CN106300316A - 具有自动放电、逆变和防雷的太阳能空调控制系统 - Google Patents

具有自动放电、逆变和防雷的太阳能空调控制系统 Download PDF

Info

Publication number
CN106300316A
CN106300316A CN201610736523.1A CN201610736523A CN106300316A CN 106300316 A CN106300316 A CN 106300316A CN 201610736523 A CN201610736523 A CN 201610736523A CN 106300316 A CN106300316 A CN 106300316A
Authority
CN
China
Prior art keywords
resistance
igbt pipe
circuit
lightning protection
audion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610736523.1A
Other languages
English (en)
Inventor
高传芳
高峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUZHOU SUBAO NEW ENERGY TECHNOLOGY Co Ltd
Original Assignee
SUZHOU SUBAO NEW ENERGY TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUZHOU SUBAO NEW ENERGY TECHNOLOGY Co Ltd filed Critical SUZHOU SUBAO NEW ENERGY TECHNOLOGY Co Ltd
Priority to CN201610736523.1A priority Critical patent/CN106300316A/zh
Publication of CN106300316A publication Critical patent/CN106300316A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/06Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using spark-gap arresters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other DC sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0038Circuits or arrangements for suppressing, e.g. by masking incorrect turn-on or turn-off signals, e.g. due to current spikes in current mode control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

本发明公开了一种具有自动放电、逆变和防雷的太阳能空调控制系统,包括太阳能电池、太阳能控制器、蓄电池和变频空调器,太阳能控制器包括充电电路、控制电路、防雷电路和放电电路,变频空调器包括逆变电路,放电电路包括第四十一至第四十二三极管、第四十一电阻、第四十三电阻、第四十五电阻、第四十六电阻、第四十一电容和第四十二电容,逆变电路包括第五十一至第五十六IGBT管、第五十一至第五十二电容、第五十一至第五十二二极管、第五十一至第五十二电阻、第五十一至第五十二电感。本发明可以有效防雷、提高系统安全性能、能降低成本、降低损耗、能够减少放电时间、可以抑制漏电流、变化效率较高、电路结构简单、能实现良好的防雷效果。

