CN106296813A - 三维静态地图生产方法 - Google Patents

三维静态地图生产方法 Download PDF

Info

Publication number
CN106296813A
CN106296813A CN201510246388.8A CN201510246388A CN106296813A CN 106296813 A CN106296813 A CN 106296813A CN 201510246388 A CN201510246388 A CN 201510246388A CN 106296813 A CN106296813 A CN 106296813A
Authority
CN
China
Prior art keywords
map
structures
dimensional
rendering
producing method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510246388.8A
Other languages
English (en)
Other versions
CN106296813B (zh
Inventor
汪旻琦
冯琰
毛炜青
曹维
路志越
顾星晔
张唯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI INSTITUTE OF SURVEYING AND MAPPING
Original Assignee
SHANGHAI INSTITUTE OF SURVEYING AND MAPPING
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI INSTITUTE OF SURVEYING AND MAPPING filed Critical SHANGHAI INSTITUTE OF SURVEYING AND MAPPING
Priority to CN201510246388.8A priority Critical patent/CN106296813B/zh
Publication of CN106296813A publication Critical patent/CN106296813A/zh
Application granted granted Critical
Publication of CN106296813B publication Critical patent/CN106296813B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processing Or Creating Images (AREA)

Abstract

本发明公开了一种三维静态地图生产方法。该地图生产方法包括以下步骤:一、渲染地图中的构筑物;二、处理地面影像;三、生成地图标记;四、渲染地图;五、将构筑物对象化并赋予三维计算分析能力。步骤一包括分幅步骤和定位渲染步骤。分幅步骤包括:计算构筑物模型的倾斜投影多边形;选择与构筑物模型相交的构筑物倾斜投影面;获取对应影响区域内涉及的三维模型。定位渲染步骤包括:以平行投影的方式将构筑物模型映射到平面上;将待渲染的原始网格范围转换为实际渲染网格范围;加载多个分幅渲染图片。本发明的三维静态地图生产方法具有较高的生产效率以及地理精度,不依赖于人工调整,兼具平面化数据表达与三维化空间分析的技术优势。

