CN106297297A - 基于深度学习的交通拥堵判别方法 - Google Patents

基于深度学习的交通拥堵判别方法 Download PDF

Info

Publication number
CN106297297A
CN106297297A CN201610950789.6A CN201610950789A CN106297297A CN 106297297 A CN106297297 A CN 106297297A CN 201610950789 A CN201610950789 A CN 201610950789A CN 106297297 A CN106297297 A CN 106297297A
Authority
CN
China
Prior art keywords
picture
video file
label
layer
monitor video
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610950789.6A
Other languages
English (en)
Other versions
CN106297297B (zh
Inventor
陈志超
谷瑞翔
胡桂铭
李轩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Tongjia Youbo Technology Co Ltd
Original Assignee
Chengdu Tongjia Youbo Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Tongjia Youbo Technology Co Ltd filed Critical Chengdu Tongjia Youbo Technology Co Ltd
Priority to CN201610950789.6A priority Critical patent/CN106297297B/zh
Publication of CN106297297A publication Critical patent/CN106297297A/zh
Application granted granted Critical
Publication of CN106297297B publication Critical patent/CN106297297B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0133Traffic data processing for classifying traffic situation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Traffic Control Systems (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了基于深度学习的交通拥堵判别方法,包括以下步骤:步骤1、获取训练样本及添加标签,得到含有标签的监控视频文件对应的图片;步骤2、前向传播:将含有标签的监控视频文件对应的图片送入设计好的卷积神经网络模型,前向传播获得卷积神经网络模型输出的类别标签;步骤3、反向传播:计算前向传播输出的类别标签与样本实际类别标签的损失函数值,将损失函数值按极小化误差的方法反向传播调整卷积层的权值矩阵,得到最终卷积神经网络模型;步骤4、交通拥堵判别:选取路段的当前监控视频文件对应的图片中至少1帧图像传入训练完成的最终卷积神经网络模型中,进行前向传播。该方法能够对当前道路的交通情况给出交通的拥堵级别,具有较好的适用性和鲁棒性。

