CN106296603A - A kind of small target detecting method of underwater sonar image - Google Patents
A kind of small target detecting method of underwater sonar image Download PDFInfo
- Publication number
- CN106296603A CN106296603A CN201610629838.6A CN201610629838A CN106296603A CN 106296603 A CN106296603 A CN 106296603A CN 201610629838 A CN201610629838 A CN 201610629838A CN 106296603 A CN106296603 A CN 106296603A
- Authority
- CN
- China
- Prior art keywords
- pobw
- region
- represent
- connected region
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 18
- 239000011159 matrix material Substances 0.000 claims description 10
- 238000004422 calculation algorithm Methods 0.000 claims description 6
- 230000000877 morphologic effect Effects 0.000 claims description 4
- 230000003628 erosive effect Effects 0.000 claims description 3
- 238000002372 labelling Methods 0.000 claims 3
- 238000006243 chemical reaction Methods 0.000 claims 2
- 230000010339 dilation Effects 0.000 claims 1
- 239000003550 marker Substances 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 18
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000004927 fusion Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 241000270295 Serpentes Species 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006740 morphological transformation Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 238000000513 principal component analysis Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20036—Morphological image processing
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Image Analysis (AREA)
Abstract
本发明属于目标检测领域,具体涉及一种水下声纳图像的小目标检测方法。本发明包括:初始化:令二值化阈值th=0.8,阴影方向为θ度,令I0=I;令SE1表示目标模板,SE1是尺寸为3×3像素的正方形模板,令SE0表示背景模板,SE0是尺寸为25×25像素的正方形模板的边缘区域。本发明所提出的目标检测模板简单;检测速度快;抗噪声能力强;无需训练数据。
The invention belongs to the field of target detection, and in particular relates to a small target detection method for underwater sonar images. The present invention includes: initialization: make the binarization threshold th=0.8, the shadow direction is θ degrees, let I 0 =I; let SE 1 represent the target template, SE 1 is a square template with a size of 3×3 pixels, let SE 0 Denotes the background template, SE 0 is the edge region of the square template with dimensions 25 × 25 pixels. The target detection template proposed by the invention is simple; the detection speed is fast; the anti-noise ability is strong; and no training data is needed.
Description
技术领域technical field
本发明属于目标检测领域,具体涉及一种水下声纳图像的小目标检测方法。The invention belongs to the field of target detection, and in particular relates to a small target detection method for underwater sonar images.
背景技术Background technique
水下声纳系统除了需要胜任极端工作环境,还需具有高效的目标检测和识别能力,能够准确分辨沉底小目标和水中小目标。然而,由于声纳系统在某时刻接收的回波,是水下各反射声波的矢量和,系统记录的回波幅值呈抖动变化,形成声图时相应的产生斑点噪声,影响对声图的解释。虽然随着成像声纳技术日趋成熟,侧扫声纳可提供高分辨率图像,但是与光学图像相比,侧扫声纳图像仍然具有成像质量差、目标与背景之间对比度低等问题。特别是对于水下小目标检测问题,由于信道噪声和散射噪声的影响,使得现有的目标检测技术很难达到满意的结果。In addition to being competent in extreme working environments, the underwater sonar system also needs to have efficient target detection and recognition capabilities, and can accurately distinguish between small targets on the bottom and small targets in the water. However, since the echo received by the sonar system at a certain moment is the vector sum of the reflected sound waves underwater, the echo amplitude recorded by the system fluctuates, and speckle noise is correspondingly generated when the acoustic image is formed, which affects the accuracy of the acoustic image. Explanation. Although side-scan sonar can provide high-resolution images with the maturity of imaging sonar technology, compared with optical images, side-scan sonar images still have problems such as poor imaging quality and low contrast between the target and the background. Especially for the underwater small target detection problem, due to the influence of channel noise and scattering noise, it is difficult for the existing target detection technology to achieve satisfactory results.