Description

三维静态地图生产方法
技术领域
本发明涉及一种地图生产方法,尤其涉及一种三维静态地图生产方法。
背景技术
传统的2.5维地图在生产或生成过程中比较依赖于人工编辑修饰,地图中的数据在更新时需要耗费大量人力。传统的地图生产方法在地图渲染、建筑物的对象化、地图注记的产生等方面都非常依赖于人工参与、调整,因而人力成本过高且容易发生错误。此外,传统的2.5维地图在生成过程中会丢失三维空间坐标,因而仅具有三维的表现形式,但却不具备三维空间的运算和分析能力。
发明内容
本发明要解决的技术问题是为了克服现有技术中的地图生产方法过于依赖人工参与和调整因而人力成本过高,同时不具备三维空间的运算和分析能力的缺陷,提供一种三维静态地图生产方法。
本发明是通过下述技术方案来解决上述技术问题的:
本发明提供了一种三维静态地图生产方法,其特点在于,在一地图的基础上执行以下步骤:
步骤一、渲染该地图中的构筑物;
步骤二、处理地面影像;
步骤三、生成地图标记;
步骤四、渲染该地图;
步骤五、将构筑物对象化并赋予三维空间的计算分析能力。
其中步骤一包括一分幅步骤和一定位渲染步骤,该分幅步骤包括:
计算出该地图中的构筑物模型的倾斜投影多边形;
根据该地图的当前格网选择与构筑物模型相交的构筑物倾斜投影面;
根据选取的构筑物倾斜投影面获取对应的影响区域内涉及的所有三维模型。
该定位渲染步骤包括:
以平行投影的方式将构筑物模型映射到平面上;
将待渲染的原始网格范围转换为一实际渲染网格范围;
并将多个分幅渲染图片加载到该地图中。
在构筑物渲染的渲染步骤中,大体可分为分幅、渲染与定位。传统方法中的分幅主要采用的是基于空间位置的分幅方式,即根据构筑物是否坐落于一定宽度与长度的规则地理格网内为条件进行分幅。然而三维静态地图采取的是倾斜投影,因此如果仅加载格网范围内建筑模型,会造成部分渲染后缺失相邻格网内的高层建筑投影部分。为了解决上述渲染后部分投影缺失的问题,通常只有在渲染过程中把相邻格网范围内的所有建筑都加载进行渲染,这就必然导致渲染时的模型数量明显增大而造成渲染时间变长,并且也无法完全解决缺失部分超高层投影部分的问题。
为此,本发明采取了基于倾斜投影影响区域的分幅方式,即首先计算出模型的倾斜投影多边形,然后根据当前格网选择与其空间位置相交的构筑物倾斜投影面,最终根据投影面获得对应影响区域内涉及的所有构筑物三维模型。这就使得本发明的方法,能大幅减少渲染过程中加载的模型数量,有效节省模型渲染时间,提升模型渲染效率,同时又完全解决渲染后部分投影缺失的问题。
并且,为了避免三维静态地图渲染时发生变形从而影响分幅图片坐标的定位与拼接,在定位渲染中采用平行投影的方式。而为了更好表达场景的灯光效果,可以选用Vray渲染器。
由于3DS MAX中渲染范围与实际的网格范围存在差异,因此需要在地图生产过程中确定实际的渲染网格范围。为了能够既保证将原始网格范围内的地物全部包含在内,又不增加过多的时间损耗,在渲染范围转换的时候应当使用原始网格的最小外接矩形作为实际渲染范围。实际生产过程中可以根据摄像机水平旋转角的变化动态计算出任意旋转角下的最小渲染网格范围,从而大大提高了实际渲染的效率。
应当理解的是,每个分幅渲染图片都带有准确的地理坐标,因此可以在将各个分幅渲染图片加载到该地图中,并利用ArcGIS Server对合并后的三维构筑物进行切片与发布。
较佳地,步骤二包括:
根据以下投影变换公式将地图平面坐标值变换至三维地图坐标值;
x'=x cos(θz)-y sin(θz);
y'=cos(θx)*[y cos(θz)+x sin(θz)];
在上述投影变换公式中,x、y为地图平面坐标值,x’、y’为三维地图坐标值,θz为三维地图的视角与z轴的夹角,θz为三维地图的视角与x轴的夹角。
本发明的方法中,地面影像处理的数据源采用数字正射影像。影像处理模块起到效果修饰、影像坐标投影变换的作用。对于效果修饰,一般需要对影像首先进行整体色调与色彩饱和度地调整,然后对于重点区域进行地面道路与空旷区域的局部修饰以达到较好的图面效果。
针对坐标投影变换来说,根据三维静态地图投影的定义,对三维模型在不同用户视图视角的投影,其实就是对模型在不同方向旋转某一角度后,投影在固定投影面上的图形。因此,采用的投影变换公式为:
x'=x cos(θz)-y sin(θz);
y'=cos(θx)*[y cos(θz)+x sin(θz)]。
较佳地,步骤三包括:
对该地图中的道路中心线的矢量数据进行预处理,预处理包括对地图标记与道路交叉口的重叠区域进行拓扑裁切运算以及对预设的地图标记的格式转换;
对地图标记的对象与构筑物倾斜投影面进行拓扑运算,以去除构筑物的遮挡部分;
将地图标记叠加于该地图上。
由于在三维静态地图中道路通常都会被建筑投影所遮挡,如果直接进行自动化注记生产,例如标注道路名称时,会产生注记被遮挡,或者道路注记显示在建筑物上的情况,造成图面效果不理想或注记错误。
为了解决这些问题,本发明中通过上述步骤三以使得注记智能化地避开建筑投影区域。具体来说,首先对道路中心线的矢量数据进行一定的预处理,其中包括与道路交叉口的重叠区域进行拓扑裁切运算以及注记名称的格式转换,然后将需要标注的道路与构筑物倾斜投影面进行拓扑运算,去除建筑物被遮挡部分后,再进行道路的标注,从而有效避免注记与建筑投影区域的位置冲突。
进一步地,在去除掉建筑投影区域后,要将城市坐标下的道路线转换至2.5维坐标系统下,并将其叠合至事先已经渲染好的建筑图上,再利用ArcMap的地图标注引擎对道路进行自动的标注,生成Annotation图层,然后对部分自动标注位置不理想的地方进行手工的修改,以加以完善。当然,对于本发明的方法而言,手工修改或编辑并非是必须进行的。手工部分编辑完成后,就通过程序再进行一次遮挡面的判别,同时将自动生成注记渲染索引,利用3DS MAX对注记进行最终渲染。为了能够达到较好的渲染效果,项目中将注记的名称进行了拆分,通过计算得到了每个字的相关属性,最终将每个字作为单独的对象进行渲染。
在配置好注记的位置与样式后,将通过开发注记渲染工具实现注记分块导出和在3DSMax环境中自动构建字体三维模型并实现自动逐块烘焙。
较佳地,步骤四为:在一控制计算机对该地图的渲染任务进行分配配置,采用多台计算机并行执行配置好的渲染任务。
三维静态地图的渲染是一项非常费时的一项工作,在传统的地图生产方法中,这部分工作基本上占据了三维静态地图生产过程中60%以上的时间。在本发明中,可以采用基于云架构的渲染方式以解决这一问题。用户只需要在一台的计算机上进行渲染任务的分配,由其他多台计算机并行执行任务完成图片的渲染。这样就提高了渲染处理效率,更是实现了渲染过程的可伸缩性,稳定性。
较佳地,步骤五包括:
计算构筑物的轮廓范围面,基于该轮廓范围面将构筑物对象化,并添加相应属性;
采用视线求交算法计算得出视线向量和构筑物模型的交点,并根据交点确定用户获取的三维坐标值,然后将确定的三维坐标值作为三维空间分析的基础。
地图对象化就是将图片中相应的建筑物勾选出来,并赋予相应的属性,这些属性可以预先从相应的数据库中获取,从而提供地图浏览查询等应用功能。上述步骤五采用了视线求交算法,利用三维静态地图上获取的目标点坐标和地图投影参数,确定视线向量,然后将该视线向量与模型库中进行求交,计算得出与三维模型的交点,该交点就是用户地图上获取的准确三维坐标值,可用于相应的空间查询和三维计算。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明的积极进步效果在于:本发明的三维静态地图生产方法具有较高的生产效率以及地理精度,不依赖于人工调整,可以看做传统三维地图的静态化、轻量化表现,其兼顾了三维地图的空间运算能力以及二维地图的高性能特性,兼具平面化数据表达与三维化空间分析的技术优势。
附图说明
图1为本发明一较佳实施例的三维静态地图生产方法的流程图。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。
本实施例的三维静态地图生产方法,其所采用的原始数据主要来自于现有的城市三维模型库、正射影像图及基础地形数据。如图1所示,本实施例的三维静态地图生产方法基于一地图,并且包括以下步骤:
步骤一、渲染该地图中的构筑物;
步骤二、处理地面影像;
步骤三、生成地图标记;
步骤四、渲染该地图;
步骤五、将构筑物对象化并赋予三维空间的计算分析能力。
其中步骤一包括一分幅步骤和一定位渲染步骤,该分幅步骤包括:
计算出该地图中的构筑物模型的倾斜投影多边形;
根据该地图的当前格网选择与构筑物模型相交的构筑物倾斜投影面;
根据选取的构筑物倾斜投影面获取对应的影响区域内涉及的所有三维模型。
该定位渲染步骤包括:
以平行投影的方式将构筑物模型映射到平面上;
将待渲染的原始网格范围转换为一实际渲染网格范围;
并将多个分幅渲染图片加载到该地图中。
在构筑物渲染的渲染步骤中,大体可分为分幅、渲染与定位。本实施例基于倾斜投影影响区域的进行分幅,即首先计算出模型的倾斜投影多边形,然后根据当前格网选择与其空间位置相交的构筑物倾斜投影面,最终根据投影面获得对应影响区域内涉及的所有构筑物三维模型。
本实施例的步骤二包括根据以下投影变换公式将地图平面坐标值变换至三维地图坐标值;
x'=x cos(θz)-y sin(θz);
y'=cos(θx)*[y cos(θz)+x sin(θz)];
在上述投影变换公式中,x、y为地图平面坐标值,x’、y’为三维地图坐标值,θz为三维地图的视角与z轴的夹角,θz为三维地图的视角与x轴的夹角。地面影像处理的数据源采用数字正射影像。影像处理模块起到效果修饰、影像坐标投影变换的作用。对于效果修饰,一般需要对影像首先进行整体色调与色彩饱和度地调整,然后对于重点区域进行地面道路与空旷区域的局部修饰以达到较好的图面效果。
本实施例的步骤三包括:
对该地图中的道路中心线的矢量数据进行预处理,预处理包括对地图标记与道路交叉口的重叠区域进行拓扑裁切运算以及对预设的地图标记的格式转换;
对地图标记的对象与构筑物倾斜投影面进行拓扑运算,以去除构筑物的遮挡部分;
将地图标记叠加于该地图上。
具体来说,首先对道路中心线的矢量数据进行一定的预处理,其中包括与道路交叉口的重叠区域进行拓扑裁切运算以及注记名称的格式转换,然后将需要标注的道路与构筑物倾斜投影面进行拓扑运算,去除建筑物被遮挡部分后,再进行道路的标注,从而有效避免注记与建筑投影区域的位置冲突。
进一步地,在去除掉建筑投影区域后,要将城市坐标下的道路线转换至2.5维坐标系统下,并将其叠合至事先已经渲染好的建筑图上,再利用ArcMap的地图标注引擎对道路进行自动的标注,生成Annotation图层,然后对部分自动标注位置不理想的地方进行手工的修改,以加以完善。
本实施例中的步骤四为:在一控制计算机对该地图的渲染任务进行分配配置,采用多台计算机并行执行配置好的渲染任务。其中,该控制计算机相对来说可以是运算能力稍弱的,而对于该多台计算机的运算速度一般也不必有特定的要求。由多台计算机的并行渲染,就提高了渲染处理效率,实现了渲染过程的可伸缩性,稳定性。
本实施例的步骤五包括:
计算构筑物的轮廓范围面,基于该轮廓范围面将构筑物对象化,并添加相应属性;
采用视线求交算法计算得出视线向量和构筑物模型的交点,并根据交点确定用户获取的三维坐标值,然后将确定的三维坐标值作为三维空间分析的基础。
地图对象化就是将图片中相应的建筑物勾选出来,并赋予相应的属性,这些属性可以预先从相应的数据库中获取,从而提供地图浏览查询等应用功能。而采用视线求交算法计算得出的交点就是用户地图上获取的准确三维坐标值,可用于相应的空间查询和三维计算。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (5)