Description

基于深度学习的交通拥堵判别方法
技术领域
本发明涉及视觉图像检测数据处理技术,具体涉及基于深度学习的交通拥堵判别方法。
背景技术
随着我国车辆占有率不断增加,道路的拥堵情况越来越普遍,这严重影响了人们的出行生活,也给国家带了巨大的经济损失。如果能够对当前道路交通的运行情况进行准确判决就可以有效对交通进行疏导和管理,目前,利用视频检测技术进行交通拥堵检测时,有两种方式:一种是传输视频图像到监控中心的方式;另一种是在获取诸如流量、道路占有率、速度、车间距、排队长度等交通参数后,选取其中的多个交通状态参数,并利用预先定义的拥堵判别方法实现对交通拥堵的判断。
第一种方式一般是采用人工处理的方法,效率较低且无法对较多的交通道路进行处理;第二种方法中由于各种参数的获得通常不太准确,所以会导致最终处理结果不准,且该方式没有较好的扩展能力。总的来说,现有技术在基于视频技术进行道路的拥堵情况判断时,存在不能够准确有效地判断道路交通状态的问题。
发明内容
本发明提出一种基于深度学习的交通拥堵判别方法。该方法能够对当前道路的交通情况进行准确判断,并给出交通的拥堵级别,有利于交通疏导和监管。该技术利用深度学习方法对包含各种交通状态的图像进行学习,得到所需的网络模型,在完成模型训练后则可以自动对当前采集到的道路交通图片进行处理,对当前的交通拥堵情况进行判决,具有较好的适用性和鲁棒性,为道路交通监管提供了可靠的判决依据。
本发明通过下述技术方案实现:
基于深度学习的交通拥堵判别方法,包括以下步骤:
步骤1、获取训练样本及添加标签:获得路段的交通历史数据,交通历史数据包括监控视频文件对应的图片、监控视频文件对应的图片对应的测量数据,根据测量数据的级别将监控视频文件对应的图片分类,给每个分类后的监控视频文件对应的图片写入对应交通状态级别的类别标签,得到含有标签的监控视频文件对应的图片;
步骤2、前向传播:将含有标签的监控视频文件对应的图片送入设计好的卷积神经网络模型,前向传播获得卷积神经网络模型输出的类别标签;
步骤3、反向传播:计算前向传播输出的类别标签与样本实际类别标签的损失函数值,将损失函数值按极小化误差的方法反向传播调整卷积层的权值矩阵,得到最终卷积神经网络模型;
步骤4、交通拥堵判别:选取路段的当前监控视频文件对应的图片中至少1帧图像传入训练完成的最终卷积神经网络模型中,进行前向传播,得到最终卷积神经网络模型的输出,根据输出结果判断当前监控视频文件对应的图片中的道路对应的拥堵级别。
本发明的设计原理如下:
步骤1、获取训练样本及添加标签的作用是:选择路段对应的交通历史数据,来选取具有代表性的样本图像,一般可以根据车流量数据和车速数据来对监控视频文件对应的图片进行梳理,选择不同车流量数据和车速数据对应的图像,根据先验知识来对该图像添加对应交通状态级别的类别标签,这里的先验知识可以是该图像对应时刻的车流量大小、车速大小以及图像中车辆运行状态等,这个过程是人工执行的。这里的标签类别C典型划分是:死锁=0,堵塞=1,拥挤=2,通畅=3。也可以根据其他历史数据按照级别划分,最后对应的写入对应交通状态级别的类别标签。
在步骤2中,选用卷积神经网络模型作为机器学习模型进行训练,卷积神经网络是近年发展起来,并引起广泛重视的一种高效识别方法。20世纪60年代,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络(Convolutional Neural Networks-简称CNN)。现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。 K.Fukushima在1980年提出的新识别机是卷积神经网络的第一个实现网络。随后,更多的科研工作者对该网络进行了改进。其中,具有代表性的研究成果是Alexander和Taylor提出的“改进认知机”,该方法综合了各种改进方法的优点并避免了耗时的误差反向传播。
本发明中的网络模型采用CNN(卷积神经网络)模型,因为CNN模型中建立了层间与空域信息之间的联系,使得它能够适用于图像处理和理解,有利于最终的判别分类。
在步骤2和步骤3中完成过程为网络模型训练过程;
这个过程分为前向传播和方向传播,前向传播的作用是利用卷积神经网络模型进行输出,获得输出结构,可以得到交通拥堵级别,这个结果视为预测类别结果,而反向传播的构成是对该卷积神经网络模型的参数进行调整,使得最终构架一个最能判定准确的卷积神经网络模型。
