CN106291920B - 二维固态光扫描器 - Google Patents

二维固态光扫描器 Download PDF

Info

Publication number
CN106291920B
CN106291920B CN201610939948.2A CN201610939948A CN106291920B CN 106291920 B CN106291920 B CN 106291920B CN 201610939948 A CN201610939948 A CN 201610939948A CN 106291920 B CN106291920 B CN 106291920B
Authority
CN
China
Prior art keywords
group
heater
refrigerator
light
deflectable material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610939948.2A
Other languages
English (en)
Other versions
CN106291920A (zh
Inventor
徐英舜
刘淑静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHENZHEN SUPOIN FINDO TECHNOLOGY CO., LTD.
Original Assignee
Tianjin Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Medical University filed Critical Tianjin Medical University
Priority to CN201610939948.2A priority Critical patent/CN106291920B/zh
Publication of CN106291920A publication Critical patent/CN106291920A/zh
Application granted granted Critical
Publication of CN106291920B publication Critical patent/CN106291920B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

本发明涉及一种二维固态光扫描器,特别是基于对具有显著热光效应的材料进行二维梯度温度调制的工作原理,从而通过单一器件实现二维光扫描。该二维固态光扫描器包括光偏转材料,第一组和第二组制冷器和第一组和第二组加热器。光偏转材料的一个输入端与外部光源输入的光束相连,光偏转材料的两个输入端与两组制冷器的输出端相连,光偏转材料的另两个输入端与两组加热器的输出端相连,光偏转材料的输出端与外部扫描目标相连;两组制冷器的输入端与外部制冷器电源和控制电路分别相连;两组加热器的输入端与外部加热器电源和控制电路分别相连。本发明不包含任何机械活动部件,体积小,功耗低,可用于各种微光学系统。

Description

二维固态光扫描器
技术领域
本发明涉及一种二维固态光扫描器,特别是基于对具有显著热光效应的材料进行二维梯度温度调制的工作原理,从而通过单一器件实现二维光扫描。该二维固态光扫描器中不包含任何机械活动部件,体积小,功耗低,可集成于各种微光学系统。
背景技术
光学扫描显微镜,激光投影电视等应用都需要光扫描器将入射光束进行X,Y两个方向的偏转,这通常是通过两个一组的一维光扫描器处于X,Y两个旋转轴来对入射光束进行偏转而实现二维扫描的。通常大尺寸光扫描器根据核心光学偏转部件的不同,可分为电磁式机械偏转(例如检流计Galvanometer和共振扫描器Resonant scanner),多面体棱镜机械偏转,电光偏转,声光偏转,混合式等,均为这种形式。这种形式存在体积大,结构复杂,成本高等缺点。基于微机电系统(Microelectromechanical Systems,MEMS)的微型光扫描器根据微驱动器的驱动原理的不同,可分为电热式,电磁式,静电式等。MEMS光扫描器有两种结构实现二维扫描:有万向节式(Gimbaled)和无万向节式(Gimbaless),前者的X-Y两轴之间机械耦合小,但体积较大;后者则相反。对于目前最小的MEMS微型光扫描器,其芯片(Die)尺寸也在数毫米见方,厚度可低于1毫米。此外仍然存在工艺复杂,加工成本高等问题。因此能够实现二维扫描的单一器件可以解决上述存在的问题。
热光效应,指的是光学介质的折射率随着温度变化而发生变化的物理效应,是光学材料的一种光学性质。在给定的温度场中,晶体、半导体材料、玻璃以及其他应用在不同光器件和系统中的光学材料,其折射率不是一个恒定的参数。在一定的压强下,材料的折射率随温度的变化量称之为热光系数。它被定义为dn/dT,n和T分别是材料的折射率和温度,单位是每摄氏度或者每开尔文。对于有机聚合物来说,温度变化引起的材料折射率变化主要由材料密度变化决定,其热光系数在10-4量级,相对于硅等无机材料较高。
因此本发明提出了一种二维固态光扫描器,特别是基于对具有显著热光效应的材料进行二维梯度温度调制的工作原理,从而通过单一器件实现二维光扫描。该二维固态光扫描器中不包含任何机械活动部件,体积小,功耗低,寿命长,可集成于各种微光学系统。
发明内容
本发明的目的在于提出一种二维固态光扫描器,特别是基于对具有显著热光效应的材料进行二维梯度温度调制的工作原理,从而通过单一器件实现二维光扫描。该二维固态光扫描器中不包含任何机械活动部件,体积小,功耗低,可集成于各种微光学系统。
为实现上述目的,本发明采用技术方案是:它包括光偏转材料,第一组制冷器,第二组制冷器,第一组加热器和第二组加热器,光偏转材料的一个输入端与外部光源输入的光束相连,光偏转材料的第二个输入端与第一组制冷器的输出端相连,光偏转材料的第三个输入端与第二组制冷器的输出端相连,光偏转材料的第四个输入端与第一组加热器的输出端相连,光偏转材料的第五个输入端与第二组加热器的输出端相连,光偏转材料的输出端与外部扫描目标相连;第一组制冷器的输入端与外部第一组制冷器电源和控制电路相连;第二组制冷器的输入端与外部第二组制冷器电源和控制电路相连;第一组加热器的输入端与外部第一组加热器电源和控制电路相连;第二组加热器的输入端与外部第二组加热器电源和控制电路相连;
所述的光偏转材料为具有高热光系数,低导热系数,高耐热温度的匀质材料,可以为但不限于各种高分子聚合物,如聚甲基丙稀酸甲酯(PMMA),聚碳酸酯(PC),SU8等;
所述的光偏转材料的外形为直平行六面体,为了建立与入射光束具有一定倾斜角度的梯度温度场;直平行六面体的一组相对的矩形平面的表面具有低粗糙度,光学透明,并镀有高透过率镀膜,直平行六面体的另一组相对的矩形平面的表面具有低粗糙度,分别与第一组制冷器和第一组加热器的输出平面紧密相连,其间的微小空隙采用导热硅脂填充以提高导热系数,直平行六面体的一组相对的平行四边形平面的表面具有低粗糙度,分别与第二组制冷器和第二组加热器的输出平面紧密相连,其间的微小空隙采用导热硅脂填充以提高导热系数;
所述的第一组制冷器可以为基于帕尔帖(Peltier)效应的半导体制冷器,热管或水冷导热器,第一组制冷器的输出平面与光偏转材料的一组相对的矩形平面的表面紧密相连,其间的微小空隙采用导热硅脂填充以提高导热系数;第一组制冷器工作在恒定功率模式,用于在光偏转材料的一侧建立稳定的低温;
所述的第二组制冷器可以为基于帕尔帖效应的半导体制冷器,热管或水冷导热器,第二组制冷器的输出平面与光偏转材料的一组相对的矩形平面的表面紧密相连,其间的微小空隙采用导热硅脂填充以提高导热系数;第二组制冷器工作在恒定功率模式,用于在光偏转材料的另一侧建立稳定的低温;
所述的第一组加热器为电阻式加热器,其的输出平面与光偏转材料的一组相对的矩形平面的表面紧密相连,其间的微小空隙采用导热硅脂填充以提高导热系数;第一组加热器工作在变化功率模式,用于在光偏转材料的另一侧建立受外部控制电路控制的变化的高温,从而在光偏转材料内实现变化的梯度温度场;
所述的第二组加热器为电阻式加热器,其的输出平面与光偏转材料的一组相对的矩形平面的表面紧密相连,其间的微小空隙采用导热硅脂填充以提高导热系数;第二组加热器工作在变化功率模式,用于在光偏转材料的另一侧建立受外部控制电路控制的变化的高温,从而在光偏转材料内实现变化的梯度温度场。
本发明的工作原理是这样的:光偏转材料的外形为直平行六面体,直平行六面体的一组相对的矩形平面的表面具有低粗糙度,光学透明,并镀有高透过率镀膜,直平行六面体的另一组相对的矩形平面的表面具有低粗糙度,分别与第一组制冷器和第一组加热器的输出平面紧密相连,其间的微小空隙采用导热硅脂填充以提高导热系数;直平行六面体的一组相对的平行四边形平面的表面具有低粗糙度,分别与第二组制冷器和第二组加热器的输出平面紧密相连,其间的微小空隙采用导热硅脂填充以提高导热系数;第一组和第二组制冷器可以为基于帕尔帖效应的半导体制冷器,热管或水冷导热器,工作在恒定功率模式,用于在光偏转材料的一侧建立稳定的低温;第一组和第二组加热器为电阻式加热器,工作在变化功率模式,用于在光偏转材料的另一侧建立受外部控制电路控制的变化的高温,从而在光偏转材料内实现变化的梯度温度场;光偏转材料为具有高热光系数且高耐热温度的匀质材料,可以为各种高分子聚合物;下面以聚甲基丙稀酸甲酯为例,热光系数为-1.44x10-4K-1,导热系数为0.17W/(m·K),在832nm波长下折射率约为1.5025@20℃,1.3581@12℃,最高温度为120℃;第一组和第二组制冷器采用半导体制冷器,理论上能够在冷端和热端之间维持60℃温差,实际效率没有这么高,冷端温度设为恒定的-10℃;第一组和第二组加热器使热端温度在约20℃至120℃之间波动,温差为100℃;在入射角度为70度时,可以计算出最大光学偏转角度为70-arcsin(sin70度*1.3581/1.5025)=11.86度,光束向某组工作的加热器一侧的热端偏转;由于光束在渐变梯度温度场里连续偏转,因此会在光偏转材料的输出端叠加侧向位移。第一组制冷器和第二组制冷器,第一组加热器和第二组加热器分别独立驱动。
本发明由于采用了上述技术方案,具有如下优点:
1、基于热光效应,具有体积小,功耗低,工艺简单,成本低,寿命长等优点;
2、外形规则,材料常见,且兼容MEMS工艺,便于与微光学系统集成。
附图说明
图1为本发明的结构框图;
图2为本发明的级联示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步说明:如图1所示,它包括光偏转材料1,第一组制冷器2,第二组制冷器3,第一组加热器4和第二组加热器5。光偏转材料1的一个输入端与外部光源输入的光束相连,光偏转材料1的第二个输入端与第一组制冷器2的输出端相连,光偏转材料1的第三个输入端与第二组制冷器3的输出端相连,光偏转材料1的第四个输入端与第一组加热器4的输出端相连,光偏转材料1的第五个输入端与第二组加热器5的输出端相连,光偏转材料1的输出端与外部扫描目标相连;第一组制冷器2的输入端与外部第一组制冷器电源和控制电路相连;第二组制冷器3的输入端与外部第二组制冷器电源和控制电路相连;第一组加热器4的输入端与外部第一组加热器电源和控制电路相连;第二组加热器5的输入端与外部第二组加热器电源和控制电路相连;
所述的光偏转材料1为具有高热光系数,低导热系数,高耐热温度的匀质材料,可以为各种高分子聚合物,如聚甲基丙稀酸甲酯,聚碳酸酯,SU8等;
所述的光偏转材料1的外形为直平行六面体,为了建立与入射光束具有一定倾斜角度的梯度温度场;直平行六面体的一组相对的矩形平面的表面具有低粗糙度,光学透明,并镀有高透过率镀膜,直平行六面体的另一组相对的矩形平面的表面具有低粗糙度,分别与第一组制冷器2和第一组加热器4的输出平面紧密相连,其间的微小空隙采用导热硅脂填充以提高导热系数,直平行六面体的一组相对的平行四边形平面的表面具有低粗糙度,分别与第二组制冷器3和第二组加热器5的输出平面紧密相连,其间的微小空隙采用导热硅脂填充以提高导热系数;
所述的第一组制冷器2可以为基于帕尔帖效应的半导体制冷器,热管或水冷导热器,第一组制冷器2的输出平面与光偏转材料的一组相对的矩形平面的表面紧密相连,其间的微小空隙采用导热硅脂填充以提高导热系数;第一组制冷器2工作在恒定功率模式,用于在光偏转材料的一侧建立稳定的低温;
所述的第二组制冷器3可以为基于帕尔帖效应的半导体制冷器,热管或水冷导热器,第二组制冷器3的输出平面与光偏转材料的一组相对的矩形平面的表面紧密相连,其间的微小空隙采用导热硅脂填充以提高导热系数;第二组制冷器3工作在恒定功率模式,用于在光偏转材料的另一侧建立稳定的低温;
所述的第一组加热器4为电阻式加热器,其的输出平面与光偏转材料的一组相对的矩形平面的表面紧密相连,其间的微小空隙采用导热硅脂填充以提高导热系数;第一组加热器4工作在变化功率模式,用于在光偏转材料的另一侧建立受外部控制电路控制的变化的高温,从而在光偏转材料内实现变化的梯度温度场;
所述的第二组加热器5为电阻式加热器,其的输出平面与光偏转材料的一组相对的矩形平面的表面紧密相连,其间的微小空隙采用导热硅脂填充以提高导热系数;第二组加热器工作5在变化功率模式,用于在光偏转材料的另一侧建立受外部控制电路控制的变化的高温,从而在光偏转材料内实现变化的梯度温度场。
本发明的工作原理是这样的:光偏转材料1的外形为直平行六面体,直平行六面体的一组相对的矩形平面的表面具有低粗糙度,光学透明,并镀有高透过率镀膜,直平行六面体的另一组相对的矩形平面的表面具有低粗糙度,分别与第一组制冷器2和第一组加热器4的输出平面紧密相连,其间的微小空隙采用导热硅脂填充以提高导热系数;直平行六面体的一组相对的平行四边形平面的表面具有低粗糙度,分别与第二组制冷器3和第二组加热器5的输出平面紧密相连,其间的微小空隙采用导热硅脂填充以提高导热系数;第一组和第二组制冷器可以为基于帕尔帖效应的半导体制冷器,热管或水冷导热器,工作在恒定功率模式,用于在光偏转材料1的一侧建立稳定的低温;第一组和第二组加热器为电阻式加热器,工作在变化功率模式,用于在光偏转材料1的另一侧建立受外部控制电路控制的变化的高温,从而在光偏转材料1内实现变化的梯度温度场;光偏转材料1为具有高热光系数且高耐热温度的匀质材料,可以为各种高分子聚合物;下面以聚甲基丙稀酸甲酯为例,热光系数为-1.44x10-4K-1,导热系数为0.17W/(m·K),在832nm波长下折射率约为1.5025@20℃,1.3581@12℃,最高温度为120℃;第一组和第二组制冷器采用半导体制冷器,理论上能够在冷端和热端之间维持60℃温差,实际效率没有这么高,冷端温度设为恒定的-10℃;第一组和第二组加热器使热端温度在约20℃至120℃之间波动,温差为100℃;在入射角度为70度时,可以计算出最大光学偏转角度为70-arcsin(sin70度*1.3581/1.5025)=11.86度,光束向某组工作的加热器一侧的热端偏转;由于光束在渐变梯度温度场里连续偏转,因此会在光偏转材料的输出端叠加侧向位移。
可以通过多个本发明的级联实现扫描角度的扩大;以下为级联的实施例:如图2所示,它包括两组本发明,两组本发明沿入射光轴同向相连,使入射光在两组本发明的偏转均处于同一平面,通过对两组本发明位于同一侧面的两组制冷器和加热器同时动作,可以使X-Y光束偏转角度达到两倍。

Claims (10)

1.一种二维固态光扫描器,特征在于:它包括光偏转材料,第一组制冷器,第二组制冷器,第一组加热器和第二组加热器,光偏转材料的一个输入端与外部光源输入的光束相连,光偏转材料的第二个输入端与第一组制冷器的输出端相连,光偏转材料的第三个输入端与第二组制冷器的输出端相连,光偏转材料的第四个输入端与第一组加热器的输出端相连,光偏转材料的第五个输入端与第二组加热器的输出端相连,光偏转材料的输出端与外部扫描目标相连;第一组制冷器的输入端与外部第一组制冷器电源和控制电路相连;第二组制冷器的输入端与外部第二组制冷器电源和控制电路相连;第一组加热器的输入端与外部第一组加热器电源和控制电路相连;第二组加热器的输入端与外部第二组加热器电源和控制电路相连。
2.如权利要求1所述的二维固态光扫描器,其特征在于:所述的光偏转材料为匀质材料,热光系数为-1.0x10-4K-1至-1.0x10-3K-1。
3.如权利要求1所述的二维固态光扫描器,其特征在于:所述的光偏转材料的外形为直平行六面体;直平行六面体的一组相对的矩形平面的表面粗糙度为0.01微米至0.8微米。
4.如权利要求1所述的二维固态光扫描器,其特征在于:所述的光偏转材料的外形为直平行六面体;直平行六面体的一组相对的矩形平面的表面镀有镀膜,透过率为80%至100%。
5.如权利要求1所述的二维固态光扫描器,其特征在于:所述的光偏转材料的外形为直平行六面体;直平行六面体的另一组相对的矩形平面,分别与第一组制冷器和第一组加热器的输出平面紧密相连,紧密相连的表面之间的空隙采用导热硅脂填充以提高导热系数。
6.如权利要求1所述的二维固态光扫描器,其特征在于:所述的光偏转材料的外形为直平行六面体;直平行六面体的一组相对的平行四边形平面,分别与第二组制冷器和第二组加热器的输出平面紧密相连,紧密相连的表面之间的空隙采用导热硅脂填充以提高导热系数。
7.如权利要求1所述的二维固态光扫描器,其特征在于:所述的第一组制冷器和第二组制冷器为基于帕尔帖效应的半导体制冷器,第一组制冷器和第二组制冷器的输出平面与光偏转材料的一组相对的矩形平面的表面紧密相连,紧密相连的表面之间的空隙采用导热硅脂填充以提高导热系数;第一组制冷器和第二组制冷器分别独立驱动。
8.如权利要求1所述的二维固态光扫描器,其特征在于:所述的第一组制冷器和第二组制冷器工作在恒定功率模式,用于在光偏转材料的一侧建立稳定的低温。
9.如权利要求1所述的二维固态光扫描器,其特征在于:所述的第一组加热器和第二组加热器为电阻式加热器,第一组加热器和第二组加热器的输出平面均与光偏转材料的一组相对的矩形平面的表面紧密相连,紧密相连的表面之间的空隙采用导热硅脂填充以提高导热系数。
10.如权利要求1所述的二维固态光扫描器,其特征在于:所述的第一组加热器和第二组加热器工作在变化功率模式,用于在光偏转材料的另一侧建立受外部控制电路控制的变化的高温,从而在光偏转材料内实现变化的梯度温度场;第一组加热器和第二组加热器分别独立驱动。
CN201610939948.2A 2016-10-28 2016-10-28 二维固态光扫描器 Active CN106291920B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610939948.2A CN106291920B (zh) 2016-10-28 2016-10-28 二维固态光扫描器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610939948.2A CN106291920B (zh) 2016-10-28 2016-10-28 二维固态光扫描器

Publications (2)

Publication Number Publication Date
CN106291920A CN106291920A (zh) 2017-01-04
CN106291920B true CN106291920B (zh) 2018-12-07

Family

ID=57719408

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610939948.2A Active CN106291920B (zh) 2016-10-28 2016-10-28 二维固态光扫描器

Country Status (1)

Country Link
CN (1) CN106291920B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8619738D0 (en) * 1986-08-13 1986-09-24 Rank Pullin Controls Ltd Optical systems
DE19503929A1 (de) * 1995-02-07 1996-08-08 Ldt Gmbh & Co Farbbilderzeugungssysteme
CN103838008B (zh) * 2012-11-21 2017-03-01 福州高意通讯有限公司 一种可调谐滤波器
CN204269973U (zh) * 2014-12-26 2015-04-15 福州高意通讯有限公司 一种可调滤波器

Also Published As

Publication number Publication date
CN106291920A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
EP0593836B1 (en) Near-field photon tunnelling devices
US8933860B2 (en) Active cooling of high speed seeker missile domes and radomes
Lee et al. Thermal actuated solid tunable lens
CN106405971B (zh) 一维温度场调制方法
CN106291920B (zh) 二维固态光扫描器
Xiang et al. High-performance thermal management system for high-power LEDs based on double-nozzle spray cooling
CN202230221U (zh) 一种电调谐光开关器件
US20190086764A1 (en) Optical switch
Cruz-Campa et al. Microlens rapid prototyping technique with capability for wide variation in lens diameter and focal length
CN106526901A (zh) 固态光扫描器
Liu et al. Relationship analysis between transient thermal control mode and image quality for an aerial camera
CN100524138C (zh) 一种用于大面积平面光波回路的控温方法及控温模块
CN201490566U (zh) 一种高功率的微片激光器结构
CN208607541U (zh) 温度控制装置
CN106526900A (zh) 相控阵固态光扫描器
Uebbing et al. Heat and fluid flow in an optical switch bubble
Fassbender et al. Novel packaging for CW and QCW diode laser modules for operation with high power and duty cycles
Evstafyev et al. A bimorph electrothermal actuator for micromirror devices
Zhang et al. An integrated optofluidic droplet lens driven by a fast thermoelectric cooler
Zonta Thermal Control Design for a Space-Borne On-Chip Optical Phased Array
US6895139B2 (en) Bistable thermopneumatic optical switch
Tang et al. An integrated thin-film thermo-optic waveguide beam deflector
Neukirch et al. Injection molded low-thermal-expansion multi-fiber ferrule
CN115121301B (zh) 一种在长程自循环磁流体上实现液滴输运的装置及方法
CN102162915A (zh) 压控可变光衰减器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200115

Address after: 518000 Guanghui Science Park, No. 13 Minqing Road, Longhua Street, Longhua New District, Shenzhen City, Guangdong Province, 1 302

Patentee after: SHENZHEN SUPOIN FINDO TECHNOLOGY CO., LTD.

Address before: 300070 Tianjin Medical College of medicine, No. 22 Observatory Road, Heping District, Tianjin, China

Patentee before: Tianjin Medical University

TR01 Transfer of patent right