CN106296741A - 纳米视觉图像中细胞高速运动特征标注方法 - Google Patents

纳米视觉图像中细胞高速运动特征标注方法 Download PDF

Info

Publication number
CN106296741A
CN106296741A CN201610667999.4A CN201610667999A CN106296741A CN 106296741 A CN106296741 A CN 106296741A CN 201610667999 A CN201610667999 A CN 201610667999A CN 106296741 A CN106296741 A CN 106296741A
Authority
CN
China
Prior art keywords
image
characteristic point
row
point
template
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610667999.4A
Other languages
English (en)
Inventor
刘永俊
秦立浩
魏阳杰
张明新
王�义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changshu Institute of Technology
Original Assignee
Changshu Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changshu Institute of Technology filed Critical Changshu Institute of Technology
Priority to CN201610667999.4A priority Critical patent/CN106296741A/zh
Publication of CN106296741A publication Critical patent/CN106296741A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/46Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
    • G06V10/462Salient features, e.g. scale invariant feature transforms [SIFT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • G06T2207/10061Microscopic image from scanning electron microscope

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种纳米视觉图像中细胞高速运动特征标注方法,首先对采集的细胞视频图像进行特征点检测,计算图像中像素点所对应的黑塞矩阵行列式的值,并判别该点是否为特征点,获取包括坐标和所在的尺度等位置信息;完成特征点位置信息检测之后,需要确定特征点主方向以及构造描述子向量,以对特征点进行有效的描述;最后采用特征描述子向量的距离(如欧式距离、马氏距离等)作为两幅图像中关键点的相似性判定度量。该方法适合同一物体在不同位置和不同时刻形成的两幅图像的配准;通过多尺度分层滤波的方式,避免了在纳米尺度高倍显微镜下,细胞光学图像存在的光学衍射、散射等噪声的影响;可通过通用参考代码实现,开发成本低。