具体的,在本发明中,假设交通的拥堵级别总共分为C级,该参数可根据具体应用情况来选取。训练时需要经过两个过程:前向传播与反向传播。
前向传播:
将步骤1中的样本图像作为输入信息,经过第一个卷积层,卷积层包含两个阶段,第一阶段将图片通过可训练的滤波器(卷积核)和可加偏置,可使得图像特征增强且能抑制噪声;第二阶段通过一个ReLU激活函数得到特征映射图。下一层为池化层,对输入做降采样,以此来降低卷积层输出的特征向量,同时改善结果,防止过拟合。其他的卷积层和池化层均进行类似的操作。最后一层为全连接层,将最后一层池化层的结果传入全连接层,它的作用是将得到的特征向量进行整合,得到一个一维长向量,将其传入分类器判断输入样本的类别标签。这个过程就完成了对样本图像的类别的识别,可以判断出输入样本图像的交通拥堵级别。
反向传播:计算前向传播输出的类别标签与样本实际类别标签的损失函数值,将损失函数值按极小化误差的方法反向传播调整卷积层的权值矩阵,得到最终的网络模型。
当前道路交通拥堵判决的过程:
将路段中的图像传入训练完成的卷积神经网络模型(最终的网络模型)中,进行前向传播(此处的前向传播的过程与前面所述的前向传播过程一致),得到模型的输出,根据输出结果判断图片中的道路对应的拥堵级别;为了提高判别的准确性可以融合多帧的判决结果作为最终的交通拥堵情况判决。
路段分为普通路段和交叉路口路段,
交叉路口场景的处理方式基本和普通路段的处理一致,只是在训练样本的选取有差别,这里的训练样本是从架设于交叉路口的摄像头中获取,在获得样本图像后同样是依照先验知识来对图片添加标签。
优选的,所述测量数据包括车流量数据或/和车速数据。
优选的,所述前向传播获得模型输出的样本标签的具体过程为:
将将含有标签的监控视频文件对应的图片作为输入信息,
步骤S1:将输入信息经过第一个卷积层,卷积层包含两个阶段,第一阶段:将输入信息通过可训练的滤波器和可加偏置,第二阶段:将经过第一阶段后的信息通过一个ReLU激活函数得到特征映射图;
步骤S2:再将步骤S1的特征映射图经过第一个池化层,对输入信息做降采样得到降采样结果;
步骤S3:经过下一卷积层时,将上一池化层的降采样结果作为输入信息重复卷积层操作得到特征映射图,经过下一池化层时,将上一卷积层的特征映射图作为输入信息重复池化层操作得到降采样结果;
步骤S4:将最后一层池化层的降采样结果传入全连接层,将得到的特征向量进行整合,得到一个一维长向量,将一维长向量传入分类器判断含有标签的监控视频文件对应的图片的类别标签。
优选的,所述步骤2中的卷积神经网络为5层网络的卷积神经网络,这5层网络分别是2层卷积层、2层池化层、1层全连接层,2层卷积层之间为1层池化层,全连接层与最后一层池化层链接。
优选的,上述损失函数值的计算公式为:Lcls(y,c)=|| y -c ||2,其中y代表前向传播输出的类别标签,c代表样本实际类别标签,Lcls(y,c)代表损失函数值。
优选的,步骤1中写入对应交通状态级别的类别标签分别为:死锁=0、堵塞=1、拥挤=2、通畅=3;所述测量数据的级别划分为:通畅级别对应V≥40、拥挤级别对应15≤V≤40、堵塞级别对应5≤V≤15、死锁级别对应 V≤5,V代表测量数据中的车速数据,这里V均以km/h作为计量单位;通畅级别对应类别标签“通畅=3”,拥挤级别对应类别标签“拥挤=2”,堵塞级别对应类别标签“堵塞=1”, 死锁级别对应类别标签“死锁=0”。
我国《道路交通阻塞度及评价方法(国标)》对于城市交通通行状况的描述主要从两个方面来评定,即交叉路口阻塞和路段阻塞。其中交叉路口阻塞定义为车辆在交叉路口外车行道受阻排队长度超过500m为阻塞, 800m为严重阻塞;路段阻塞评定指标为长度超过2000m为阻塞,3000m为严重阻塞。所以根据道路交通的实际情况,本发明将交通拥堵判决分为两个场景来处理:一种是交叉路口的交通拥堵判决;另一种是普通路段交通拥堵判决;因此,所述路段为普通路段或交叉路口路段,当路段为普通路段时,测量数据的级别按照普通路段的标准进行划分,当路段为交叉路口路段时,测量数据的级别按照交叉路口路段的标准进行划分,所对应的训练样本也是位于普通路段或交叉路口路段所对应的监控视频文件对应的图片、车流量数据、车速数据等。
所述监控视频文件对应的图片可以选取监控视频文件中的一张或者多张图片。