Description

具有自动放电、逆变和防雷的太阳能空调控制系统
技术领域
本发明涉及太阳能空调领域,特别涉及一种具有自动放电、逆变和防雷的太阳能空调控制系统。
背景技术
太阳能空调系统由太阳能电池、控制器、蓄电池和变频空调器等部分组成。现有的太阳能空调系统存在如下缺陷:控制器防雷保护措施不力,影响系统安全性能;蓄电池的多个单体蓄电池之间的容量和自放电不可避免的存在不一致的情形,影响蓄电池寿命。
传统的放电电路,例如电容自放电电路,可分为以下两种:一种是在电容两端直接并联功率电阻;另一种是由功率电阻、放电继电器和放电继电器控制电路组成。然而在第一种电容自放电电路中,如果电阻过大则放电时间较长,如果电阻过小则损耗过大;第二种电容自放电电路由于需要放电继电器和放电继电器控制电路等部件,因此成本较高、使用寿命短。
光伏逆变器是一种由半导体器件组成的电力调整装置,主要用于把直流电力转换成交流电力。一般由升压回路和逆变桥式回路构成,其中,升压回路把太阳能电池的直流电压升压到逆变器输出控制所需的直流电压;逆变桥式回路则把升压后的直流电压等价地转换成常用频率的交流电压。现有的光伏4管全桥逆变器变化效率不高,不能很好的抑制漏电流。
现有的太阳能空调系统所采用的防雷电路的结构较为复杂,成本较高,同时也不方便进行维护,另外,其防雷效果也不太理想。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种可以有效防雷、提高系统安全性能、能降低成本、降低损耗、能够减少放电时间、可以抑制漏电流、变化效率较高、电路结构简单、能实现良好的防雷效果的具有自动放电、逆变和防雷的太阳能空调控制系统。
本发明解决其技术问题所采用的技术方案是:构造一种具有自动放电、逆变和防雷的太阳能空调控制系统,包括太阳能电池、太阳能控制器、蓄电池和变频空调器,所述太阳能控制器包括充电电路、控制电路、防雷电路和放电电路,所述变频空调器包括逆变电路和压缩机,所述太阳能电池与所述充电电路连接,所述充电电路通过所述控制电路与所述放电电路连接,所述充电电路和放电电路还均与所述蓄电池连接,所述控制电路通过所述防雷电路与所述蓄电池连接,所述放电电路还通过所述逆变电路与所述压缩机连接;
所述放电电路包括第四十一三极管、第四十二三极管、第四十一电阻、第四十三电阻、第四十五电阻、第四十六电阻、第四十一电容和第四十二电容,所述第四十一三极管的集电极通过所述第四十一电阻与所述蓄电池的正极连接,所述第四十一三极管的发射极与所述蓄电池的负极连接,所述第四十一三极管的基极通过所述第四十一电容分别与所述第四十二三极管的集电极和第四十三电阻的一端连接,所述第四十三电阻的另一端与所述蓄电池的正极连接,所述第四十二三极管的发射极接地,所述第四十二三极管的基极通过所述第四十二电容分别与所述第四十五电阻的一端和第四十六电阻的一端连接,所述第四十五电阻的另一端接地,所述第四十六电阻的另一端与可控电源连接,所述第四十三电阻的阻值大于所述第四十一电阻的阻值;
所述逆变电路包括驱动控制单元、第五十一IGBT管、第五十二IGBT管、第五十三IGBT管、第五十四IGBT管、第五十五IGBT管、第五十六IGBT管、第五十一电容、第五十二电容、第五十一二极管、第五十二二极管、第五十一电阻、第五十二电阻、第五十一电感、第五十二电感和交流市电,所述第五十一电容的两端分别与所述蓄电池的正极和所述蓄电池的负极连接,所述第五十一IGBT管的发射极通过所述第五十一电阻与所述蓄电池的正极连接,所述第五十一IGBT管的栅极与所述驱动控制单元的第一引脚连接,所述第五十一IGBT管的集电极分别与所述第五十二IGBT管的发射极、第五十一二极管的阴极和第五十一电感的一端连接,所述第五十二IGBT管的栅极与所述驱动控制单元的第三引脚连接,所述第五十二IGBT管的集电极分别与所述第五十三IGBT管的发射极和第五十二二极管的阳极连接,所述第五十三IGBT管的栅极与所述驱动控制单元的第二引脚连接,所述第五十三IGBT管的集电极与所述蓄电池的负极连接,所述第五十四IGBT管的发射极通过所述第五十二电阻与所述蓄电池的正极连接,所述第五十四IGBT管的栅极与所述驱动控制单元的第二引脚连接,所述第五十四IGBT管的集电极分别与所述第五十二二极管的阴极、第五十五IGBT管的发射极和第五十二电感的一端连接,所述第五十五IGBT管的栅极与所述驱动控制单元的第四引脚连接,所述第五十五IGBT管的集电极分别与所述第五十一二极管的阳极和第五十六IGBT管的发射极连接,所述第五十六IGBT管的栅极与所述驱动控制单元的第一引脚连接,所述第五十六IGBT管的集电极与所述蓄电池的负极连接,所述第五十一电感的另一端分别与所述第五十二电容的一端和交流市电的一端连接,所述第五十二电感的另一端分别与所述第五十二电容的另一端和所述交流市电的另一端连接;
所述防雷电路包括第六十一熔断器、第六十一电阻、第六十二电阻、第一压敏电阻、第二压敏电阻、第六十一二极管、第六十二发光二极管和放电管,所述第六十一熔断器的一端与火线连接,所述第六十一熔断器的另一端与所述第六十一电阻的一端连接,所述第六十一电阻的另一端分别与所述第六十一二极管的阳极和第一压敏电阻的一端连接,所述第六十一二极管的阴极与所述第六十二发光二极管的阳极连接,所述第六十二发光二极管的阴极通过所述第六十二电阻与零线连接,所述第一压敏电阻的另一端分别与所述第二压敏电阻的一端和放电管的一端连接,所述第二压敏电阻的另一端与所述零线连接,所述放电管的另一端接地。
在本发明所述的具有自动放电、逆变和防雷的太阳能空调控制系统中,所述放电电路还包括第四十二电阻,所述第四十一三极管的发射极通过所述第四十二电阻接地。
在本发明所述的具有自动放电、逆变和防雷的太阳能空调控制系统中,所述放电电路还包括第四十四电阻,所述第四十二三极管的发射极通过所述第四十四电阻接地。
在本发明所述的具有自动放电、逆变和防雷的太阳能空调控制系统中,所述第四十一三极管为NPN型三极管。
在本发明所述的具有自动放电、逆变和防雷的太阳能空调控制系统中,所述第四十二三极管为NPN型三极管。
实施本发明的具有自动放电、逆变和防雷的太阳能空调控制系统,具有以下有益效果:由于设有防雷电路,这样就可以有效防雷,提高系统安全性能;放电电路去掉传统使用的继电器,而利用第四十一三极管和第四十二三极管;第四十三电阻的阻值大于第四十一电阻的阻值,在蓄电池自身所在的系统正常工作时,为防止蓄电池放电,通过控制信号触发第四十二三极管导通,从而极大的减小导通电路的电流,因此降低了系统损耗;在蓄电池自身所在的系统停止工作时,对蓄电池自放电,从而使第四十一三极管导通,从而增大导通电路的电流,减少放电时间;逆变电路采用六个IGBT管,转化效率更高,当高频的IGBT管关断时,通过二极管的续流,有效的抑制了逆变电路的漏电流;防雷电路通过连接于零线和火线之间的两个支路来实现防雷,当无雷电进入时,两个支路均处于高阻状态,当有雷电进入时,雷电迅速通过第一压敏电阻和第二压敏电阻间的连接点导通放电管放电,将雷电导入到大地中,实现良好的防雷效果,保护用电设备;所以其可以有效防雷、提高系统安全性能、能降低成本、降低损耗、能够减少放电时间、可以抑制漏电流、变化效率较高、电路结构简单、能实现良好的防雷效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明具有自动放电、逆变和防雷的太阳能空调控制系统一个实施例中的结构示意图;
图2为所述实施例中放电电路的电路原理图;
图3为所述实施例中逆变电路的电路原理图;
图4为所述实施例中防雷电路的电路原理图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明具有自动放电、逆变和防雷的太阳能空调控制系统实施例中,该具有自动放电、逆变和防雷的太阳能空调控制系统的结构示意图如图1所示。图1中,该具有自动放电、逆变和防雷的太阳能空调控制系统包括太阳能电池PV、太阳能控制器1、蓄电池BAT和变频空调器2,其中,太阳能控制器1包括充电电路11、控制电路12、防雷电路14和放电电路13,变频空调器2包括逆变电路21和压缩机22,太阳能电池PV与充电电路11连接,充电电路11通过控制电路12与放电电路13连接,充电电路11和放电电路13还均与蓄电池BAT连接,控制电路12通过防雷电路14与蓄电池BAT连接,放电电路13还通过逆变电路21与压缩机22连接。太阳能电池PV是将太阳的辐射转换为电能,或送往蓄电池BAT中存储起来,或推动变频空调器2工作。太阳能控制器1的作用是控制整个具有自动放电、逆变和防雷的太阳能空调控制系统的工作状态,并对蓄电池BAT起到过充电保护和过放电保护的作用。蓄电池BAT的作用是在有光照时将太阳能电池PV所发出的电能储存起来,到需要的时候再释放出来。变频空调器2作为交流负载,可以方便地调速。
太阳能控制器1通过其防雷电路14可以有效防雷,增强系统的防雷能力,提高系统的安全性能,蓄电池BAT在不损失太阳能转换能量的前提下,提高了蓄电池组3的充电效率及太阳能电源的实际使用效率,蓄电池BAT进行充电的同时又可以保证蓄电池BAT的活性,避免了蓄电池BAT发生沉积,从而较大程度的延长了蓄电池BAT的寿命。