Description

纳米视觉图像中细胞高速运动特征标注方法
技术领域
本发明涉及一种细胞运动特征标注方法,尤其是涉及纳米视觉图像中细胞高速运动特征标注方法,属于数字图像处理、模式识别技术领域。
背景技术
运动问题是自然界的基本问题,近年来已成为计算机视觉领域研究的热点。细胞是生物有机体的基本单位,在活细胞内部进行着复杂而有序的生命活动。单细胞操作在药品开发,生理学和复制的生物医学研究领域中起重要作用。如图1、2所示为高倍显微镜下,通过压电状态使细胞M在高速的旋转和移动。随着纳米技术的飞速发展,如何精确观测细胞的运动,乃至通过精确的技术测量其运动特性,如在压电状态下的自旋转、位移等特性,对生物细胞学和医学等领域具有重要的意义。
SURF(Speeded Up Robust Features)特征算法是Herbert Bay等人于2006年,在经典的SIFT特征算法基础上提出的一种具有鲁棒性的局部特征检测算法,并在2008年进行了完善。该算法由于其在宏观图像处理中具有很强的鲁棒性及较快的运算速度,在目标识别、自动导航、图像拼接等领域得到了广泛的应用。
通常宏观计算机视觉算法应用到微观视觉领域,特别是当测量的精度达到纳米级时,会受到诸如光的衍射、散射等问题的干扰,加之细胞图像中不同目标特征具有极高的相似性,细胞在一些特定条件下的运动一度极快,特别是旋转运动时很难通过传统的宏观视觉算法进行识别测量。
发明内容
本发明的目的是提供了一种纳米视觉图像中细胞高速运动特征标注方法,使其适合纳米尺度下微观视觉环境,并且能够满足实时性需求。
本发明技术方案如下:一种纳米视觉图像中细胞高速运动特征标注方法,依次包括对输入图像进行特征点检测、特征点描述和图像配准标注,所述对输入图像进行特征点检测依次包括以下步骤:
S11生成积分图像,所述积分图像的点I(x,y)的像素值是输入图像中从原点到横坐标小于x,纵坐标小于y所形成区域内所有像素亮度值之和;
S12对所述积分图像进行卷积,并用加权后9*9大小的盒状滤波器进行滤波处理;
S13用盒状滤波器构造黑塞矩阵,计算滤波处理后图像上的点的黑塞矩阵行列式值;
S14建立多幅尺度逐渐增加的图像堆,所述图像堆分若干组,每组分若干层,每组内各层图像是对输入图像与按不同尺寸扩展的盒状滤波器进行滤波处理所得,下一组图像由上一组图像按隔点采样所得;
S15丢弃所有像素值小于设定阈值的像素点,并去除在3*3*3邻域内所述步骤S13中黑塞矩阵行列式值不是最大值的点,剩余像素点为特征点,对所述特征点进行插值达到亚像素级精度;
所述特征点描述依次包括以下步骤:
S21在输入图像中以所述特征点为中心,6σ为半径建立圆形邻域,对所述圆形邻域进行间隔为σ的采样,再对采样内各点计算水平和垂直方向的Harr小波响应值,并对所述响应值作高斯加权处理;
S22利用扇形滑动窗口计算模和幅角,在以特征点为中心、以水平和垂直方向的Harr小波响应值为横纵坐标建立的坐标系中,以张角为60度、原点为中心的扇形作为滑动窗口,累加窗口内各点的水平垂直方向的Harr小波响应值,计算模值和幅角,旋转一周后,产生的最大模值所对应幅角就是特征点主方向;
S23在输入图像中以所述特征点为中心,20σ为边长建立正方形邻域,旋转所述正方形邻域使其与特征点主方向保持一致,对旋转后正方形邻域进行间隔为2σ的采样,并将旋转后正方形邻域分成16子区域,计算每个子区域中25个像素的相对特征点方向的水平、垂直方向的Harr小波响应值,并作高斯加权处理;累加各子区域中的Harr小波响应值得到各子区域的四维特征向量,将16个子区域的特征向量融合在一起构造64维的特征向量即为SURF特征描述子向量;
所述σ为特征点所在尺度的大小;
所述图像配准标注依次包括以下步骤:
S31在每个连续的两帧图像中,取前一帧图像中的某个特征点,在后一帧图像中找出与前一帧图像中的特征点距离最近的前两个特征点,在这两个特征点中,如果最近的距离除以次近的距离少于比例阈值,则后一帧图像中的两个特征点为匹配特征点;
S32标注所述匹配特征点,并求得水平位移d_x和垂直位移d_y,然后计算斜率k=d_y/d_x求得弧度radian=atan(k),在后一帧图像中用弧度radian的箭头标注与前一帧图像对应的特征点。
优选的,所述盒装滤波器包括模板Dxx、Dyy和Dxy,所述模板Dxx的第1、2、8、9行区域权值为0,第3至6行的第1至3列区域和第3至6行的第7至9列区域权值为1,第3至6行的第4至6列区域权值为-2;所述模板Dyy的第1、2、8、9列区域权值为0,第3至6列的第1至3行区域和第3至6列的第7至9行区域权值为1,第3至6列的第4至6行区域权值为-2;所述模板Dxy的第1、5、9行和第1、5、9列区域的权值为0,第2至4行的第2至4列区域和第6至8行的第6至8列区域权值为1,第2至4行的第6至8列区域和第6至8行的第2至4列区域权值为-1。
优选的,所述黑塞矩阵为
优选的,所述按不同尺寸扩展的盒状滤波器是以原盒状滤波器模板为基准模板生成新盒状滤波器模板,所述新模板尺寸与尺度的比率和基准模板尺寸与尺度的比率一致。
优选的,所述步骤S15中设定阈值为100。
优选的,所述步骤S15中插值为采用泰勒级数展开式来进行插值计算。
优选的,所述步骤S31中比例阈值为0.4~0.6。
本发明所提供的技术方案的优点在于:
a)该方法选用SURF特征,属于图像局部不变性特征,适合同一物体在不同位置和不同时刻形成的两幅图像的配准。
b)该方法通过多尺度分层滤波的方式,较好的避免了在纳米尺度高倍显微镜下,细胞光学图像存在的光学衍射、散射等噪声的影响。
c)该发明采用的SURF特征算法及图像配准算法均属较为成熟的技术,Open CV等开源计算机视觉代码库中均有通用参考代码,技术实现及软件开发成本较低。
附图说明
图1为纳米尺度高倍显微镜下细胞M在压电状态自旋转视频截图前一帧;
图2为纳米尺度高倍显微镜下细胞M在压电状态自旋转视频截图后一帧;
图3为盒状滤波器模板Dxx示意图;
图4为盒状滤波器模板Dyy示意图;
图5为盒状滤波器模板Dxy示意图;
图6为模板Dyy一次扩展示意图;
图7为模板Dyy二次扩展示意图;
图8为非最大值抑制邻域示意图;
图9为滑动窗口示意图;
图10为本发明效果图。
具体实施方式
下面结合实施例对本发明作进一步说明,但不作为对本发明的限定。
纳米尺度下采用高倍光学显微镜采集细胞运动图像相比原子力显微镜(Atomicforce microscopy,AFM)、SEM和SPM等显微镜扫描方式,具有非接触式、监测速度快、范围广的优点。本发明抽取图像SURF特征加以应用改进,对纳米视觉图像中细胞高速运动特征加以标注。整个标注过程包括三大过程对输入图像进行特征点检测、特征点描述和图像配准标注,进一步详细说明如下:
首先对输入图像进行特征点检测依次包括以下步骤:
S11生成积分图像,积分图像的点I(x,y)的像素值是输入图像中从原点到横坐标小于x,纵坐标小于y所形成区域内所有像素亮度值之和;
S12对积分图像进行卷积,并用加权后9*9大小的盒状滤波器进行滤波处理;如图3、4、5所示的,盒装滤波器包括模板Dxx、Dyy和Dxy,模板Dxx的第1、2、8、9行区域为灰色,权值为0,第3至6行的第1至3列区域和第3至6行的第7至9列区域为白色,权值为1,第3至6行的第4至6列区域为黑色,权值为-2;模板Dyy的第1、2、8、9列区域为灰色权值为0,第3至6列的第1至3行区域和第3至6列的第7至9行区域为白色,权值为1,第3至6列的第4至6行区域为黑色,权值为-2;模板Dxy的第1、5、9行和第1、5、9列区域为灰色,权值为0,第2至4行的第2至4列区域和第6至8行的第6至8列区域为白色,权值为1,第2至4行的第6至8列区域和第6至8行的第2至4列区域为黑色,权值为-1;