本发明与现有技术相比,具有如下的优点和有益效果:
本发明采用深度学习的算法来对道路交通的拥堵进行判决,在完成网络模型设计和训练后,可以方便的应用于道路交通的拥堵情况的判断,具有较好的准确性和扩展性。同时本发明根据道路场景的差异将交通拥堵的判别分为交叉路口和普通路段两种情况来进行处理,具有更好的适应性。
附图说明
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,并不构成对本发明实施例的限定。在附图中:
图1为经过训练得到最终卷积神经网络模型的流程图。
图2为利用最终卷积神经网络模型进行交通拥堵级别判定的流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
实施例1
由于我国《道路交通阻塞度及评价方法(国标)》对于城市交通通行状况的描述主要从两个方面来评定,即交叉路口阻塞和路段阻塞。其中交叉路口阻塞定义为车辆在交叉路口外车行道受阻排队长度超过500m为阻塞, 800m为严重阻塞;路段阻塞评定指标为长度超过2000m为阻塞,3000m为严重阻塞。所以根据道路交通的实际情况,本发明将交通拥堵判决分为两个场景来处理:一种是交叉路口的交通拥堵判决;另一种是普通路段交通拥堵判决。
如图1所示,交叉路口场景的处理方式基本和普通路段的处理一致,只是在训练样本的选取有差别,这里的训练样本是从架设于交叉路口的摄像头中获取,在获得样本图像后同样是依照先验知识来对图片添加标签。
本发明的基于深度学习的交通拥堵判别方法分为2个阶段,
如图1所示,第一阶段为训练阶段,训练阶段完成最终卷积神经网络模型的建立;如图2所示,第二阶段为交通拥堵判定阶段,交通拥堵判定阶段利用最终卷积神经网络模型进行判定交通状态,获得交通拥堵级别。
如图1所示,
步骤1、获得普通路段或交叉路段样本及标签:
获得普通路段或交叉路段的交通历史数据,交通历史数据包括监控视频文件对应的图片、监控视频文件对应的图片对应的测量数据,根据测量数据的级别将监控视频文件对应的图片分类,给每个分类后的监控视频文件对应的图片写入对应交通状态级别的类别标签,得到含有标签的监控视频文件对应的图片;本实施例中,测量数据选择车速数据,步骤1中写入对应交通状态级别的类别标签分别为:死锁=0、堵塞=1、拥挤=2、通畅=3;所述测量数据的级别划分为:通畅级别对应V≥40、拥挤级别对应15≤V≤40、堵塞级别对应5≤V≤15、死锁级别对应 V≤5,V代表测量数据中的车速数据,这里V均以km/h作为计量单位;通畅级别对应类别标签“通畅=3”,拥挤级别对应类别标签“拥挤=2”,堵塞级别对应类别标签“堵塞=1”, 死锁级别对应类别标签“死锁=0”。
训练阶段:
前向传播:将含有标签的监控视频文件对应的图片送入设计好的卷积神经网络模型,前向传播获得卷积神经网络模型输出的类别标签;所述前向传播获得模型输出的样本标签的具体过程为:将将含有标签的监控视频文件对应的图片作为输入信息,步骤S1:将输入信息经过第一个卷积层,卷积层包含两个阶段,第一阶段:将输入信息通过可训练的滤波器和可加偏置,第二阶段:将经过第一阶段后的信息通过一个ReLU激活函数得到特征映射图;步骤S2:再将步骤S1的特征映射图经过第一个池化层,对输入信息做降采样得到降采样结果;步骤S3:经过下一卷积层时,将上一池化层的降采样结果作为输入信息重复卷积层操作得到特征映射图,经过下一池化层时,将上一卷积层的特征映射图作为输入信息重复池化层操作得到降采样结果;步骤S4:将最后一层池化层的降采样结果传入全连接层,将得到的特征向量进行整合,得到一个一维长向量,将一维长向量传入分类器判断含有标签的监控视频文件对应的图片的类别标签。反向传播:计算前向传播输出的类别标签与样本实际类别标签的损失函数值,将损失函数值按极小化误差的方法反向传播调整卷积层的权值矩阵,得到最终卷积神经网络模型;在本实施例中,损失函数值的计算公式为:Lcls(y,c)=|| y -c||2,其中y代表前向传播输出的类别标签,c代表样本实际类别标签,Lcls(y,c)代表损失函数值。
交通拥堵判定阶段:
选取架设于交叉路口路段或普通路段的摄像头中至少1帧图像传入训练完成的最终卷积神经网络模型中,进行前向传播,得到最终卷积神经网络模型的输出,根据输出结果判断当前监控视频文件对应的图片中的道路对应的拥堵级别。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.基于深度学习的交通拥堵判别方法,其特征在于,包括以下步骤:
步骤1、获取训练样本及添加标签:获得路段的交通历史数据,交通历史数据包括监控视频文件对应的图片、监控视频文件对应的图片对应的测量数据,根据测量数据的级别将监控视频文件对应的图片分类,给每个分类后的监控视频文件对应的图片写入对应交通状态级别的类别标签,得到含有标签的监控视频文件对应的图片;
步骤2、前向传播:将含有标签的监控视频文件对应的图片送入设计好的卷积神经网络模型,前向传播获得卷积神经网络模型输出的类别标签;
步骤3、反向传播:计算前向传播输出的类别标签与样本实际类别标签的损失函数值,将损失函数值按极小化误差的方法反向传播调整卷积层的权值矩阵,得到最终卷积神经网络模型;
步骤4、交通拥堵判别:选取路段的当前监控视频文件对应的图片中至少1帧图像传入训练完成的最终卷积神经网络模型中,进行前向传播,得到最终卷积神经网络模型的输出,根据输出结果判断当前监控视频文件对应的图片中的道路对应的拥堵级别。
2.根据权利要求1所述的基于深度学习的交通拥堵判别方法,其特征在于,所述测量数据包括车流量数据或/和车速数据。
3.根据权利要求1所述的基于深度学习的交通拥堵判别方法,其特征在于,所述前向传播获得模型输出的样本标签的具体过程为:
将将含有标签的监控视频文件对应的图片作为输入信息,
步骤S1:将输入信息经过第一个卷积层,卷积层包含两个阶段,第一阶段:将输入信息通过可训练的滤波器和可加偏置,第二阶段:将经过第一阶段后的信息通过一个ReLU激活函数得到特征映射图;
步骤S2:再将步骤S1的特征映射图经过第一个池化层,对输入信息做降采样得到降采样结果;
步骤S3:经过下一卷积层时,将上一池化层的降采样结果作为输入信息重复卷积层操作得到特征映射图,经过下一池化层时,将上一卷积层的特征映射图作为输入信息重复池化层操作得到降采样结果;
步骤S4:将最后一层池化层的降采样结果传入全连接层,将得到的特征向量进行整合,得到一个一维长向量,将一维长向量传入分类器判断含有标签的监控视频文件对应的图片的类别标签。
4.根据权利要求1-3中任意一项所述的基于深度学习的交通拥堵判别方法,其特征在于,所述步骤2中的卷积神经网络为5层网络的卷积神经网络,这5层网络分别是2层卷积层、2层池化层、1层全连接层,2层卷积层之间为1层池化层,全连接层与最后一层池化层链接。
5.根据权利要求1-3中任意一项所述的基于深度学习的交通拥堵判别方法,其特征在于,上述损失函数值的计算公式为:Lcls(y,c)=||y-c||2,其中y代表前向传播输出的类别标签,c代表样本实际类别标签,Lcls(y,c)代表损失函数值。
6.根据权利要求1-3中任意一项所述的基于深度学习的交通拥堵判别方法,其特征在于,步骤1中写入对应交通状态级别的类别标签分别为:死锁=0、堵塞=1、拥挤=2、通畅=3;所述测量数据的级别划分为:通畅级别对应V≥40、拥挤级别对应15≤V≤40、堵塞级别对应5≤V≤15、死锁级别对应 V≤5,V代表测量数据中的车速数据,这里V均以km/h作为计量单位;通畅级别对应类别标签“通畅=3”,拥挤级别对应类别标签“拥挤=2”,堵塞级别对应类别标签“堵塞=1”, 死锁级别对应类别标签“死锁=0”。
7.根据权利要求1-3中任意一项所述的基于深度学习的交通拥堵判别方法,其特征在于,所述路段为普通路段或交叉路口路段。
8.根据权利要求1-3中任意一项所述的基于深度学习的交通拥堵判别方法,其特征在于,所述监控视频文件对应的图片可以选取监控视频文件中的一张或者多张图片。
CN201610950789.6A 2016-11-03 2016-11-03 基于深度学习的交通拥堵判别方法 Active CN106297297B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610950789.6A CN106297297B (zh) 2016-11-03 2016-11-03 基于深度学习的交通拥堵判别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610950789.6A CN106297297B (zh) 2016-11-03 2016-11-03 基于深度学习的交通拥堵判别方法

Publications (2)

Publication Number Publication Date
CN106297297A true CN106297297A (zh) 2017-01-04
CN106297297B CN106297297B (zh) 2018-11-20

Family

ID=57720214

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610950789.6A Active CN106297297B (zh) 2016-11-03 2016-11-03 基于深度学习的交通拥堵判别方法

Country Status (1)

Country Link
CN (1) CN106297297B (zh)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106816008A (zh) * 2017-02-22 2017-06-09 银江股份有限公司 一种道路拥堵预警及拥堵形成时间预测方法
CN106846816A (zh) * 2017-04-12 2017-06-13 山东理工大学 一种基于深度学习的离散化交通状态判别方法
CN106971544A (zh) * 2017-05-15 2017-07-21 安徽大学 一种直接利用静态图像来检测车辆拥堵的方法
CN106991451A (zh) * 2017-04-14 2017-07-28 武汉神目信息技术有限公司 一种证件图片的识别系统及方法
CN107016861A (zh) * 2017-05-31 2017-08-04 电子科技大学 基于深度学习和智能路灯的交通信号灯智能调控系统
CN108510739A (zh) * 2018-04-28 2018-09-07 重庆交通大学 一种道路交通状态识别方法、系统及存储介质
CN108550259A (zh) * 2018-04-19 2018-09-18 何澜 道路拥堵判断方法、终端设备及计算机可读存储介质
CN108647665A (zh) * 2018-05-18 2018-10-12 西安电子科技大学 基于深度学习的航拍车辆实时检测方法
CN109147331A (zh) * 2018-10-11 2019-01-04 青岛大学 一种基于计算机视觉的道路拥堵状态检测方法
CN109166336A (zh) * 2018-10-19 2019-01-08 福建工程学院 一种基于区块链技术的实时路况信息采集推送方法
CN109165561A (zh) * 2018-07-27 2019-01-08 北京以萨技术股份有限公司 一种基于视频特征的交通拥堵识别方法
CN109190795A (zh) * 2018-08-01 2019-01-11 中山大学 一种区域间出行需求预测方法及装置
CN109291929A (zh) * 2017-07-24 2019-02-01 通用汽车环球科技运作有限责任公司 用于自动驾驶系统的深度集成融合架构
CN109409497A (zh) * 2017-08-15 2019-03-01 高德信息技术有限公司 一种路况预测方法及装置
CN110084112A (zh) * 2019-03-20 2019-08-02 太原理工大学 一种基于图像处理的交通拥堵判断方法
CN110288020A (zh) * 2019-06-19 2019-09-27 清华大学 基于声波传播方程的双路耦合深度学习的目标分类方法
CN110335465A (zh) * 2019-07-10 2019-10-15 北京维联众诚科技有限公司 基于ai深度学习的监控视频中交通拥堵检测方法和系统
CN110414544A (zh) * 2018-04-28 2019-11-05 杭州海康威视数字技术股份有限公司 一种目标状态分类方法、装置及系统
CN110633597A (zh) * 2018-06-21 2019-12-31 北京京东尚科信息技术有限公司 一种可行驶区域检测方法和装置
CN111340001A (zh) * 2020-03-24 2020-06-26 武汉理工大学 一种基于遥感影像深度学习的交通拥堵识别方法
CN111402579A (zh) * 2020-02-29 2020-07-10 深圳壹账通智能科技有限公司 道路拥堵程度预测方法、电子装置及可读存储介质
CN112101117A (zh) * 2020-08-18 2020-12-18 长安大学 一种高速公路拥堵识别模型构建方法和装置及识别方法
CN112133094A (zh) * 2020-09-25 2020-12-25 安徽达尔智能控制系统股份有限公司 一种基于深度学习技术的道路交叉口全要素健康诊断系统
US11892832B2 (en) 2021-06-16 2024-02-06 Waymo Llc Lane path modification framework

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109697852B (zh) * 2019-01-23 2021-04-02 吉林大学 基于时序交通事件的城市道路拥堵程度预测方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7146050B2 (en) * 2002-07-19 2006-12-05 Intel Corporation Facial classification of static images using support vector machines
CN102750824A (zh) * 2012-06-19 2012-10-24 银江股份有限公司 基于多种神经网络分类器投票的城市道路交通状态检测方法
CN104077613A (zh) * 2014-07-16 2014-10-01 电子科技大学 一种基于级联多级卷积神经网络的人群密度估计方法
CN104102919A (zh) * 2014-07-14 2014-10-15 同济大学 一种有效防止卷积神经网络过拟合的图像分类方法
CN104217214A (zh) * 2014-08-21 2014-12-17 广东顺德中山大学卡内基梅隆大学国际联合研究院 基于可配置卷积神经网络的rgb-d人物行为识别方法
CN104320617A (zh) * 2014-10-20 2015-01-28 中国科学院自动化研究所 一种基于深度学习的全天候视频监控方法
CN104463324A (zh) * 2014-11-21 2015-03-25 长沙马沙电子科技有限公司 一种基于大规模高性能集群的卷积神经网络并行处理方法
CN104834920A (zh) * 2015-05-25 2015-08-12 成都通甲优博科技有限责任公司 一种无人机多光谱图像的智能林火识别方法及装置
CN105184271A (zh) * 2015-09-18 2015-12-23 苏州派瑞雷尔智能科技有限公司 一种基于深度学习的车辆自动检测方法
CN105654729A (zh) * 2016-03-28 2016-06-08 南京邮电大学 一种基于卷积神经网络的短时交通流量预测方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7146050B2 (en) * 2002-07-19 2006-12-05 Intel Corporation Facial classification of static images using support vector machines
CN102750824A (zh) * 2012-06-19 2012-10-24 银江股份有限公司 基于多种神经网络分类器投票的城市道路交通状态检测方法
CN104102919A (zh) * 2014-07-14 2014-10-15 同济大学 一种有效防止卷积神经网络过拟合的图像分类方法
CN104077613A (zh) * 2014-07-16 2014-10-01 电子科技大学 一种基于级联多级卷积神经网络的人群密度估计方法
CN104217214A (zh) * 2014-08-21 2014-12-17 广东顺德中山大学卡内基梅隆大学国际联合研究院 基于可配置卷积神经网络的rgb-d人物行为识别方法
CN104320617A (zh) * 2014-10-20 2015-01-28 中国科学院自动化研究所 一种基于深度学习的全天候视频监控方法
CN104463324A (zh) * 2014-11-21 2015-03-25 长沙马沙电子科技有限公司 一种基于大规模高性能集群的卷积神经网络并行处理方法
CN104834920A (zh) * 2015-05-25 2015-08-12 成都通甲优博科技有限责任公司 一种无人机多光谱图像的智能林火识别方法及装置
CN105184271A (zh) * 2015-09-18 2015-12-23 苏州派瑞雷尔智能科技有限公司 一种基于深度学习的车辆自动检测方法
CN105654729A (zh) * 2016-03-28 2016-06-08 南京邮电大学 一种基于卷积神经网络的短时交通流量预测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
谭娟: "基于深度学习的交通拥堵预测模型研究", 《计算机应用研究》 *

