CN106295569A - 一种密相气力输送两相流流型的识别方法 - Google Patents

一种密相气力输送两相流流型的识别方法 Download PDF

Info

Publication number
CN106295569A
CN106295569A CN201610656745.2A CN201610656745A CN106295569A CN 106295569 A CN106295569 A CN 106295569A CN 201610656745 A CN201610656745 A CN 201610656745A CN 106295569 A CN106295569 A CN 106295569A
Authority
CN
China
Prior art keywords
yardstick
flow pattern
electrostatic signal
electrostatic
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610656745.2A
Other languages
English (en)
Inventor
付飞飞
许传龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201610656745.2A priority Critical patent/CN106295569A/zh
Publication of CN106295569A publication Critical patent/CN106295569A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/12Classification; Matching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/08Feature extraction

Abstract

本发明公开了一种密相气力输送两相流流型的识别方法,在密相气力输送煤粉系统的水平管道上,采集到4种气固两相流不同流型的静电信号;对采集到的4种流型的静电信号进行经验模态分解处理,得到Hurst指数H;根据Hurst指数H的大小及变化,将静电信号划分为多个不同尺度;计算静电信号的不同尺度能量比重;绘制4种流型的多尺度能量比重分布图;计算未知流型的多尺度能量比重,以此分布图为参照,实现密相气力输送两相流流型的识别。该方法实用性广,同时信号分解方法与密相气力输送两相流流动本质结合,准确性较高。

Description

一种密相气力输送两相流流型的识别方法
技术领域
本发明涉及气固两相流流动检测技术领域,具体地讲,涉及一种密相气力输送两相流流型的识别方法及识别装置。
背景技术
密相气力输送系统广泛应用于能源、化工、冶金及医药食品加工等领域。输送管道中两相流的流型,极大的影响着流动参数的准确测量以及流动系统的优化设计和运行稳定性。流型识别判据的研究及其在线测量技术的研究对两相流的流动特性,传热传质性能以及其他问题的分析研究,具有重要的科学意义和工业应用价值。密相气力输送系统中颗粒速度较低,浓度很高,流动形态多样并且受系统几何参数,操作参数和粉体颗粒特性的影响较大。目前,密相气力输送两相流型的识别方法研究是两相流检测领域的一个重点和难点。
流型识别的关键环节是流型特征值提取,目前有较多国内外学者对密相气力输送两相流流型的特征值提取方法进行了研究,例如A.Mittal等通过计算密相气力输送水平管道(内径69mm)中压差信号的Shannon熵,区分出悬浮流和管底流。尽管研究学者们采用了较多的特征值提取方法,但是目前处于这样一种状态,无论采用何种方法都能得到一些有益的结果,但每种分析方法都有一个关键问题难以解决:流型信息提取与气固两相流动力学结合不紧密,提取的特征值与流型之间关系不明确。由此衍生出的问题极大的影响了密相气力输送流型识别技术的发展和应用,亟待解决。
发明内容
本发明要解决的技术问题是提供一种密相气力输送两相流流型的识别方法及识别装置,根据气固两相流不同流型的静电信号的多尺度能量比重,实现对密相气力输送两相流型的识别。
本发明采用如下技术方案实现发明目的:
一种密相气力输送两相流流型的识别方法,包括安装在密相气力输送水平管道的静电传感器,所述静电传感器连接前置电压放大电路,所述前置电压放大电路连接高速数据采集卡,其特征是:包括如下步骤:
(1)所述静电传感器探头上产生的信号经过所述前置电压放大电路放大后再由所述高速数据采集卡传送到计算机,计算机记录静电传感器输出的静电信号,对获取的静电信号进行流型划分;
(2)计算机对获取的4种流型的静电信号进行多尺度分解,具体步骤如下:
首先对静电信号进行经验模态分解处理,得到13个本征模态分量IMF,然后对每个IMF分量进行R/S分形分析得到关系曲线ln[R(τ)/S(τ)]~lnτ,τ表示R/S分形方法中的一个时间延迟变量,最后对关系曲线的直线段部分做线性拟合,得到拟合直线的斜率,即Hurst指数H;
(3)根据分形特征及Hurst指数H的大小,将静电信号划分为尺度1、尺度2和尺度3,具体划分方法如下:
将Hurst指数H小于0.5的IMF分量划入尺度1;将在小的时间延迟τ下Hurst指数H大于0.5小于1而大的时间延迟τ下的Hurst指数H小于0.5的IMF分量划入尺度2;将Hurst指数H大于0.5小于1的IMF划入尺度3;
(4)计算静电信号的尺度1、尺度2及尺度3的能量比重,能量比重的计算方法如下:
静电信号被分解成13个IMF分量,假设其中尺度1占有M个IMF分量,分别是IMF1,IMF2…,IMFM,一个IMF分量为一组时间序列{x1,x2,…xH},x1,x2,…xH是按时间顺序排列的一组数据,xi表示一个数据,H是数据的个数或者是时间序列的长度,其中,能量EIMF1的计算公式为:
EIMF1=x1 2+x2 2+…+xH 2
其余的能量EIMF2、EIMF3…EIMFM的计算公式与EIMF1的计算公式雷同,利用上述公式分别计算每个IMF分量的能量,则静电信号尺度1的能量比重R1
R 1 = E I M F 1 + E I M F 2 + ... + E I M F M Σ i = 1 13 E I M F i
按照计算静电信号尺度1的能量比重R1的方法,计算静电信号尺度2能量比重R2以及尺度3能量比重R3
(5)根据步骤(4)计算得到的4种流型静电信号3个尺度的能量比重,分别以R1、R2为横坐标和纵坐标,绘制这4种流型的分布图;
(6)以步骤(5)获得的4种流型分布图为参照标准,重新采集某一未知流型的静电信号,并重复步骤(2)-(4),将计算结果与分布图进行比对,判断是否为这4种流型中的一种。
作为对本技术方案的进一步限定,所述尺度1比重R1、尺度2比重R2和尺度3的比重R3之和为1,即:
R1+R2+R3=1。
作为对本技术方案的进一步限定,所述步骤(1)获取的流型分为悬浮流、层流、疏密流和沙丘流4种流型。
现有技术相比,本发明的优点和积极效果是:该方法从密相气固两相流的流动本质出发,从静电信号中提取多尺度特征,进而对流型进行表征,提高了流型表征能力,根据气固两相流不同流型的静电信号的多尺度能量比重,实现对密相气力输送两相流型的识别;采用的静电传感器结构简单,价格低廉,适合于恶劣的工业环境。该方法实用性广,同时信号分解方法与密相气力输送两相流流动本质结合,准确性较高。
附图说明
图1是本发明的信号采集系统示意图。
其中,1-静电传感器;2-输送管道;3-前置电压放大电路;4-数据采集卡;5-计算机。
图2是层流的静电输出信号。
图3是层流静电信号的13个IMF分量。
图4是层流静电信号的13个IMF分量的关系曲线ln[R(τ)/S(τ)]~lnτ。
图5是4种流型的多尺度能量比重分布图。
具体实施方式
下面结合附图,对本发明的一个具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。
如图1-图5所示,本发明将静电传感器1安装在密相气力输送水平管道2上,静电传感器探头的信号输出导线需接入前置电压放大电路3的输入端,放大电路的输出端与高速数据采集卡4的输入端连接,由计算机5控制采集卡。当管道内煤粉流动时,静电传感器探头上产生的信号经放大电路放大后再由采集卡传送到计算机5中。
输送介质为CO2和煤粉,实验过程中调节总输送压差从1MPa到0.3MPa变化,通过电容层析成像系统(此为现有技术,在此不再赘述)的操作界面观察两相流流型的变化,等到流型稳定之后开始记录静电传感器输出的静电信号,静电信号的采样频率为1000Hz,每种流型采集3组数据,每组20000个数据点。实验中观察到悬浮流、层流、疏密流和沙丘流4种流型。如图2所示为层流的静电信号。
分别对4种流型的静电信号进行多尺度分解,具体步骤如下:
首先对静电信号进行经验模态分解处理(此为现有技术,在此不再赘述),得到13个本征模态分量IMFs,然后对每个IMF分量进行R/S分形(此为现有技术,在此不再赘述)分析得到关系曲线ln[R(τ)/S(τ)]~lnτ,最后对关系曲线的直线段部分做线性拟合,得到拟合直线的斜率,即Hurst指数H;图3所示为层流静电信号的13个IMF分量,每个分量的关系曲线ln[R(τ)/S(τ)]~lnτ,如图4所示,其中,对每个IMF分量进行R/S分形处理时所选的时间延迟τ的范围为10~100。
根据分形特征及Hurst指数H的大小,将静电信号划分为尺度1、尺度2和尺度3,具体划分方法如下:
将Hurst指数H小于0.5的IMF分量划入尺度1;将在小的时间延迟τ下Hurst指数H大于0.5小于1而大的时间延迟τ下的Hurst指数H小于0.5的IMF分量划入尺度2;将Hurst指数H恒大于0.5小于1的IMF划入尺度3;
计算静电信号的尺度1、尺度2及尺度3的能量比重,能量比重的计算方法如下:
静电信号被分解成13个IMF分量,假设其中尺度1占有M个IMF分量,分别是IMF1,IMF2…,IMFM。一个IMF分量为一组时间序列{x1,x2,…xH},x1,x2,…xH是按时间顺序排列的一组数据,xi表示一个数据,H是数据的个数或者是时间序列的长度,其能量EIMF1的计算公式为:
EIMF1=x1 2+x2 2+…+xH 2
其余的能量EIMF2、EIMF3…EIMFM的计算公式与EIMF1的计算公式雷同,IMF分量的表述方式也雷同,利用上述公式分别计算每个IMF分量的能量,则静电信号尺度1的能量比重R1
R 1 = E I M F 1 + E I M F 2 + ... + E I M F M Σ i = 1 13 E I M F i
按照计算静电信号尺度1的能量比重R1的方法,计算静电信号尺度2能量比重R2以及尺度3能量比重R3。并且,R1+R2+R3=1
根据上述步骤计算得到的4种流型静电信号3个尺度的能量比重,分别以R1,R2为横纵坐标,绘制这4种流型的分布图,如5图所示。
以附图5的4种流型分布图为参照标准,重新采集某一未知流型的静电信号,并重复步骤(2)-(4),将计算结果与分布图进行比对,判断是否为这4种流型中的一种。
以上公开的仅为本发明的一个具体实施例,但是,本发明并非局限于此,任何本领域的技术人员能思之的变化都应落入本发明的保护范围。

Claims (3)

1.一种密相气力输送两相流流型的识别方法,包括安装在密相气力输送水平管道的静电传感器,所述静电传感器连接前置电压放大电路,所述前置电压放大电路连接高速数据采集卡,其特征是:包括如下步骤:
(1)所述静电传感器探头上产生的信号经过所述前置电压放大电路放大后再由所述高速数据采集卡传送到计算机,计算机记录静电传感器输出的静电信号,对获取的静电信号进行流型划分;
(2)计算机对获取的每种流型的静电信号进行多尺度分解,具体步骤如下:
首先对静电信号进行经验模态分解处理,得到13个本征模态分量IMF,然后对每个IMF分量进行R/S分形分析得到关系曲线ln[R(τ)/S(τ)]~lnτ,最后对关系曲线的直线段部分做线性拟合,得到拟合直线的斜率,即Hurst指数H;(3)根据分形特征及Hurst指数H的大小,将静电信号划分为尺度1、尺度2和尺度3,具体划分方法如下:
将Hurst指数H小于0.5的IMF分量划入尺度1;将在小的时间延迟τ下Hurst指数H大于0.5小于1而大的时间延迟τ下的Hurst指数H小于0.5的IMF分量划入尺度2;将Hurst指数H大于0.5小于1的IMF划入尺度3;
(4)计算静电信号的尺度1、尺度2及尺度3的能量比重,能量比重的计算方法如下:
静电信号被分解成13个IMF分量,假设其中尺度1占有M个IMF分量,分别是IMF1,IMF2…,IMFM,一个IMF分量为一组时间序列{x1,x2,…xH},其中,能量EIMF1的计算公式为:
EIMF1=x1 2+x2 2+…+xH 2
其余的能量EIMF2、EIMF3…EIMFM的计算公式与EIMF1的计算公式雷同,利用上述公式分别计算每个IMF分量的能量,则静电信号尺度1的能量比重R1
R 1 = E I M F 1 + E I M F 2 + ... + E I M F M Σ i = 1 13 E I M F i
按照计算静电信号尺度1的能量比重R1的方法,计算静电信号尺度2能量比重R2以及尺度3能量比重R3
(5)根据步骤(4)计算得到的4种流型静电信号3个尺度的能量比重,分别以R1、R2为横坐标和纵坐标,绘制这4种流型的分布图;
(6)以步骤(5)获得的4种流型分布图为参照标准,重新采集某一未知流型的静电信号,并重复步骤(2)-(4),将计算结果与分布图进行比对,判断是否为这4种流型中的一种。
2.根据权利要求1所述的密相气力输送两相流流型的识别方法,其特征是:所述尺度1比重R1、尺度2比重R2和尺度3的比重R3之和为1,即:R1+R2+R3=1。
3.根据权利要求1所述的密相气力输送两相流流型的识别方法,其特征是:所述步骤(1)获取的流型分为悬浮流、层流、疏密流和沙丘流4种流型。
CN201610656745.2A 2016-08-11 2016-08-11 一种密相气力输送两相流流型的识别方法 Pending CN106295569A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610656745.2A CN106295569A (zh) 2016-08-11 2016-08-11 一种密相气力输送两相流流型的识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610656745.2A CN106295569A (zh) 2016-08-11 2016-08-11 一种密相气力输送两相流流型的识别方法

Publications (1)

Publication Number Publication Date
CN106295569A true CN106295569A (zh) 2017-01-04

Family

ID=57669390

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610656745.2A Pending CN106295569A (zh) 2016-08-11 2016-08-11 一种密相气力输送两相流流型的识别方法

Country Status (1)

Country Link
CN (1) CN106295569A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107402116A (zh) * 2017-08-24 2017-11-28 中南大学 一种气液两相流流型识别方法及检测装置
CN109283255A (zh) * 2018-08-06 2019-01-29 浙江大学 一种气力输送过程中输送流型的检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101430269A (zh) * 2008-12-17 2009-05-13 华北电力大学 气力输送管道中煤粉浓度及相分布的实时检测装置
CN102706534A (zh) * 2012-06-01 2012-10-03 绍兴文理学院 一种气液两相流流型识别方法
CN103499516A (zh) * 2013-10-22 2014-01-08 东南大学 一种高压密相气力输送煤粉流动状态的检测方法及检测装置
CN104316113A (zh) * 2014-11-20 2015-01-28 北京华清茵蓝科技有限公司 基于弧形静电电极阵列的气固多相流在线测量装置及方法
CN204202652U (zh) * 2014-11-20 2015-03-11 北京华清茵蓝科技有限公司 基于弧形静电电极阵列的气固多相流在线测量装置
US20150217949A1 (en) * 2012-10-01 2015-08-06 Univation Technologies, Llc Systems and Processes for Storing Resin

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101430269A (zh) * 2008-12-17 2009-05-13 华北电力大学 气力输送管道中煤粉浓度及相分布的实时检测装置
CN102706534A (zh) * 2012-06-01 2012-10-03 绍兴文理学院 一种气液两相流流型识别方法
US20150217949A1 (en) * 2012-10-01 2015-08-06 Univation Technologies, Llc Systems and Processes for Storing Resin
CN103499516A (zh) * 2013-10-22 2014-01-08 东南大学 一种高压密相气力输送煤粉流动状态的检测方法及检测装置
CN104316113A (zh) * 2014-11-20 2015-01-28 北京华清茵蓝科技有限公司 基于弧形静电电极阵列的气固多相流在线测量装置及方法
CN204202652U (zh) * 2014-11-20 2015-03-11 北京华清茵蓝科技有限公司 基于弧形静电电极阵列的气固多相流在线测量装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107402116A (zh) * 2017-08-24 2017-11-28 中南大学 一种气液两相流流型识别方法及检测装置
CN109283255A (zh) * 2018-08-06 2019-01-29 浙江大学 一种气力输送过程中输送流型的检测方法

Similar Documents

Publication Publication Date Title
CN102109451B (zh) 非接触电导气液两相流流型辨识装置及方法
CN101900743B (zh) 颗粒速度的线性静电传感器阵列测量方法及装置
CN100582682C (zh) 方形气力输送管道中气固两相流参数的测量装置及方法
CN104089985B (zh) 基于电学与超声敏感原理的多相流可视化测试方法
CN103336226B (zh) 一种气体绝缘变电站中多种局部放电源类型的辨识方法
CN1987485A (zh) 气固两相管流颗粒速度的静电感应空间滤波测量方法
CN102116755B (zh) 基于多截面阻抗式长腰内锥及相关测速的多相流测量方法
CN105973343B (zh) 一种流化床中动态料位的检测方法
CN102768229A (zh) 双阵列式电容传感器及其气固两相流检测方法
CN104535905A (zh) 基于朴素贝叶斯分类的局部放电诊断方法
CN102508031A (zh) 一种基于傅里叶级数的局部放电脉冲相角测量方法
CN100427946C (zh) 一种快速测定矿粉中金属含量的方法及装置
CN104316720A (zh) 自适应流速变化的电荷感应在线粉尘检测装置及其方法
CN102230872A (zh) 在线检测流动矿浆的磁性铁品位的装置及其检测方法
Lu et al. Experimental study on flow patterns of high-pressure gas–solid flow and Hilbert–Huang transform based analysis
CN111351540A (zh) 一种气力输送过程中颗粒质量流率的检测方法和系统
CN106295569A (zh) 一种密相气力输送两相流流型的识别方法
CN103235014A (zh) 一种生物质与煤粉混燃过程参数检测装置
CN103499516B (zh) 一种高压密相气力输送煤粉流动状态的检测方法
Fang et al. Analysis of chaos characteristics of gas-liquid two-phase flow noise
CN105974215A (zh) 一种流化床中颗粒荷质比的在线检测方法
CN105510626A (zh) 一种可用于长期监测流体流速的电磁测量装置及测量方法
CN102147383A (zh) 多截面阻抗式长腰内锥传感器及多相流测量装置
CN105092691A (zh) 一种管道内氧化皮堆积的定量检测方法及检测仪
CN101957385A (zh) 流化床内局部颗粒速度的静电感应测量方法及装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170104

RJ01 Rejection of invention patent application after publication