CN106295802A - 一种基于粒子群算法优化bp神经网络的茶叶存储时间分类方法 - Google Patents
一种基于粒子群算法优化bp神经网络的茶叶存储时间分类方法 Download PDFInfo
- Publication number
- CN106295802A CN106295802A CN201610624626.9A CN201610624626A CN106295802A CN 106295802 A CN106295802 A CN 106295802A CN 201610624626 A CN201610624626 A CN 201610624626A CN 106295802 A CN106295802 A CN 106295802A
- Authority
- CN
- China
- Prior art keywords
- neural network
- particle
- tea
- folium camelliae
- camelliae sinensis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002245 particle Substances 0.000 title claims abstract description 68
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 66
- 238000004422 calculation algorithm Methods 0.000 title claims abstract description 41
- 238000000034 method Methods 0.000 title claims abstract description 30
- 241001122767 Theaceae Species 0.000 claims abstract 12
- 238000012549 training Methods 0.000 claims description 22
- 238000001514 detection method Methods 0.000 claims description 10
- 238000012360 testing method Methods 0.000 claims description 10
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 9
- -1 methyl alkane Chemical class 0.000 claims description 6
- 238000012546 transfer Methods 0.000 claims description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 4
- 101100054292 Arabidopsis thaliana ABCG36 gene Proteins 0.000 claims description 4
- 101100351526 Arabidopsis thaliana PEN3 gene Proteins 0.000 claims description 4
- 150000001335 aliphatic alkanes Chemical class 0.000 claims description 4
- 150000001298 alcohols Chemical class 0.000 claims description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 3
- 238000010606 normalization Methods 0.000 claims description 3
- 229910021529 ammonia Inorganic materials 0.000 claims description 2
- 150000002898 organic sulfur compounds Chemical class 0.000 claims description 2
- 230000007935 neutral effect Effects 0.000 claims 6
- 230000003044 adaptive effect Effects 0.000 claims 3
- 230000005540 biological transmission Effects 0.000 claims 2
- 239000003205 fragrance Substances 0.000 claims 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims 1
- 230000006978 adaptation Effects 0.000 claims 1
- 210000004218 nerve net Anatomy 0.000 claims 1
- 238000005457 optimization Methods 0.000 abstract description 19
- 230000006870 function Effects 0.000 abstract description 14
- 238000011156 evaluation Methods 0.000 abstract description 8
- 230000001953 sensory effect Effects 0.000 abstract description 4
- 238000013145 classification model Methods 0.000 abstract description 3
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 235000013616 tea Nutrition 0.000 description 80
- 244000269722 Thea sinensis Species 0.000 description 78
- 210000001331 nose Anatomy 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 235000019645 odor Nutrition 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 238000000513 principal component analysis Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 238000012800 visualization Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000002336 sorption--desorption measurement Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 235000019634 flavors Nutrition 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 235000009569 green tea Nutrition 0.000 description 2
- 229910052945 inorganic sulfide Inorganic materials 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000003909 pattern recognition Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000008451 emotion Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000003062 neural network model Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000013441 quality evaluation Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 235000014347 soups Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 210000002105 tongue Anatomy 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0639—Performance analysis of employees; Performance analysis of enterprise or organisation operations
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Strategic Management (AREA)
- Entrepreneurship & Innovation (AREA)
- Economics (AREA)
- Educational Administration (AREA)
- Development Economics (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Mathematical Physics (AREA)
- General Health & Medical Sciences (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Computing Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Game Theory and Decision Science (AREA)
- Health & Medical Sciences (AREA)
- Marketing (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610624626.9A CN106295802B (zh) | 2016-08-01 | 2016-08-01 | 一种基于粒子群算法优化bp神经网络的茶叶存储时间分类方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610624626.9A CN106295802B (zh) | 2016-08-01 | 2016-08-01 | 一种基于粒子群算法优化bp神经网络的茶叶存储时间分类方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106295802A true CN106295802A (zh) | 2017-01-04 |
CN106295802B CN106295802B (zh) | 2019-01-29 |
Family
ID=57664316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610624626.9A Active CN106295802B (zh) | 2016-08-01 | 2016-08-01 | 一种基于粒子群算法优化bp神经网络的茶叶存储时间分类方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106295802B (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106874950A (zh) * | 2017-02-13 | 2017-06-20 | 云南电网有限责任公司电力科学研究院 | 一种暂态电能质量录波数据的识别分类方法 |
CN107977731A (zh) * | 2017-10-06 | 2018-05-01 | 贵州师范学院 | 一种基于深度学习的茶鲜叶保鲜时间预测方法 |
CN110320173A (zh) * | 2019-06-14 | 2019-10-11 | 湖北省农业科学院果树茶叶研究所 | 基于粒子群优化算法的机采鲜叶眉茶车色样品等级的快速判定方法 |
CN110361334A (zh) * | 2019-06-14 | 2019-10-22 | 湖北省农业科学院果树茶叶研究所 | 应用general regression结构无损预测机采眉茶车色样品等级的方法 |
CN111047474A (zh) * | 2019-10-21 | 2020-04-21 | 贝壳技术有限公司 | 一种室内有害物质挥发时间估计方法、装置及存储介质 |
CN111596007A (zh) * | 2020-05-13 | 2020-08-28 | 广东工业大学 | 一种基于口感预认识的寻找冲泡茶叶条件最佳参数的算法 |
CN111680762A (zh) * | 2018-11-27 | 2020-09-18 | 成都工业学院 | 中药材适生地的分类方法及装置 |
CN111722563A (zh) * | 2020-06-17 | 2020-09-29 | 筠连县千秋茶业有限公司 | 茶叶智能检测装置 |
CN112433028A (zh) * | 2020-11-09 | 2021-03-02 | 西南大学 | 基于忆阻细胞神经网络的电子鼻气体分类方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105469141A (zh) * | 2015-11-20 | 2016-04-06 | 北京大学深圳研究生院 | 基于神经网络的预测方法及系统 |
CN105701571A (zh) * | 2016-01-13 | 2016-06-22 | 南京邮电大学 | 一种基于神经网络组合模型的短时交通流量预测方法 |
-
2016
- 2016-08-01 CN CN201610624626.9A patent/CN106295802B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105469141A (zh) * | 2015-11-20 | 2016-04-06 | 北京大学深圳研究生院 | 基于神经网络的预测方法及系统 |
CN105701571A (zh) * | 2016-01-13 | 2016-06-22 | 南京邮电大学 | 一种基于神经网络组合模型的短时交通流量预测方法 |