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106816008A (zh) * 2017-02-22 2017-06-09 银江股份有限公司 一种道路拥堵预警及拥堵形成时间预测方法
CN106816008B (zh) * 2017-02-22 2019-08-23 银江股份有限公司 一种道路拥堵预警及拥堵形成时间预测方法
CN106846816A (zh) * 2017-04-12 2017-06-13 山东理工大学 一种基于深度学习的离散化交通状态判别方法
CN106846816B (zh) * 2017-04-12 2019-09-17 山东理工大学 一种基于深度学习的离散化交通状态判别方法
CN106991451A (zh) * 2017-04-14 2017-07-28 武汉神目信息技术有限公司 一种证件图片的识别系统及方法
CN106971544A (zh) * 2017-05-15 2017-07-21 安徽大学 一种直接利用静态图像来检测车辆拥堵的方法
CN106971544B (zh) * 2017-05-15 2019-07-16 安徽大学 一种直接利用静态图像来检测车辆拥堵的方法
CN107016861A (zh) * 2017-05-31 2017-08-04 电子科技大学 基于深度学习和智能路灯的交通信号灯智能调控系统
CN109291929A (zh) * 2017-07-24 2019-02-01 通用汽车环球科技运作有限责任公司 用于自动驾驶系统的深度集成融合架构
CN109291929B (zh) * 2017-07-24 2021-07-13 通用汽车环球科技运作有限责任公司 用于自动驾驶系统的深度集成融合架构
CN109409497B (zh) * 2017-08-15 2021-03-16 阿里巴巴(中国)有限公司 一种路况预测方法及装置
CN109409497A (zh) * 2017-08-15 2019-03-01 高德信息技术有限公司 一种路况预测方法及装置
CN108550259B (zh) * 2018-04-19 2020-05-12 何澜 道路拥堵判断方法、终端设备及计算机可读存储介质
CN108550259A (zh) * 2018-04-19 2018-09-18 何澜 道路拥堵判断方法、终端设备及计算机可读存储介质
CN110414544A (zh) * 2018-04-28 2019-11-05 杭州海康威视数字技术股份有限公司 一种目标状态分类方法、装置及系统
CN108510739A (zh) * 2018-04-28 2018-09-07 重庆交通大学 一种道路交通状态识别方法、系统及存储介质
CN108647665A (zh) * 2018-05-18 2018-10-12 西安电子科技大学 基于深度学习的航拍车辆实时检测方法
CN108647665B (zh) * 2018-05-18 2021-07-27 西安电子科技大学 基于深度学习的航拍车辆实时检测方法
CN110633597B (zh) * 2018-06-21 2022-09-30 北京京东尚科信息技术有限公司 一种可行驶区域检测方法和装置
CN110633597A (zh) * 2018-06-21 2019-12-31 北京京东尚科信息技术有限公司 一种可行驶区域检测方法和装置
CN109165561A (zh) * 2018-07-27 2019-01-08 北京以萨技术股份有限公司 一种基于视频特征的交通拥堵识别方法
CN109190795A (zh) * 2018-08-01 2019-01-11 中山大学 一种区域间出行需求预测方法及装置
CN109190795B (zh) * 2018-08-01 2022-02-18 中山大学 一种区域间出行需求预测方法及装置
CN109147331B (zh) * 2018-10-11 2021-07-27 青岛大学 一种基于计算机视觉的道路拥堵状态检测方法
CN109147331A (zh) * 2018-10-11 2019-01-04 青岛大学 一种基于计算机视觉的道路拥堵状态检测方法
CN109166336A (zh) * 2018-10-19 2019-01-08 福建工程学院 一种基于区块链技术的实时路况信息采集推送方法
CN109166336B (zh) * 2018-10-19 2020-08-07 福建工程学院 一种基于区块链技术的实时路况信息采集推送方法
CN110084112A (zh) * 2019-03-20 2019-08-02 太原理工大学 一种基于图像处理的交通拥堵判断方法
CN110084112B (zh) * 2019-03-20 2022-09-20 太原理工大学 一种基于图像处理的交通拥堵判断方法
CN110288020A (zh) * 2019-06-19 2019-09-27 清华大学 基于声波传播方程的双路耦合深度学习的目标分类方法
CN110335465A (zh) * 2019-07-10 2019-10-15 北京维联众诚科技有限公司 基于ai深度学习的监控视频中交通拥堵检测方法和系统
CN111402579A (zh) * 2020-02-29 2020-07-10 深圳壹账通智能科技有限公司 道路拥堵程度预测方法、电子装置及可读存储介质
CN111340001A (zh) * 2020-03-24 2020-06-26 武汉理工大学 一种基于遥感影像深度学习的交通拥堵识别方法
CN111340001B (zh) * 2020-03-24 2023-10-10 武汉理工大学 一种基于遥感影像深度学习的交通拥堵识别方法
CN112101117A (zh) * 2020-08-18 2020-12-18 长安大学 一种高速公路拥堵识别模型构建方法和装置及识别方法
CN112133094A (zh) * 2020-09-25 2020-12-25 安徽达尔智能控制系统股份有限公司 一种基于深度学习技术的道路交叉口全要素健康诊断系统
US11892832B2 (en) 2021-06-16 2024-02-06 Waymo Llc Lane path modification framework