图2为本实施例中放电电路的电路原理图。图2中,该放电电路13包括第四十一三极管Q41、第四十二三极管Q42、第四十一电阻R41、第四十三电阻R43、第四十五电阻R45、第四十六电阻R46、第四十一电容C41和第四十二电容C42,其中,第四十一三极管Q41的集电极通过第四十一电阻R41与蓄电池的正极BAT+连接,第四十一三极管Q41的发射极与蓄电池的负极BAT-连接,第四十一三极管Q41的基极通过第四十一电容C41分别与第四十二三极管Q42的集电极和第四十三电阻R43的一端连接,第四十三电阻R43的另一端与蓄电池的正极BAT+连接,第四十二三极管Q42的发射极接地,第四十二三极管Q42的基极通过第四十二电容C42分别与第四十五电阻R45的一端和第四十六电阻R46的一端连接,第四十五电阻R45的另一端接地,第四十六电阻R46的另一端与可控电源KC连接,第四十三电阻R43的阻值大于第四十一电阻R41的阻值,第四十三电阻R43的阻值和第四十一电阻R41的阻值都是可调的,在具体应用中,可根据具体情况对其阻值进行相应调节,但要保证第四十三电阻R43的阻值大于第四十一电阻R41的阻值。
本实施例中,第四十一电容C41和第四十二电容C42均为耦合电容,第四十一电容C41用于防止第四十一三极管Q41和第四十二三极管Q42之间的干扰,第四十二电容C42用于防止第四十二三极管Q42与可控电源KC之间的干扰。
在正常工作时,通过发送控制信号给可控电源KC,使得可控电源KC为高电平,从而使与第四十三电阻R43串联的第四十二三极管Q42导通,由于第四十三电阻R43选用了较大电阻值的电阻器,因此致使第四十三电阻R43与第四十二三极管Q42串联的电路近似于断路,从而极大的降低了导通电路中的电流,从而降低了系统损耗。
在停止工作时,不发送控制信号,从而使可控电源KC变为低电平,从而使第四十二三极管Q42关断,同时致使第四十二三极管Q42的集电极与蓄电池的正极BAT+具有等电位,因此使得与第四十二三极管Q42的集电极等电位的第四十一三极管Q41的基极变为高电平,因此使得与第四十一电阻R41串联的第四十一三极管Q41导通,由于第四十一电阻R41选用了较小电阻值的电阻器,因此增大了导通电路的电流,从而减少了放电时间。
该放电电路13利用第四十一三极管Q41和第四十二三极管Q42,在正常工作时,触发与具有较大阻值的第四十三电阻R43串联的第四十二三极管Q42导通,从而极大的减小导通电路的电流,因此降低了系统损耗;在停止工作时,使与具有小电阻值的第四十一电阻R41串联的第四十一三极管Q41导通,从而增大导通电路的电流,减少放电时间。所以其能降低成本、降低损耗、能够减少放电时间。
本实施例中,该放电电路13还包括第四十二电阻R42,第四十一三极管Q41的发射极通过第四十二电阻R42接地。该第四十二电阻R42为限流电阻,用于进行过流保护。该放电电路13还包括第四十四电阻R44,第四十二三极管Q42的发射极通过第四十四电阻R44接地。该第四十四电阻R44也为限流电阻,用于进行过流保护。
值得一提的是,本实施例中,上述第四十一三极管Q41为NPN型三极管。上述第四十二三极管Q42也为NPN型三极管。当然,在本实施例的一些情况下,第四十一三极管Q41和第四十二三极管Q42也可以选用PNP型三极管,但这时放电电路13的结构也要相应发生变化。
图3为本实施例中逆变电路的电路原理图。图3中,该逆变电路21包括驱动控制单元、第五十一IGBT管Q51、第五十二IGBT管Q52、第五十三IGBT管Q53、第五十四IGBT管Q54、第五十五IGBT管Q55、第五十六IGBT管Q56、第五十一电容C41、第五十二电容C42、第五十一二极管D51、第五十二二极管D52、第五十一电阻R51、第五十二电阻R52、第五十一电感L51、第五十二电感L52和交流市电AC。其中,第五十一电阻R51和第五十二电阻R52均为限流电阻,用于进行过流保护。第五十一电容C41为母线电容,第五十二电容C42为输出滤波电容,第五十一二极管D51和第五十二二极管D52为续流二极管,第五十一电感L51和第五十二电感L52为输出滤波电感。本实施例中,第五十一IGBT管Q51、第五十二IGBT管Q52、第五十三IGBT管Q53、第五十四IGBT管Q54、第五十五IGBT管Q55和第五十六IGBT管Q56均为N沟道绝缘栅双极型晶体管。
其中,第五十一电容C41的两端分别与蓄电池的正极BAT+(也是母线的正极)和蓄电池的负极BAT-(也是母线的负极)连接,第五十一IGBT管Q51的发射极通过第五十一电阻R51与蓄电池的正极BAT+连接,第五十一IGBT管Q51的栅极与驱动控制单元的第一引脚SPWM1连接,第五十一IGBT管Q51的集电极分别与第五十二IGBT管Q52的发射极、第五十一二极管D51的阴极和第五十一电感L51的一端连接,第五十二IGBT管Q52的栅极与驱动控制单元的第三引脚SPWM3连接,第五十二IGBT管Q52的集电极分别与第五十三IGBT管Q53的发射极和第五十二二极管D52的阳极连接,第五十三IGBT管Q53的栅极与驱动控制单元的第二引脚SPWM2连接,第五十三IGBT管Q53的集电极与蓄电池的负极BAT-连接。