利用图像处理技术和模式识别技术从水下声纳数据中检测小目标自上世纪90年代以来已取得了长足进步。这些方法大体上可分为两类:有监督方法和无监督方法。其中有监督方法需要大量训练数据,算法性能高度依赖训练数据的性质。这类方法主要包括K-近邻神经网络、最佳辨识滤波分类器、贝叶斯分类器、主成分分析等。另一方面,无监督方法无需特别的训练数据,适用于相当宽范围的输入数据,并不针对特别训练数据优化。此类方法包括马尔可夫随机场、统计蛇模型、形态学处理等技术。此外,为了进一步提高算法性能,也有学者将各种不同的检测/识别技术相融合,主要采用的融合技术包括:将各种算法的检测/识别结果采用逻辑融合(如布尔与、或运算)、对数似然比测试算法、线性加权融合等等。The detection of small targets from underwater sonar data using image processing techniques and pattern recognition techniques has made great progress since the 1990s. These methods can be broadly classified into two categories: supervised methods and unsupervised methods. Among them, supervised methods require a large amount of training data, and the performance of the algorithm is highly dependent on the nature of the training data. Such methods mainly include K-nearest neighbor neural network, optimal identification filter classifier, Bayesian classifier, principal component analysis and so on. On the other hand, unsupervised methods do not require special training data, are applicable to a fairly wide range of input data, and are not optimized for special training data. Such methods include techniques such as Markov random fields, statistical snake models, and morphological processing. In addition, in order to further improve the performance of the algorithm, some scholars also integrate various detection/recognition technologies. The main fusion technologies include: logical fusion of the detection/recognition results of various algorithms (such as Boolean and, or operations), Log-likelihood ratio testing algorithms, linear weighted fusion, and more.
本发明利用具有较强抗噪能力的形态学变换——占有率击中-击不中变换(Percentage Occupancy Hit-or-Miss Transform,POHMT),实现一种快速、准确的侧扫声纳图像小目标检测算法。The present invention utilizes a morphological transformation with strong anti-noise capability——Percentage Occupancy Hit-or-Miss Transform (POHMT) to realize a fast and accurate side-scan sonar image small Object detection algorithm.
发明内容Contents of the invention
本发明的目的在于提供一种基于占有率击中-击不中变换(PercentageOccupancy Hit-or-Miss Transform,POHMT)的水下声纳图像的小目标检测方法。The object of the present invention is to provide a small target detection method based on an occupancy hit-or-miss transform (Percentage Occupancy Hit-or-Miss Transform, POHMT) underwater sonar image.
本发明的目的是这样实现的:The purpose of the present invention is achieved like this:
(1)初始化:令二值化阈值th=0.8,阴影方向为θ度,令I0=I,其中I为H×W像素的输入声纳图像矩阵;(1) Initialization: make the binarization threshold th=0.8, the shadow direction is θ degrees, make I 0 =I, where I is the input sonar image matrix of H×W pixels;
(2)令SE1表示目标模板,SE1是尺寸为3×3像素的正方形模板,令SE0表示背景模板,SE0是尺寸为25×25像素的正方形模板的边缘区域;(2) Let SE 1 represent the target template, SE 1 is a square template with a size of 3×3 pixels, let SE 0 represent a background template, and SE 0 is the edge area of a square template with a size of 25×25 pixels;
(3)计算图像I0的亮度均值,用m0表示,令t=m0…255,对于每一个t,计算二值图像Bt:(3) Calculate the mean value of the brightness of the image I 0 , represented by m 0 , let t=m 0 ... 255, for each t, calculate the binary image B t :
其中,h=1…H,w=1…W;Among them, h=1...H, w=1...W;
(4)分别计算前景模板匹配率poFore和背景模板匹配率poBack(4) Calculate the foreground template matching rate poFore and the background template matching rate poBack respectively
poFore(t)=conv(Bt,SE1)/9poFore(t)=conv(B t ,SE 1 )/9
poBack(t)=conv(1-Bt,SE0)/96poBack(t)=conv(1-B t ,SE 0 )/96
其中,t=m0…255,conv(.)表示卷积运算,对于固定的t值,poFore(t)和poBack(t)均为H×W矩阵;Among them, t=m 0 ... 255, conv(.) represents a convolution operation, and for a fixed value of t, poFore(t) and poBack(t) are both H×W matrices;
(5)计算图像I0的占有率击中-击不中变换poHMT(5) Calculate the occupancy hit-miss transformation poHMT of image I 0
其中,min{.}为最小值函数,min{poFore(t),poBack(t)}表示对于一个固定的t值,取前poFore(t)和poBack(t)二者之中较小的一个;max{.}为最大值函数;poHMT为H×W矩阵;Among them, min{.} is the minimum value function, and min{poFore(t), poBack(t)} means that for a fixed t value, take the smaller one of the former poFore(t) and poBack(t) ;max{.} is the maximum value function; poHMT is an H×W matrix;
(6)将步骤(5)的poHMT做二值化处理(6) Binarize the poHMT of step (5)
其中,h=1…H,w=1…W,poHMT(h,w)表示二维矩阵poHMT在(h,w)处的取值,poBW为二值矩阵,poBW(h,w)表示poBW在(h,w)处的取值;Among them, h=1...H, w=1...W, poHMT(h,w) represents the value of the two-dimensional matrix poHMT at (h,w), poBW is a binary matrix, and poBW(h,w) represents poBW The value at (h,w);
(7)利用形态学膨胀、腐蚀运算去除poBW中的细小噪声点;(7) Use morphological expansion and erosion operations to remove small noise points in poBW;
(8)令poBW1表示去噪之后的poBW,利用8-连接区域标记方法标记poBW1中的连通区域,分别记录各连通区域的外接矩形的位置、长、宽;(8) Let poBW 1 represent the poBW after denoising, use the 8-connected region marking method to mark the connected regions in poBW 1 , and record the position, length and width of the circumscribed rectangles of each connected region respectively;
(9)令I0=255-I,执行步骤(3)~步骤(7),并用poBW0表示去噪之后的poBW,利用8-连接区域标记方法标记标记poBW0中的连通区域,分别记录各连通的外接矩形框的位置、长、宽;(9) Set I 0 =255-I, execute steps (3) to (7), and use poBW 0 to represent the poBW after denoising, use the 8-connected region marking method to mark the connected regions in poBW 0 , and record them respectively The position, length and width of each connected circumscribed rectangular frame;
(10)以poBW1中的一个连通区域R1的外接矩形为依据,确定出搜索区域,;将此搜索区域映射到poBW0的相应区域,并用RS表示poBW0中的这个搜索区域;(10) Based on the circumscribed rectangle of a connected region R 1 in poBW 1 , determine the search area; map this search area to the corresponding area of poBW 0 , and use RS to represent the search area in poBW 0 ;
(11)在poBW0的RS区域中进行搜索,如果能够找到一个连通区域R0,则将poBW1中的连通区域R1标记为目标,同时删除区域R0;否则,如果在poBW0的RS中不存在连通区域,则将poBW1中的连通区域R1标记为非目标。(11) Search in the RS region of poBW 0 , if a connected region R 0 can be found, mark the connected region R 1 in poBW 1 as the target, and delete the region R 0 at the same time; otherwise, if the RS in poBW 0 There is no connected region in , then the connected region R 1 in poBW1 is marked as non-target.
(12)重复步骤(10)~步骤(11),检查poBW1中的下一个连通区域,直至遍历poBW1的所有连通区域。(12) Repeat steps (10) to (11) to check the next connected region in poBW 1 until all connected regions in poBW 1 are traversed.
本发明的有益效果在于:1)所提出的目标检测模板简单;2)检测速度快;3)抗噪声能力强;4)无需训练数据。The beneficial effects of the invention are: 1) the proposed target detection template is simple; 2) the detection speed is fast; 3) the anti-noise ability is strong; 4) no training data is needed.
附图说明Description of drawings
图1是侧扫声纳图像中的目标及其阴影示意图;Figure 1 is a schematic diagram of the target and its shadow in the side-scan sonar image;
图2是目标模板示意图;Fig. 2 is a schematic diagram of a target template;
图3是背景模板示意图;Figure 3 is a schematic diagram of a background template;
图4是搜索区域示意图。Fig. 4 is a schematic diagram of the search area.
具体实施方式detailed description
下面结合附图对本发明做进一步描述。The present invention will be further described below in conjunction with the accompanying drawings.