Non-Patent Citations (2)
Title |
---|
李祚泳 等: "PSO 算法优化BP 网络的新方法及仿真实验", 《电子学报》 * |
杨春兰,等: "黄山毛峰茶贮藏时间电子鼻检测方法研究", 《浙江农业学报》 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106874950A (zh) * | 2017-02-13 | 2017-06-20 | 云南电网有限责任公司电力科学研究院 | 一种暂态电能质量录波数据的识别分类方法 |
CN107977731A (zh) * | 2017-10-06 | 2018-05-01 | 贵州师范学院 | 一种基于深度学习的茶鲜叶保鲜时间预测方法 |
CN111680762A (zh) * | 2018-11-27 | 2020-09-18 | 成都工业学院 | 中药材适生地的分类方法及装置 |
CN111680762B (zh) * | 2018-11-27 | 2023-08-04 | 成都大学 | 中药材适生地的分类方法及装置 |
CN110320173A (zh) * | 2019-06-14 | 2019-10-11 | 湖北省农业科学院果树茶叶研究所 | 基于粒子群优化算法的机采鲜叶眉茶车色样品等级的快速判定方法 |
CN110361334A (zh) * | 2019-06-14 | 2019-10-22 | 湖北省农业科学院果树茶叶研究所 | 应用general regression结构无损预测机采眉茶车色样品等级的方法 |
CN111047474A (zh) * | 2019-10-21 | 2020-04-21 | 贝壳技术有限公司 | 一种室内有害物质挥发时间估计方法、装置及存储介质 |
CN111047474B (zh) * | 2019-10-21 | 2024-03-22 | 贝壳技术有限公司 | 一种室内有害物质挥发时间估计方法、装置及存储介质 |
CN111596007A (zh) * | 2020-05-13 | 2020-08-28 | 广东工业大学 | 一种基于口感预认识的寻找冲泡茶叶条件最佳参数的算法 |
CN111722563A (zh) * | 2020-06-17 | 2020-09-29 | 筠连县千秋茶业有限公司 | 茶叶智能检测装置 |
CN112433028A (zh) * | 2020-11-09 | 2021-03-02 | 西南大学 | 基于忆阻细胞神经网络的电子鼻气体分类方法 |
CN112433028B (zh) * | 2020-11-09 | 2021-08-17 | 西南大学 | 基于忆阻细胞神经网络的电子鼻气体分类方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106295802B (zh) | 2019-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106295802B (zh) | 一种基于粒子群算法优化bp神经网络的茶叶存储时间分类方法 | |
US10895560B2 (en) | Electronic nose instrument for sensory quality evaluation of tobacco and tobacco product | |
CN106295801B (zh) | 一种基于果蝇算法优化广义回归神经网络算法的茶叶储存时间分类方法 | |
CN101419209A (zh) | 卷烟感官评吸和烟气指标的免疫神经网络预测方法 | |
CN106295507B (zh) | 一种基于集成卷积神经网络的性别识别方法 | |
CN106568907B (zh) | 一种基于半监督鉴别投影的大闸蟹新鲜度无损检测方法 | |
CN100444153C (zh) | 基于回归函数估计svm的卷烟内在质量指标评估方法 | |
CN107392399A (zh) | 一种基于改进遗传算法的svm卷烟感官质量预测方法 | |
CN101419212A (zh) | 一种利用挥发物的禽蛋新鲜度检测装置及方法 | |
CN108287184A (zh) | 基于电子鼻的石蜡嗅味等级评定方法 | |
CN106529584A (zh) | 一种烤烟香型和品质判定的智能评价方法 | |
Yang et al. | Recognition algorithms in E-nose: A Review | |
CN107843695B (zh) | 烟草与烟草制品感官质量的电子鼻仪器评价方法 | |
CN106295686A (zh) | 参数优化支持向量机的茶叶香气分类方法 | |
CN1525394A (zh) | 卷烟感官评吸和烟气指标的神经网络预测方法 | |
Fu et al. | Discrimination of geographical indication of Chinese green teas using an electronic nose combined with quantum neural networks: A portable strategy | |
CN116429426A (zh) | 一种多域特征融合的轴承故障诊断方法、装置及介质 | |
CN103499613A (zh) | 一种电子鼻龙井茶品质检测系统中智能感官图谱特征传感器的选择方法 | |
Zhang et al. | Prediction of soluble solids content, firmness and pH of pear by signals of electronic nose sensors | |
CN116843225A (zh) | 基于lstm和tpa机制的制丝加香工艺质量预测方法、系统 | |
CN103389323A (zh) | 一种快速无损评定名贵药材年限的方法 | |
CN108981800B (zh) | 一种利用神经动力学系统模型进行机器嗅-味联觉效应可视化的方法 | |
CN103499646A (zh) | 一种蜂蜜特征香气分析及蜂蜜香气体系模拟的方法 | |
CN117197804A (zh) | 一种茶叶地理标志产品识别方法 | |
Yan et al. | An SNN-based bionic olfactory signal processing network for odor recognition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Yang Baohua Inventor after: Ye Shengbo Inventor after: Dai Qianying Inventor after: Qian Binbin Inventor after: Wang Shujuan Inventor after: Xie Shenru Inventor before: Dai Qianying Inventor before: Qian Binbin Inventor before: Wang Shujuan Inventor before: Xie Shenru Inventor before: Yang Baohua |
|
GR01 | Patent grant | ||
GR01 | Patent grant |