Also Published As

Publication number Publication date
CN106297297B (zh) 2018-11-20

Similar Documents

Publication Publication Date Title
CN106297297A (zh) 基于深度学习的交通拥堵判别方法
CN107832835A (zh) 一种卷积神经网络的轻量化方法及装置
CN109977812B (zh) 一种基于深度学习的车载视频目标检测方法
CN110147763B (zh) 基于卷积神经网络的视频语义分割方法
CN107609602A (zh) 一种基于卷积神经网络的驾驶场景分类方法
CN110414387A (zh) 一种基于道路分割的车道线多任务学习检测方法
CN107657249A (zh) 多尺度特征行人重识别的方法、装置、存储介质及处理器
CN106971544B (zh) 一种直接利用静态图像来检测车辆拥堵的方法
CN111814621A (zh) 一种基于注意力机制的多尺度车辆行人检测方法及装置
CN107622678A (zh) 一种基于图像处理的智能交通控制系统及其方法
CN104320617B (zh) 一种基于深度学习的全天候视频监控方法
KR20200047307A (ko) 유용한 학습 데이터를 취사 선별하기 위한 cnn 기반 학습 방법 및 학습 장치 그리고 이를 이용한 테스트 방법 및 테스트 장치
CN112633149B (zh) 一种域自适应雾天图像目标检测方法和装置
CN109035779A (zh) 基于DenseNet的高速公路交通流预测方法
CN110717387A (zh) 一种基于无人机平台的实时车辆检测方法
CN110399820B (zh) 一种公路路边景物视觉识别分析方法
CN111008626A (zh) 基于r-cnn检测客体的方法和装置
CN109801297A (zh) 一种基于卷积实现的图像全景分割预测优化方法
CN109840904B (zh) 一种高铁接触网大尺度差异零部件检测方法
CN106056102A (zh) 基于视频图像分析的道路车型分类方法
CN111626237A (zh) 基于增强型多尺度感知网络的人群计数方法及系统
CN109919026A (zh) 一种水面无人艇局部路径规划方法
CN106886763A (zh) 实时检测人脸的系统及其方法
KR20200091781A (ko) 자율주행 자동차의 레벨 4를 충족시키기 위해 필요한 hd 지도와의 콜라보레이션을 지원하는 임베딩 로스 및 소프트맥스 로스를 이용하여 적어도 하나의 차선을 가지는 이미지를 세그멘테이션하는 학습 방법 및 학습 장치, 그리고 이를 이용한 테스트 방법 및 테스트 장치
CN109508639B (zh) 基于多尺度带孔卷积神经网络的道路场景语义分割方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant