种无线传感网中基于协同过滤的可靠数据融合优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510250936.4A CN106303901B (zh) 2015-05-18 2015-05-18 一种无线传感网中基于协同过滤的可靠数据融合优化方法

Publications (2)

Publication Number Publication Date
CN106303901A true CN106303901A (zh) 2017-01-04
CN106303901B CN106303901B (zh) 2019-11-19

Family

ID=57632002

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510250936.4A Expired - Fee Related CN106303901B (zh) 2015-05-18 2015-05-18 一种无线传感网中基于协同过滤的可靠数据融合优化方法

Country Status (1)

Country Link
CN (1) CN106303901B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108631797A (zh) * 2017-03-21 2018-10-09 维布络有限公司 控制无线发射器传输范围的方法和系统
CN109451433A (zh) * 2018-11-28 2019-03-08 广东轻工职业技术学院 一种精准灌溉wsn布局设计方法
CN110798848A (zh) * 2019-09-27 2020-02-14 国家电网有限公司 无线传感器数据融合方法及装置、可读存储介质和终端
CN112907869A (zh) * 2021-03-17 2021-06-04 四川通信科研规划设计有限责任公司 基于多种传感技术的入侵检测系统
CN117572917A (zh) * 2024-01-17 2024-02-20 济宁市质量计量检验检测研究院(济宁半导体及显示产品质量监督检验中心、济宁市纤维质量监测中心) 一种用于温度智能控制器的数据融合方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101360051A (zh) * 2008-07-11 2009-02-04 西安电子科技大学 一种能量高效的无线传感器网络路由方法
CN102802158A (zh) * 2012-08-07 2012-11-28 湖南大学 基于信任评估的无线传感器网络异常检测方法
US20130016625A1 (en) * 2011-07-11 2013-01-17 Srd Innovations Inc. Wireless mesh network and method for remote seismic recording
CN103298022A (zh) * 2013-06-18 2013-09-11 北京邮电大学 一种基于能量监测的无线传感器信任评估方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101360051A (zh) * 2008-07-11 2009-02-04 西安电子科技大学 一种能量高效的无线传感器网络路由方法
US20130016625A1 (en) * 2011-07-11 2013-01-17 Srd Innovations Inc. Wireless mesh network and method for remote seismic recording
CN102802158A (zh) * 2012-08-07 2012-11-28 湖南大学 基于信任评估的无线传感器网络异常检测方法
CN103298022A (zh) * 2013-06-18 2013-09-11 北京邮电大学 一种基于能量监测的无线传感器信任评估方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王振飞,余利,郑志蕴: "基于LEACH协议的多因子可靠数据融合优化策略", 《计算机科学》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108631797A (zh) * 2017-03-21 2018-10-09 维布络有限公司 控制无线发射器传输范围的方法和系统
CN108631797B (zh) * 2017-03-21 2020-10-09 维布络有限公司 控制无线发射器传输范围的方法和系统
CN109451433A (zh) * 2018-11-28 2019-03-08 广东轻工职业技术学院 一种精准灌溉wsn布局设计方法
CN109451433B (zh) * 2018-11-28 2021-01-15 广东轻工职业技术学院 一种精准灌溉wsn布局设计方法
CN110798848A (zh) * 2019-09-27 2020-02-14 国家电网有限公司 无线传感器数据融合方法及装置、可读存储介质和终端
CN112907869A (zh) * 2021-03-17 2021-06-04 四川通信科研规划设计有限责任公司 基于多种传感技术的入侵检测系统
CN117572917A (zh) * 2024-01-17 2024-02-20 济宁市质量计量检验检测研究院(济宁半导体及显示产品质量监督检验中心、济宁市纤维质量监测中心) 一种用于温度智能控制器的数据融合方法及系统
CN117572917B (zh) * 2024-01-17 2024-04-09 济宁市质量计量检验检测研究院(济宁半导体及显示产品质量监督检验中心、济宁市纤维质量监测中心) 一种用于温度智能控制器的数据融合方法及系统

Also Published As

Publication number Publication date
CN106303901B (zh) 2019-11-19

Similar Documents

Publication Publication Date Title
CN106303901A (zh) 一种无线传感网中基于协同过滤的可靠数据融合优化方法
Yue et al. A comprehensive survey on the reliability of mobile wireless sensor networks: Taxonomy, challenges, and future directions
CN102333307B (zh) 一种基于主观信念的无线传感器网络信任评估方法
CN105959987A (zh) 一种提高无线传感器网络能量利用率和服务性能的数据融合算法
CN103533571B (zh) 基于投票策略的容错事件检测方法
CN101415256A (zh) 基于人工免疫系统的无线传感器网络故障诊断方法
CN110224427B (zh) 一种基于微电网能量控制策略的信息物理系统建模方法
CN106131154A (zh) 移动无线传感器网络中基于核函数的压缩数据收集方法
CN102572997B (zh) 移动无线传感器网络Sink节点的数据采集方法
CN106658641A (zh) 一种分布式无线传感网络分簇路由方法
CN104185237B (zh) 一种基于蚁群算法的鲁棒优化算法
CN105848242A (zh) 一种无线传感器网络中基于信任感知的安全路由优化方法
CN102196461B (zh) 传感器网络节点重要性评价方法
CN110049528A (zh) 一种传感网中基于信任值效用的移动式可信数据收集方法
CN106897791A (zh) 一种公交地铁复合网络模型构建方法
CN103686737A (zh) 基于树形拓扑的无线传感网入侵容忍方法和系统
CN105632108A (zh) 一种结合GPRS和ZigBee网络的泥石流监测及预警系统
Ali et al. Leach robust routing approach applying machine learning
CN103957544A (zh) 一种提高无线传感器网络抗毁性的方法
CN106507426A (zh) 一种新型能耗均衡的传感器网络拓扑演化方法
Qiu et al. A 3-D topology evolution scheme with self-adaption for industrial Internet of Things
CN105263157A (zh) 用于Ad Hoc网络中基于情景感知的功率控制方法
CN103369619B (zh) 一种基于度自适应调整动态聚合树的方法
CN102448066A (zh) 一种面向wsn的基于人工免疫和移动代理的轻量级入侵检测方法
CN106789641A (zh) 智能电网中集中式广域保护通信网的拓扑设计方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191119

Termination date: 20200518

CF01 Termination of patent right due to non-payment of annual fee