S13用盒状滤波器构造黑塞矩阵计算滤波处理后图像上的点的黑塞矩阵行列式值;
S14建立多幅尺度逐渐增加的图像堆,图像堆分若干组,每组分若干层,每组内各层图像是对输入图像与按不同尺寸扩展的盒状滤波器进行滤波处理所得,下一组图像由上一组图像按隔点采样所得;其中如图4、6、7所示,盒状滤波器模板尺寸扩展遵循如下规则:
a)非灰区域短边须是模板尺寸的三分之一。
b)模板四周须同步扩展,以保持中心不变且非灰区域至少扩展2个像素。
以尺寸s_0为9*9,尺度σ_0为1.2的盒状滤波器模板为基准模板来生成新盒状滤波器模板而新模板尺寸与尺度和基准模板尺寸与尺度的比率一致:
σ/s=σ_0/s_0=1.2/9
确定尺度图像所在组(O)和层(L)与与其所对应的滤波器模板尺寸(S)的关系:
S=(9+6*L)*2^O
根据新模板尺寸与尺度和基准模板尺寸与尺度的比率一致性,可以得到新模板尺度如下表所示
S15丢弃所有像素值小于设定阈值(100)的像素点,并去除在3*3*3邻域内,如图8所示的由步骤S13中黑塞矩阵行列式值不是最大值的点,剩余像素点为特征点,应用泰勒级数展开式来进行插值计算对所述特征点进行插值达到亚像素级精度;
完成特征点位置信息检测之后,需要确定特征点主方向以及构造描述子向量,以对特征点进行有效的描述,特征点描述依次包括以下步骤:
S21在输入图像中以所述特征点为中心,6σ为半径建立圆形邻域,σ为特征点所在尺度的大小,对圆形邻域进行间隔为σ的采样,再对采样内各点计算水平和垂直方向的Harr小波响应值,并对所述响应值作高斯加权处理;
S22如图9所示,利用扇形滑动窗口计算模和幅角,在以特征点为中心、以水平和垂直方向的Harr小波响应值为横纵坐标建立的坐标系中,以张角为60度、原点为中心的扇形作为滑动窗口,累加窗口内各点的水平垂直方向的Harr小波响应值∑x和∑y,计算模值和幅角,旋转一周后,产生的最大模值所对应幅角就是特征点主方向;
S23在输入图像中以所述特征点为中心,20σ为边长建立正方形邻域,旋转所述正方形邻域使其与特征点主方向保持一致,对旋转后正方形邻域进行间隔为2σ的采样,并将旋转后正方形邻域分成16子区域,计算每个子区域中25个像素的相对特征点方向的水平、垂直方向的Harr小波响应值,并作高斯加权处理;累加各子区域中的Harr小波响应值得到(∑x,∑y,|∑x|,|∑y|),由此表示各子区域的四维特征向量,将16个子区域的特征向量融合在一起构造64维的特征向量即为SURF特征描述子向量;
由于SURF特征属于图像局部不变性特征,可用于同一物体在不同位置和不同时刻形成的两幅图像的配准。当两幅细胞图像的特征描述子生成后,下一步可采用特征描述子向量的距离(如欧式距离、马氏距离等)作为两幅图像中关键点的相似性判定度量。图像配准标注依次包括以下步骤:
S31在每个连续的两帧图像中,取前一帧图像中的某个特征点,在后一帧图像中找出与前一帧图像中的特征点距离最近的前两个特征点,在这两个特征点中,如果最近的距离除以次近的距离少于比例阈值ratio,则后一帧图像中的两个特征点为匹配特征点;ratio的取值策略对排除错误匹配点至关重要,对大量任意存在尺度、旋转和亮度变化的两幅图片进行匹配实验,结果表明ratio取值在0.4~0.6之间最佳,小于0.4的很少有匹配点,大于0.6的则存在大量错误匹配点。
S32如图10为细胞自转视频中前16帧,每连续两帧T1&&T2,T2&&T3,……中标注匹配特征点,(其中第7帧T7中未检测到第6帧图像T6中原检测的特征,所以T6&&T7有间隔),将特征点用圆圈标注,求得位移d_x、d_y,然后计算斜率k=d_y/d_x就可以求得弧度radian=atan(k),以T1&&T2为例,在后帧图像T2中用弧度radian的箭头标注与前帧图像T1对应的特征点。

Claims (7)

1.一种纳米视觉图像中细胞高速运动特征标注方法,其特征在于,依次包括对输入图像进行特征点检测、特征点描述和图像配准标注,所述对输入图像进行特征点检测依次包括以下步骤:
S11生成积分图像,所述积分图像的点I(x,y)的像素值是输入图像中从原点到横坐标小于x,纵坐标小于y所形成区域内所有像素亮度值之和;
S12对所述积分图像进行卷积,并用加权后9*9大小的盒状滤波器进行滤波处理;
S13用盒状滤波器构造黑塞矩阵,计算滤波处理后图像上的点的黑塞矩阵行列式值;
S14建立多幅尺度逐渐增加的图像堆,所述图像堆分若干组,每组分若干层,每组内各层图像是对输入图像与按不同尺寸扩展的盒状滤波器进行滤波处理所得,下一组图像由上一组图像按隔点采样所得;
S15丢弃所有像素值小于设定阈值的像素点,并去除在3*3*3邻域内所述步骤S13中黑塞矩阵行列式值不是最大值的点,剩余像素点为特征点,对所述特征点进行插值达到亚像素级精度;
所述特征点描述依次包括以下步骤:
S21在输入图像中以所述特征点为中心,6σ为半径建立圆形邻域,对所述圆形邻域进行间隔为σ的采样,再对采样内各点计算水平和垂直方向的Harr小波响应值,并对所述响应值作高斯加权处理;
S22利用扇形滑动窗口计算模和幅角,在以特征点为中心、以水平和垂直方向的Harr小波响应值为横纵坐标建立的坐标系中,以张角为60度、原点为中心的扇形作为滑动窗口,累加窗口内各点的水平垂直方向的Harr小波响应值,计算模值和幅角,旋转一周后,产生的最大模值所对应幅角就是特征点主方向;
S23在输入图像中以所述特征点为中心,20σ为边长建立正方形邻域,旋转所述正方形邻域使其与特征点主方向保持一致,对旋转后正方形邻域进行间隔为2σ的采样,并将旋转后正方形邻域分成16子区域,计算每个子区域中25个像素的相对特征点方向的水平、垂直方向的Harr小波响应值,并作高斯加权处理;累加各子区域中的Harr小波响应值得到各子区域的四维特征向量,将16个子区域的特征向量融合在一起构造64维的特征向量即为SURF特征描述子向量;
所述σ为特征点所在尺度的大小;
所述图像配准标注依次包括以下步骤:
S31在每个连续的两帧图像中,取前一帧图像中的某个特征点,在后一帧图像中找出与前一帧图像中的特征点距离最近的前两个特征点,在这两个特征点中,如果最近的距离除以次近的距离少于比例阈值,则后一帧图像中的两个特征点为匹配特征点;
S32标注所述匹配特征点,并求得水平位移d_x和垂直位移d_y,然后计算斜率k=d_y/d_x求得弧度radian=atan(k),在后一帧图像中用弧度radian的箭头标注与前一帧图像对应的特征点。
2.根据权利要求1所述的纳米视觉图像中细胞高速运动特征标注方法,其特征在于,所述盒装滤波器包括模板Dxx、Dyy和Dxy,所述模板Dxx的第1、2、8、9行区域权值为0,第3至6行的第1至3列区域和第3至6行的第7至9列区域权值为1,第3至6行的第4至6列区域权值为-2;所述模板Dyy的第1、2、8、9列区域权值为0,第3至6列的第1至3行区域和第3至6列的第7至9行区域权值为1,第3至6列的第4至6行区域权值为-2;所述模板Dxy的第1、5、9行和第1、5、9列区域的权值为0,第2至4行的第2至4列区域和第6至8行的第6至8列区域权值为1,第2至4行的第6至8列区域和第6至8行的第2至4列区域权值为-1。
3.根据权利要求2所述的纳米视觉图像中细胞高速运动特征标注方法,其特征在于,所述黑塞矩阵为
4.根据权利要求1所述的纳米视觉图像中细胞高速运动特征标注方法,其特征在于,所述按不同尺寸扩展的盒状滤波器是以原盒状滤波器模板为基准模板生成新盒状滤波器模板,所述新模板尺寸与尺度的比率和基准模板尺寸与尺度的比率一致。
5.根据权利要求1所述的纳米视觉图像中细胞高速运动特征标注方法,其特征在于,所述步骤S15中设定阈值为100。
6.根据权利要求1所述的纳米视觉图像中细胞高速运动特征标注方法,其特征在于,所述步骤S15中插值为采用泰勒级数展开式来进行插值计算。
7.根据权利要求1所述的纳米视觉图像中细胞高速运动特征标注方法,其特征在于,所述步骤S31中比例阈值为0.4~0.6。
CN201610667999.4A 2016-08-15 2016-08-15 纳米视觉图像中细胞高速运动特征标注方法 Pending CN106296741A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610667999.4A CN106296741A (zh) 2016-08-15 2016-08-15 纳米视觉图像中细胞高速运动特征标注方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610667999.4A CN106296741A (zh) 2016-08-15 2016-08-15 纳米视觉图像中细胞高速运动特征标注方法

Publications (1)

Publication Number Publication Date
CN106296741A true CN106296741A (zh) 2017-01-04

Family

ID=57670395

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610667999.4A Pending CN106296741A (zh) 2016-08-15 2016-08-15 纳米视觉图像中细胞高速运动特征标注方法

Country Status (1)

Country Link
CN (1) CN106296741A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107704889A (zh) * 2017-10-30 2018-02-16 沈阳航空航天大学 一种面向数字化检测的mbd模型阵列特征快速标注方法
CN109447023A (zh) * 2018-11-08 2019-03-08 北京奇艺世纪科技有限公司 确定图像相似度的方法、视频场景切换识别方法及装置
CN113031464A (zh) * 2021-03-22 2021-06-25 北京市商汤科技开发有限公司 设备控制方法、装置、电子设备及存储介质
CN116188802A (zh) * 2023-04-21 2023-05-30 青岛创新奇智科技集团股份有限公司 数据标注方法、装置、设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101923717A (zh) * 2009-06-10 2010-12-22 新奥特(北京)视频技术有限公司 一种对快速运动目标的特征点准确跟踪的方法
CN103543168A (zh) * 2013-10-12 2014-01-29 华南理工大学 一种多层封装基板缺陷的x射线检测方法及系统
US20140314323A1 (en) * 2010-10-01 2014-10-23 Yong Zhang Optimized fast hessian matrix computation architecture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101923717A (zh) * 2009-06-10 2010-12-22 新奥特(北京)视频技术有限公司 一种对快速运动目标的特征点准确跟踪的方法
US20140314323A1 (en) * 2010-10-01 2014-10-23 Yong Zhang Optimized fast hessian matrix computation architecture
CN103543168A (zh) * 2013-10-12 2014-01-29 华南理工大学 一种多层封装基板缺陷的x射线检测方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张益彬: "多摄像头智能跟踪算法研究及基于GPU的优化实现", 《中国优秀硕士学位论文全文数据库 (信息科技辑)》 *
李乾坤: "面向内容安全监控的视频指纹提取方法", 《中国优秀硕士学位论文全文数据库 (信息科技辑)》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107704889A (zh) * 2017-10-30 2018-02-16 沈阳航空航天大学 一种面向数字化检测的mbd模型阵列特征快速标注方法
CN107704889B (zh) * 2017-10-30 2020-09-11 沈阳航空航天大学 一种面向数字化检测的mbd模型阵列特征快速标注方法
CN109447023A (zh) * 2018-11-08 2019-03-08 北京奇艺世纪科技有限公司 确定图像相似度的方法、视频场景切换识别方法及装置
CN113031464A (zh) * 2021-03-22 2021-06-25 北京市商汤科技开发有限公司 设备控制方法、装置、电子设备及存储介质
CN116188802A (zh) * 2023-04-21 2023-05-30 青岛创新奇智科技集团股份有限公司 数据标注方法、装置、设备及存储介质

Similar Documents

Publication Publication Date Title
CN106296741A (zh) 纳米视觉图像中细胞高速运动特征标注方法
Vemulapalli et al. R3DG features: Relative 3D geometry-based skeletal representations for human action recognition
CN108335322A (zh) 深度估计方法和装置、电子设备、程序和介质
CN102842117B (zh) 显微视觉系统中运动误差矫正方法
CN102074015A (zh) 一种基于二维图像序列的目标对象的三维重建方法
CN101388115A (zh) 一种结合纹理信息的深度图像自动配准方法
CN111709980A (zh) 基于深度学习的多尺度图像配准方法和装置
CN106155299B (zh) 一种对智能设备进行手势控制的方法及装置
CN106934824B (zh) 可变形物体的全局非刚性配准与重建方法
CN102222348B (zh) 一种三维目标运动矢量计算方法
CN106204440A (zh) 一种多帧超分辨图像重建方法及系统
Xu et al. GraspCNN: Real-time grasp detection using a new oriented diameter circle representation
US20180322361A1 (en) Image processing device, semiconductor device, image recognition device, mobile device, and image processing method
Chhatkuli et al. Inextensible non-rigid structure-from-motion by second-order cone programming
Yang et al. Visual tracking with long-short term based correlation filter
CN112581368B (zh) 一种基于最优图匹配的多机器人栅格地图拼接方法
CN103400393B (zh) 一种图像匹配方法和系统
CN105809173A (zh) 一种基于仿生物视觉变换的图像rstn不变属性特征提取及识别方法
Wang et al. Paul: Procrustean autoencoder for unsupervised lifting
Gulde et al. RoPose: CNN-based 2D pose estimation of industrial robots
Tao et al. F-PVNet: Frustum-level 3-D object detection on point–voxel feature representation for autonomous driving
CN107590820B (zh) 一种基于相关滤波的视频对象追踪方法及其智能装置
Chen et al. Real-time three-dimensional surface measurement by color encoded light projection
Wang et al. Two-stage point cloud super resolution with local interpolation and readjustment via outer-product neural network
CN114399547B (zh) 一种基于多帧的单目slam鲁棒初始化方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170104

RJ01 Rejection of invention patent application after publication