1.一种三维静态地图生产方法,其特征在于,在一地图的基础上执行以下步骤:
步骤一、渲染该地图中的构筑物;
步骤二、处理地面影像;
步骤三、生成地图标记;
步骤四、渲染该地图;
步骤五、将构筑物对象化并赋予三维空间的计算分析能力;
其中步骤一包括一分幅步骤和一定位渲染步骤,该分幅步骤包括:
计算出该地图中的构筑物模型的倾斜投影多边形;
根据该地图的当前格网选择与构筑物模型相交的构筑物倾斜投影面;
根据选取的构筑物倾斜投影面获取对应的影响区域内涉及的所有三维模型;
该定位渲染步骤包括:
以平行投影的方式将构筑物模型映射到平面上;
将待渲染的原始网格范围转换为一实际渲染网格范围;
并将多个分幅渲染图片加载到该地图中。
2.如权利要求1所述的三维静态地图生产方法,其特征在于,步骤二包括:
根据以下投影变换公式将地图平面坐标值变换至三维地图坐标值;
x'=x cos(θz)-y sin(θz);
y'=cos(θx)*[y cos(θz)+x sin(θz)];
在上述投影变换公式中,x、y为地图平面坐标值,x’、y’为三维地图坐标值,θz为三维地图的视角与z轴的夹角,θz为三维地图的视角与x轴的夹角。
3.如权利要求1所述的三维静态地图生产方法,其特征在于,步骤三包括:
对该地图中的道路中心线的矢量数据进行预处理,预处理包括对地图标记与道路交叉口的重叠区域进行拓扑裁切运算以及对预设的地图标记的格式转换;
对地图标记的对象与构筑物倾斜投影面进行拓扑运算,以去除构筑物的遮挡部分;
将地图标记叠加于该地图上。
4.如权利要求1所述的三维静态地图生产方法,其特征在于,步骤四为:在一控制计算机对该地图的渲染任务进行分配配置,采用多台计算机并行执行配置好的渲染任务。
5.如权利要求1-4中任意一项所述的三维静态地图生产方法,其特征在于,步骤五包括:
计算构筑物的轮廓范围面,基于该轮廓范围面将构筑物对象化,并添加相应属性;
采用视线求交算法计算得出视线向量和构筑物模型的交点,并根据交点确定用户获取的三维坐标值,然后将确定的三维坐标值作为三维空间分析的基础。
CN201510246388.8A 2015-05-14 2015-05-14 三维静态地图生产方法 Expired - Fee Related CN106296813B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510246388.8A CN106296813B (zh) 2015-05-14 2015-05-14 三维静态地图生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510246388.8A CN106296813B (zh) 2015-05-14 2015-05-14 三维静态地图生产方法

Publications (2)

Publication Number Publication Date
CN106296813A true CN106296813A (zh) 2017-01-04
CN106296813B CN106296813B (zh) 2018-11-13

Family

ID=57631216

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510246388.8A Expired - Fee Related CN106296813B (zh) 2015-05-14 2015-05-14 三维静态地图生产方法

Country Status (1)

Country Link
CN (1) CN106296813B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107423445A (zh) * 2017-08-10 2017-12-01 腾讯科技(深圳)有限公司 一种地图数据处理方法、装置及存储介质
CN109062416A (zh) * 2018-08-29 2018-12-21 广州视源电子科技股份有限公司 地图的状态转换方法和装置
CN109260708A (zh) * 2018-08-24 2019-01-25 腾讯科技(深圳)有限公司 地图渲染方法、装置以及计算机设备
CN111552755A (zh) * 2020-04-26 2020-08-18 中科三清科技有限公司 三维地名标注的绘制方法、装置、设备及存储介质
CN112256703A (zh) * 2020-10-23 2021-01-22 重庆同汇勘测规划有限公司 一种基于ArcGIS快速输出点云精度报告的方法
CN113610993A (zh) * 2021-08-05 2021-11-05 南京师范大学 一种基于候选标签评估的3d地图建筑物标注方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101872487A (zh) * 2010-06-24 2010-10-27 北京完美时空软件有限公司 一种在二维场景中实现对象动态影像的方法及装置
JP2015069656A (ja) * 2013-09-30 2015-04-13 本田技研工業株式会社 3次元(3−d)ナビゲーション

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101872487A (zh) * 2010-06-24 2010-10-27 北京完美时空软件有限公司 一种在二维场景中实现对象动态影像的方法及装置
JP2015069656A (ja) * 2013-09-30 2015-04-13 本田技研工業株式会社 3次元(3−d)ナビゲーション

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIAOHUA REN等: "GPU-Accelerated Large-Scale Water Surface Simulation", 《2012 INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING》 *
冯琰等: "三维城市模型数据组织与管理方法研究", 《测绘科学》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107423445A (zh) * 2017-08-10 2017-12-01 腾讯科技(深圳)有限公司 一种地图数据处理方法、装置及存储介质
CN109260708A (zh) * 2018-08-24 2019-01-25 腾讯科技(深圳)有限公司 地图渲染方法、装置以及计算机设备
CN109260708B (zh) * 2018-08-24 2020-01-10 腾讯科技(深圳)有限公司 地图渲染方法、装置以及计算机设备
US11852499B2 (en) 2018-08-24 2023-12-26 Tencent Technology (Shenzhen) Company Limited Map rendering method and apparatus, computer device, and storage medium
CN109062416A (zh) * 2018-08-29 2018-12-21 广州视源电子科技股份有限公司 地图的状态转换方法和装置
CN109062416B (zh) * 2018-08-29 2021-11-02 广州视源电子科技股份有限公司 地图的状态转换方法和装置
CN111552755A (zh) * 2020-04-26 2020-08-18 中科三清科技有限公司 三维地名标注的绘制方法、装置、设备及存储介质
CN112256703A (zh) * 2020-10-23 2021-01-22 重庆同汇勘测规划有限公司 一种基于ArcGIS快速输出点云精度报告的方法
CN112256703B (zh) * 2020-10-23 2023-05-23 重庆同汇勘测规划有限公司 一种基于ArcGIS快速输出点云精度报告的方法
CN113610993A (zh) * 2021-08-05 2021-11-05 南京师范大学 一种基于候选标签评估的3d地图建筑物标注方法
CN113610993B (zh) * 2021-08-05 2022-05-17 南京师范大学 一种基于候选标签评估的3d地图建筑物标注方法

Also Published As

Publication number Publication date
CN106296813B (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
CN106296813A (zh) 三维静态地图生产方法
US10395419B1 (en) Non-destructive multi-resolution surface clipping
CN106127453B (zh) 一种基于bim和vr的建筑设计管理系统及其管理方法
CN106599493B (zh) 一种三维大场景中bim模型的可视化实现方法
CN104183016B (zh) 一种快速的2.5维建筑物模型的构建方法
CN108875177B (zh) 基于bim模型创建单波束测点下内河航道疏浚图形的方法
CN105069226A (zh) 一种基于模板的三维造型建模方法
CN103279989A (zh) 一种三维激光成像系统平面点云数据三角化处理方法
CN105043382A (zh) 无人机巡航方法及装置
CN107102991A (zh) 一种三维gis系统中的杆塔参数化建模方法
CN104548597A (zh) 导航网格的自动生成方法和装置
CN102750722A (zh) 一种运动模型轨迹的生成方法及系统
CN106875330B (zh) 一种平面模型转球面模型的方法
CN102831281A (zh) 在gocad软件中建立二维工作面的辅助建模方法
CN104392489A (zh) 顾及拓扑的三维地理空间实体群的线消隐方法
CN103955959A (zh) 一种基于车载激光测量系统的全自动纹理映射方法
US7257519B2 (en) System and method for weighted correction of an eyepoint position
WO2015146517A1 (ja) 画像表示システム
CN115035225B (zh) 基于osg的战场威胁评估示警方法
JP7136499B1 (ja) 3次元工作物の設置計画に関するデータの生成方法、システム、及びデータ
CN106156376A (zh) 一种特高压输电线路电磁干扰三维仿真系统
CN109087391A (zh) 一种三维场景下的军标标绘方法
CN114549762A (zh) 基于三维gis平台多渲染引擎自适应切换方法及系统、存储介质
JP2007264952A (ja) 地盤解析用メッシュ生成方法及び地盤解析用メッシュ生成プログラム
Li et al. Roaming path generation algorithm and optimization based on Bezier curve

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181113

Termination date: 20210514