本实施例中,第五十四IGBT管Q54的发射极通过第五十二电阻R52与蓄电池的正极BAT+连接,第五十四IGBT管Q54的栅极与驱动控制单元的第二引脚SPWM2连接,第五十四IGBT管Q54的集电极分别与第五十二二极管D52的阴极、第五十五IGBT管Q55的发射极和第五十二电感L52的一端连接,第五十五IGBT管Q55的栅极与驱动控制单元的第四引脚SPWM4连接,第五十五IGBT管Q55的集电极分别与第五十一二极管D51的阳极和第五十六IGBT管Q56的发射极连接,第五十六IGBT管Q56的栅极与驱动控制单元的第一引脚SPWM1连接,第五十六IGBT管Q56的集电极与蓄电池的负极BAT-连接,第五十一电感L51的另一端分别与第五十二电容C41的一端和交流市电AC的一端连接,第五十二电感L52的另一端分别与第五十二电容C42的另一端和交流市电AC的另一端连接。
本实施例中,驱动控制单元的第一引脚SPWM1和第二引脚SPWM2产生高频驱动信号,驱动控制单元的第三引脚SPWM3和第四引脚SPWM4产生低频驱动信号,所产生的低频驱动信号的频率为50Hz。
本实施例中,逆变电路21的输入端为蓄电池BAT提供的直流电源,逆变电路21的输出端接交流市电AC,输出滤波采取LC滤波。该逆变电路21采用六个IGBT管(即第五十一IGBT管Q51、第五十二IGBT管Q52、第五十三IGBT管Q53、第五十四IGBT管Q54、第五十五IGBT管Q55和第五十六IGBT管Q56),转化效率更高,当高频的IGBT管关断时,通过二极管(第五十二二极管D52)续流,有效的抑制了逆变电路21的漏电流。
处于工作状态时,当处于正半周时,第五十二IGBT管Q52、第五十三IGBT管Q53和第五十四IGBT管Q54关断,第五十五IGBT管Q55始终导通,第五十一IGBT管Q51和第五十六IGBT管Q56工作于高频开通关断状态。此时构成的回路为:母线、第五十一IGBT管Q51、第五十一电感L51、交流市电AC、第五十二电感L52、第五十五IGBT管Q55、第五十六IGBT管Q56、母线。其中,第五十一IGBT管Q51和第五十六IGBT管Q56的驱动信号都来自于驱动控制单元的第一引脚SPWM1产生的高频信号,第五十五IGBT管Q55的驱动信号来自于驱动控制单元的第四引脚SPWM4产生的低频信号。
当第五十一IGBT管Q51和第五十六IGBT管Q56工作在关断状态时,此时第五十五IGBT管Q55导通,通过第五十二二极管D52续流,此时构成的回路为:第五十一电感L51、交流市电AC、第五十二电感L52、第五十五IGBT管Q55、第五十一二极管D51、第五十一电感L51。
当处于负半周时,第五十一IGBT管Q51、第五十五IGBT管Q55和第五十六IGBT管Q56关断,第五十二IGBT管Q52始终导通,第五十三IGBT管Q53和第五十四IGBT管Q54工作于高频开通关断状态。此时构成的回路为:母线、第五十四IGBT管Q54、第五十二电感L52、交流市电AC、第五十一电感L51、第五十二IGBT管Q52、第五十三IGBT管Q53、母线。其中,第五十三IGBT管Q53和第五十四IGBT管Q54的驱动信号都来自于驱动控制单元的第一引脚SPWM1产生的高频信号,第五十二IGBT管Q52的驱动信号来自于驱动控制单元的第三引脚SPWM3产生的低频信号。当第五十三IGBT管Q53和第五十四IGBT管Q54的工作在关断状态时,此时第五十五IGBT管Q55导通,通过第五十二二极管D52续流,此时构成的回路为:第五十二电感L52、交流市电AC、第五十一电感L51、第五十五IGBT管Q5、第五十二二极管D52、第五十二电感L52。
本实施例中,逆变电路21还包括第五十三电阻R53和第五十四电阻R54,其中,第五十三电阻R53的一端与第五十一IGBT管Q51的集电极连接,第五十三电阻R53的另一端与第五十二IGBT管Q52的发射极连接,第五十四电阻R54的一端与第五十四IGBT管Q54的集电极连接,第五十四电阻R54的另一端与第五十五IGBT管Q55的发射极连接。第五十三电阻R53和第五十四电阻R54均为限流电阻,用于进行过流保护。
本实施例中,该逆变电路21还包括第五十五电阻R55和第五十六电阻R56,其中,第五十五电阻R55的一端与第五十二IGBT管Q52的集电极连接,第五十五电阻R55的另一端与第五十三IGBT管Q53的发射极连接,第五十六电阻R56的一端与第五十五IGBT管Q55的集电极连接,第五十六电阻R56的另一端与第五十六IGBT管Q56的发射极连接。第五十五电阻R55和第五十六电阻R56均为限流电阻,用于进行过流保护。
本实施例中,该逆变电路21还包括第五十七电阻R57和第五十八电阻R58,第五十七电阻R57的一端与第五十三IGBT管Q53的集电极连接,第五十七电阻R57的另一端与蓄电池的负极BAT-连接,第五十八电阻R58的一端与第五十六IGBT管Q56的集电极连接,第五十八电阻R58的另一端与蓄电池的负极BAT-连接。第五十七电阻R57和第五十八电阻R58均为限流电阻,用于进行过流保护。
图4是本实施例中防雷电路的电路原理图。图4中,该防雷电路14包括第六十一熔断器F61、第六十一电阻R61、第六十二电阻R62、第一压敏电阻YM1、第二压敏电阻YM2、第六十一二极管D61、第六十二发光二极管D62和放电管A1,其中,本实施例中,第六十一二极管D61、第六十二发光二极管D62和第六十二电阻串联形成第一支路,第一压敏电阻YM1和第二压敏电阻YM2串联形成第二支路。第六十一熔断器F61用于对该防雷电路14进行波保护,第六十一电阻R61和第六十二电阻R62均为限流电阻,第六十一电阻R61用于对整个防雷电路进行过流保护,第六十二电阻R62用于对第一支路进行过流保护,提高系统的安全性能。第六十一二极管D61为快速导通二极管。
本实施例中,第六十一熔断器F61的一端与火线L连接,第六十一熔断器F61的另一端与第六十一电阻R61的一端连接,第六十一电阻R61的另一端分别与第六十一二极管D61的阳极和第一压敏电阻YM1的一端连接,第六十一二极管D61的阴极与第六十二发光二极管D62的阳极连接,第六十二发光二极管D62的阴极通过第六十二电阻R62与零线N连接,第一压敏电阻YM1的另一端分别与第二压敏电阻YM2的一端和放电管A1的一端连接,第二压敏电阻YM2的另一端与零线N连接,放电管A1的另一端接地。
通过连接于零线N和火线L之间的两个支路来实现防雷,当无雷电进入时,两个支路均处于高阻状态,当有雷电进入,雷电迅速通过第一压敏电阻YM1和第二压敏电阻YM2间的连接点导通放电管A1放电,将雷电导入到大地中,实现良好的防雷效果,保护用电设备。在雷电产生时,第六十二发光二极管D62能够发光,对雷电进入具有指示作用。上述防雷电路14还包括接地端E,接地端E直接接地GND。该防雷电路14的电路结构简单、成本较低、能实现良好的防雷效果。
本实施例中,该防雷电路14还包括第六十三电阻R63,第六十三电阻R63的一端与第六十一电阻R61的另一端连接,第六十三电阻R63的另一端与第一压敏电阻YM1的一端连接。第六十三电阻R63为限流电阻,用于对第二支路进行过流保护,这样可进一步提高系统的安全性能。
本实施例中,该防雷电路14还包括第六十四电阻R64,第六十四电阻R64的一端与零线N连接,第六十四电阻R64的另一端分别与第六十二电阻R62的另一端和第二压敏电阻YM2的另一端连接。第六十四电阻R64为限流电阻,用户对整个防雷电路14进行过流保护,更进一步提高系统的安全性能。
总之,本发明由于设有防雷电路14,这样就可以有效防雷,提高系统安全性能;本发明中的放电电路13与传统的第一种电容自放电电路相比,提高了系统效率,并同时减少了损耗;与传统的第二种电容自放电电路相比,降低了成本,并同时增加了使用寿命。
逆变电路21采用六个IGBT管,转化效率更高,当高频的IGBT管关断时,通过二极管的续流,有效的抑制了逆变电路21的漏电流。防雷电路14通过连接于零线N和火线L之间的两个支路来实现防雷,当无雷电进入时,两个支路均处于高阻状态,当有雷电进入,雷电迅速通过第一压敏电阻YM1和第二压敏电阻YM2之间的连接点导通放电管A1放电,将雷电导入到大地中,实现良好的防雷效果,保护用电设备。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种具有自动放电、逆变和防雷的太阳能空调控制系统,其特征在于,包括太阳能电池、太阳能控制器、蓄电池和变频空调器,所述太阳能控制器包括充电电路、控制电路、防雷电路和放电电路,所述变频空调器包括逆变电路和压缩机,所述太阳能电池与所述充电电路连接,所述充电电路通过所述控制电路与所述放电电路连接,所述充电电路和放电电路还均与所述蓄电池连接,所述控制电路通过所述防雷电路与所述蓄电池连接,所述放电电路还通过所述逆变电路与所述压缩机连接;
所述放电电路包括第四十一三极管、第四十二三极管、第四十一电阻、第四十三电阻、第四十五电阻、第四十六电阻、第四十一电容和第四十二电容,所述第四十一三极管的集电极通过所述第四十一电阻与所述蓄电池的正极连接,所述第四十一三极管的发射极与所述蓄电池的负极连接,所述第四十一三极管的基极通过所述第四十一电容分别与所述第四十二三极管的集电极和第四十三电阻的一端连接,所述第四十三电阻的另一端与所述蓄电池的正极连接,所述第四十二三极管的发射极接地,所述第四十二三极管的基极通过所述第四十二电容分别与所述第四十五电阻的一端和第四十六电阻的一端连接,所述第四十五电阻的另一端接地,所述第四十六电阻的另一端与可控电源连接,所述第四十三电阻的阻值大于所述第四十一电阻的阻值;
所述逆变电路包括驱动控制单元、第五十一IGBT管、第五十二IGBT管、第五十三IGBT管、第五十四IGBT管、第五十五IGBT管、第五十六IGBT管、第五十一电容、第五十二电容、第五十一二极管、第五十二二极管、第五十一电阻、第五十二电阻、第五十一电感、第五十二电感和交流市电,所述第五十一电容的两端分别与所述蓄电池的正极和所述蓄电池的负极连接,所述第五十一IGBT管的发射极通过所述第五十一电阻与所述蓄电池的正极连接,所述第五十一IGBT管的栅极与所述驱动控制单元的第一引脚连接,所述第五十一IGBT管的集电极分别与所述第五十二IGBT管的发射极、第五十一二极管的阴极和第五十一电感的一端连接,所述第五十二IGBT管的栅极与所述驱动控制单元的第三引脚连接,所述第五十二IGBT管的集电极分别与所述第五十三IGBT管的发射极和第五十二二极管的阳极连接,所述第五十三IGBT管的栅极与所述驱动控制单元的第二引脚连接,所述第五十三IGBT管的集电极与所述蓄电池的负极连接,所述第五十四IGBT管的发射极通过所述第五十二电阻与所述蓄电池的正极连接,所述第五十四IGBT管的栅极与所述驱动控制单元的第二引脚连接,所述第五十四IGBT管的集电极分别与所述第五十二二极管的阴极、第五十五IGBT管的发射极和第五十二电感的一端连接,所述第五十五IGBT管的栅极与所述驱动控制单元的第四引脚连接,所述第五十五IGBT管的集电极分别与所述第五十一二极管的阳极和第五十六IGBT管的发射极连接,所述第五十六IGBT管的栅极与所述驱动控制单元的第一引脚连接,所述第五十六IGBT管的集电极与所述蓄电池的负极连接,所述第五十一电感的另一端分别与所述第五十二电容的一端和交流市电的一端连接,所述第五十二电感的另一端分别与所述第五十二电容的另一端和所述交流市电的另一端连接;
所述防雷电路包括第六十一熔断器、第六十一电阻、第六十二电阻、第一压敏电阻、第二压敏电阻、第六十一二极管、第六十二发光二极管和放电管,所述第六十一熔断器的一端与火线连接,所述第六十一熔断器的另一端与所述第六十一电阻的一端连接,所述第六十一电阻的另一端分别与所述第六十一二极管的阳极和第一压敏电阻的一端连接,所述第六十一二极管的阴极与所述第六十二发光二极管的阳极连接,所述第六十二发光二极管的阴极通过所述第六十二电阻与零线连接,所述第一压敏电阻的另一端分别与所述第二压敏电阻的一端和放电管的一端连接,所述第二压敏电阻的另一端与所述零线连接,所述放电管的另一端接地。
2.根据权利要求1所述的具有自动放电、逆变和防雷的太阳能空调控制系统,其特征在于,所述放电电路还包括第四十二电阻,所述第四十一三极管的发射极通过所述第四十二电阻接地。
3.根据权利要求2所述的具有自动放电、逆变和防雷的太阳能空调控制系统,其特征在于,所述放电电路还包括第四十四电阻,所述第四十二三极管的发射极通过所述第四十四电阻接地。
4.根据权利要求1至3任意一项所述的具有自动放电、逆变和防雷的太阳能空调控制系统,其特征在于,所述第四十一三极管为NPN型三极管。
5.根据权利要求1至3任意一项所述的具有自动放电、逆变和防雷的太阳能空调控制系统,其特征在于,所述第四十二三极管为NPN型三极管。
CN201610736523.1A 2016-08-25 2016-08-25 具有自动放电、逆变和防雷的太阳能空调控制系统 Pending CN106300316A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610736523.1A CN106300316A (zh) 2016-08-25 2016-08-25 具有自动放电、逆变和防雷的太阳能空调控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610736523.1A CN106300316A (zh) 2016-08-25 2016-08-25 具有自动放电、逆变和防雷的太阳能空调控制系统

Publications (1)

Publication Number Publication Date
CN106300316A true CN106300316A (zh) 2017-01-04

Family

ID=57677354

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610736523.1A Pending CN106300316A (zh) 2016-08-25 2016-08-25 具有自动放电、逆变和防雷的太阳能空调控制系统

Country Status (1)

Country Link
CN (1) CN106300316A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202535290U (zh) * 2012-04-05 2012-11-14 苏州风云电源有限公司 一种光伏逆变电路
CN204089588U (zh) * 2014-05-08 2015-01-07 北京中恒瑞弛科技有限公司 用于电容的自放电电路
CN104734137A (zh) * 2015-03-26 2015-06-24 刘清清 防雷电路
CN204633452U (zh) * 2015-06-04 2015-09-09 袁玉平 太阳能控制器
CN204681138U (zh) * 2015-06-18 2015-09-30 周国文 可由太阳能供电的砖胚成型机
CN205195394U (zh) * 2015-04-28 2016-04-27 周磊 一种具有防雷太阳能控制器的太阳能空调系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202535290U (zh) * 2012-04-05 2012-11-14 苏州风云电源有限公司 一种光伏逆变电路
CN204089588U (zh) * 2014-05-08 2015-01-07 北京中恒瑞弛科技有限公司 用于电容的自放电电路
CN104734137A (zh) * 2015-03-26 2015-06-24 刘清清 防雷电路
CN205195394U (zh) * 2015-04-28 2016-04-27 周磊 一种具有防雷太阳能控制器的太阳能空调系统
CN204633452U (zh) * 2015-06-04 2015-09-09 袁玉平 太阳能控制器
CN204681138U (zh) * 2015-06-18 2015-09-30 周国文 可由太阳能供电的砖胚成型机

Similar Documents

Publication Publication Date Title
CN203627175U (zh) 太阳能水泵的自动控制系统
CN106300605A (zh) 具有放电功能的太阳能控制系统
CN106300316A (zh) 具有自动放电、逆变和防雷的太阳能空调控制系统
CN201491316U (zh) 一种高压led驱动电路
CN106130161A (zh) 具有充电和光伏逆变功能的太阳能空调系统
CN205014243U (zh) 太阳能灯具
CN106300607A (zh) 具有充电、控制和h桥逆变的太阳能空调系统
CN106160167A (zh) 具有自动放电、逆变和防雷功能的太阳能空调系统
CN106253440A (zh) 具有充放电和控制功能的太阳能空调控制系统
CN106340869A (zh) 具有充电、控制和防雷功能的太阳能空调系统
CN106130158A (zh) 具有光伏逆变功能的太阳能空调系统
CN106208327A (zh) 具有充电、控制和光伏逆变功能的太阳能空调系统
CN106300609A (zh) 具有充电和防雷功能的太阳能空调系统
CN106208332A (zh) 具有自放电功能的太阳能空调系统
CN106300604A (zh) 具有防雷功能的太阳能空调系统
CN202696972U (zh) 带市电互补功能的太阳能泛光灯电路结构
CN106300603A (zh) 具有充电、控制和防雷功能的太阳能空调系统
CN106300597A (zh) 具有自放电、可调节逆变和防雷的太阳能空调控制系统
CN106169802A (zh) 具有自动放电、逆变和电源防雷功能的太阳能空调系统
CN106208325A (zh) 具有h桥逆变的太阳能空调系统
CN106300610A (zh) 具有充电和放电功能的太阳能控制系统
CN106208323A (zh) 具有控制和自放电功能的太阳能空调系统
CN209823493U (zh) 一种基于新能源智能电网的电动汽车储能系统
CN106300599A (zh) 具有充电控制的太阳能空调系统
CN106253439A (zh) 具有充放电功能的太阳能空调控制系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170104

RJ01 Rejection of invention patent application after publication