本发明提出一采用的技术方案是:1)初始化:设置检测阈值、确定目标和背景模板尺寸、设置阴影方向;2)对原声纳图像进行POHMT运算,并将运算结果做二值化处理,得到目标二值图像;3)对原声纳图像做反色处理;4)对反色之后的声纳图像做POHMT运算,并将运算结果做二值化处理,得到阴影二值图像;5)利用目标二值图像、阴影二值图像以及阴影方向,标记出小目标。The technical solution proposed by the present invention is: 1) Initialization: setting the detection threshold, determining the size of the target and background template, and setting the shadow direction; 2) performing POHMT calculation on the original sonar image, and binarizing the calculation result to obtain Target binary image; 3) Invert the original sonar image; 4) Perform POHMT operation on the inverted sonar image, and binarize the operation result to obtain a shadow binary image; 5) Use the target Binary image, shadow binary image, and shadow direction to mark small targets.
设I为输入声纳图像矩阵,尺寸为H×W像素,I(h,w)表示(h,w)位置处图像的亮度,其中h=1,2,…,H,w=1,2,…,W;并且图像I中包含多个高亮度目标区域,每个目标均具有相应的低亮度阴影区域,如图1所示。Let I be the input sonar image matrix, the size is H×W pixels, I(h,w) represents the brightness of the image at the position (h,w), where h=1,2,...,H,w=1,2 ,...,W; and the image I contains multiple high-brightness object regions, each of which has a corresponding low-brightness shadow region, as shown in Figure 1.
本发明所提出的目标检测方法的具体实现步骤如下:The specific implementation steps of the target detection method proposed by the present invention are as follows:
步骤1,初始化:令二值化阈值th=0.8,阴影方向为θ度,令I0=I。Step 1, initialization: set the binarization threshold th=0.8, the shadow direction is θ degrees, and set I 0 =I.
步骤2,令SE1表示目标模板,这里SE1是尺寸为3×3像素的正方形模板,如图2所示;令SE0表示背景模板,这里SE0是尺寸为25×25像素的正方形模板的边缘区域,如图3所示,图3中,灰色区域的大小为23×23像素,其像素值为0,边缘白色区域的像素值为1。Step 2, let SE 1 represent the target template, where SE 1 is a square template with a size of 3×3 pixels, as shown in Figure 2; let SE 0 represent a background template, where SE 0 is a square template with a size of 25×25 pixels The edge area of , as shown in Figure 3, in Figure 3, the size of the gray area is 23×23 pixels, its pixel value is 0, and the pixel value of the edge white area is 1.
步骤3,计算图像I0的亮度均值,用m0表示;令t=m0…255,对于每一个t,根据公式(1)计算二值图像Bt:Step 3, calculate the brightness mean value of the image I 0 , denoted by m 0 ; let t=m 0 ... 255, for each t, calculate the binary image B t according to the formula (1):
其中,h=1…H,w=1…W。Among them, h=1...H, w=1...W.
步骤4,利用公式(2)计算前景模板匹配率poFore,利用公式(3)计算背景模板匹配率poBack:Step 4, use the formula (2) to calculate the foreground template matching rate poFore, and use the formula (3) to calculate the background template matching rate poBack:
poFore(t)=conv(Bt,SE1)/9 (2)poFore(t)=conv(B t ,SE 1 )/9 (2)
poBack(t)=conv(1-Bt,SE0)/96 (3)poBack(t)=conv(1-B t ,SE 0 )/96 (3)
其中,t=m0…255,conv(.)表示卷积运算,对于固定的t值,poFore(t)和poBack(t)均为H×W矩阵。Wherein, t=m 0 ... 255, conv(.) represents a convolution operation, and for a fixed value of t, both poFore(t) and poBack(t) are H×W matrices.
步骤5,利用公式(4)计算图像的占有率击中-击不中变换poHMT:Step 5, use the formula (4) to calculate the occupancy rate hit-miss transformation poHMT of the image:
其中,min{.}为最小值函数,min{poFore(t),poBack(t)}表示对于一个固定的t值,取poFore(t)和poBack(t)二者之中较小的一个;max{.}为最大值函数;poHMT为H×W矩阵。Among them, min{.} is the minimum value function, and min{poFore(t), poBack(t)} means that for a fixed t value, take the smaller one of poFore(t) and poBack(t); max{.} is the maximum value function; poHMT is an H×W matrix.
步骤6,利用公式(5)将步骤5的poHMT做二值化处理Step 6, use formula (5) to binarize the poHMT in step 5
其中,h=1…H,w=1…W,poHMT(h,w)表示二维矩阵poHMT在(h,w)处的取值,poBW为二值矩阵,poBW(h,w)表示poBW在(h,w)处的取值,Among them, h=1...H, w=1...W, poHMT(h,w) represents the value of the two-dimensional matrix poHMT at (h,w), poBW is a binary matrix, and poBW(h,w) represents poBW The value at (h,w),
步骤7,利用形态学膨胀、腐蚀运算去除poBW中的细小噪声点。Step 7, use morphological expansion and erosion operations to remove small noise points in poBW.
步骤8,令poBW1表示去噪之后的poBW,利用8-连接区域标记方法标记poBW1中的连通区域,分别记录各连通区域的外接矩形的位置、长、宽。Step 8: Let poBW 1 represent the denoised poBW, use the 8-connected region marking method to mark the connected regions in poBW 1 , and record the position, length and width of the circumscribed rectangles of each connected region.
步骤9,令I0=255-I,执行步骤3~步骤7,并用poBW0表示去噪之后的poBW,利用8-连接区域标记方法标记标记poBW0中的连通区域,分别记录各连通区域的外接矩形框的位置、长、宽。Step 9, set I 0 =255-I, execute steps 3 to 7, and use poBW 0 to represent the poBW after denoising, use the 8-connected region marking method to mark the connected regions in poBW 0 , and record the connected regions of each connected region The position, length, and width of the bounding rectangle.
步骤10,以poBW1中的一个连通区域R1的外接矩形为依据,确定搜索区域,如图4所示,其中w=5,l=5×w0,w0为连通区域R1的外接矩形宽度。将此搜索区域映射到poBW0的相应区域,并用RS表示poBW0中的这个搜索区域。Step 10, based on the circumscribed rectangle of a connected region R 1 in poBW 1 , determine the search area, as shown in Figure 4, where w=5, l=5×w 0 , w 0 is the circumscribed rectangle of the connected region R 1 Rectangle width. Map this search area to the corresponding area of poBW 0 , and denote this search area in poBW 0 by RS.
步骤11,在poBW0的RS区域中进行搜索,如果能够找到一个连通区域(假设用R0表示这个连通区域),则将poBW1中的连通区域R1标记为目标,同时删除区域R0;否则,如果在poBW0的RS中不存在连通区域,则将poBW1中的连通区域R1标记为非目标。Step 11, search in the RS area of poBW 0 , if a connected area can be found (assuming that this connected area is represented by R 0 ), then mark the connected area R 1 in poBW 1 as the target, and delete the area R 0 ; Otherwise, if there is no connected region in the RS of poBW 0 , the connected region R1 in poBW1 is marked as non-target.
步骤12,重复步骤10~步骤11,检查poBW1中的下一个连通区域,直至遍历poBW1的所有连通区域。Step 12, repeat steps 10 to 11, check the next connected region in poBW 1 until all connected regions in poBW 1 are traversed.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610629838.6A CN106296603B (en) | 2016-08-03 | 2016-08-03 | A kind of small target detecting method of underwater sonar image |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610629838.6A CN106296603B (en) | 2016-08-03 | 2016-08-03 | A kind of small target detecting method of underwater sonar image |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106296603A true CN106296603A (en) | 2017-01-04 |
CN106296603B CN106296603B (en) | 2019-03-05 |
Family
ID=57664796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610629838.6A Active CN106296603B (en) | 2016-08-03 | 2016-08-03 | A kind of small target detecting method of underwater sonar image |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106296603B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107301419A (en) * | 2017-05-26 | 2017-10-27 | 哈尔滨工程大学 | A kind of method for detecting infrared puniness target based on percentage hit or miss transform |
CN110782480A (en) * | 2019-10-15 | 2020-02-11 | 哈尔滨工程大学 | An infrared pedestrian tracking method based on online template prediction |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101551851A (en) * | 2008-03-31 | 2009-10-07 | 中国科学院沈阳自动化研究所 | A Method of Infrared Image Target Recognition |
CN104021553A (en) * | 2014-05-30 | 2014-09-03 | 哈尔滨工程大学 | Sonar image object detection method based on pixel point layering |
CN104881670A (en) * | 2015-05-20 | 2015-09-02 | 电子科技大学 | Rapid target extraction method used for SAR azimuth estimation |
CN105046258A (en) * | 2015-09-08 | 2015-11-11 | 中国电子科技集团公司第三研究所 | Target detection method and target detection device for small target detection sonar images |
CN105741284A (en) * | 2016-01-28 | 2016-07-06 | 中国船舶重工集团公司第七一〇研究所 | Multi-beam forward-looking sonar target detection method |
-
2016
- 2016-08-03 CN CN201610629838.6A patent/CN106296603B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101551851A (en) * | 2008-03-31 | 2009-10-07 | 中国科学院沈阳自动化研究所 | A Method of Infrared Image Target Recognition |
CN104021553A (en) * | 2014-05-30 | 2014-09-03 | 哈尔滨工程大学 | Sonar image object detection method based on pixel point layering |
CN104881670A (en) * | 2015-05-20 | 2015-09-02 | 电子科技大学 | Rapid target extraction method used for SAR azimuth estimation |
CN105046258A (en) * | 2015-09-08 | 2015-11-11 | 中国电子科技集团公司第三研究所 | Target detection method and target detection device for small target detection sonar images |
CN105741284A (en) * | 2016-01-28 | 2016-07-06 | 中国船舶重工集团公司第七一〇研究所 | Multi-beam forward-looking sonar target detection method |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107301419A (en) * | 2017-05-26 | 2017-10-27 | 哈尔滨工程大学 | A kind of method for detecting infrared puniness target based on percentage hit or miss transform |
CN110782480A (en) * | 2019-10-15 | 2020-02-11 | 哈尔滨工程大学 | An infrared pedestrian tracking method based on online template prediction |
CN110782480B (en) * | 2019-10-15 | 2023-08-04 | 哈尔滨工程大学 | Infrared pedestrian tracking method based on online template prediction |
Also Published As
Publication number | Publication date |
---|---|
CN106296603B (en) | 2019-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102879786B (en) | A detection and positioning method and system for underwater obstacles | |
CN102270346B (en) | Method for extracting target object from interactive video | |
CN105182350B (en) | A kind of multibeam sonar object detection method of application signature tracking | |
CN102542277B (en) | Method for detecting ship trail of ocean synthetic aperture radar image | |
CN111028154B (en) | Side-scan sonar image matching and stitching method for rugged seafloor | |
CN103810716B (en) | Move and the image partition method of Renyi entropy based on gray scale | |
CN106611420A (en) | SAR image segmentation method based on deconvolution network and sketch direction constraint | |
CN103366371B (en) | Based on K distribution and the SAR image segmentation method of textural characteristics | |
CN109242032B (en) | A target detection method based on deep learning | |
CN113362293A (en) | SAR image ship target rapid detection method based on significance | |
CN101482969B (en) | SAR Image Speckle Removal Method Based on Homogenous Point Calculation | |
CN105427342A (en) | Method and system for detecting and tracking underwater small-target sonar image target | |
CN104021553B (en) | A kind of sonar image object detection method based on pixel layering | |
CN101609509A (en) | An image object detection method and system based on a pre-classifier | |
CN111369570A (en) | Multi-target detection tracking method for video image | |
CN103824302A (en) | SAR (synthetic aperture radar) image change detecting method based on direction wave domain image fusion | |
CN103996039B (en) | SAR image channel extraction method combining gray-level threshold-value segmentation and contour shape identification | |
CN103914829B (en) | Method for detecting edge of noisy image | |
CN105741284A (en) | Multi-beam forward-looking sonar target detection method | |
CN106296603A (en) | A kind of small target detecting method of underwater sonar image | |
CN110047041B (en) | Space-frequency domain combined traffic monitoring video rain removing method | |
Cheng et al. | Selective feature fusion and irregular-aware network for pavement crack detection | |
CN108388899A (en) | A kind of Underwater Image feature extracting method blended based on textural characteristics and shape feature | |
CN110751667A (en) | Method for detecting infrared dim small target under complex background based on human visual system | |
Gooda et al. | Automatic detection of road cracks using efficientnet with residual u-net-based segmentation and yolov5-based detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |