CN106291756B - The construction method of near space air virtual environment resource - Google Patents
The construction method of near space air virtual environment resource Download PDFInfo
- Publication number
- CN106291756B CN106291756B CN201610624527.0A CN201610624527A CN106291756B CN 106291756 B CN106291756 B CN 106291756B CN 201610624527 A CN201610624527 A CN 201610624527A CN 106291756 B CN106291756 B CN 106291756B
- Authority
- CN
- China
- Prior art keywords
- data
- temperature
- event
- atmospheric
- latitude
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000010276 construction Methods 0.000 title claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 35
- 230000002159 abnormal effect Effects 0.000 claims abstract description 23
- 238000009499 grossing Methods 0.000 claims abstract description 12
- 238000012545 processing Methods 0.000 claims description 23
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 238000004364 calculation method Methods 0.000 claims description 8
- 230000007613 environmental effect Effects 0.000 claims description 6
- 238000012935 Averaging Methods 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims description 2
- 208000017387 Ectodermal dysplasia-cutaneous syndactyly syndrome Diseases 0.000 claims 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 claims 2
- 238000010586 diagram Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000005435 mesosphere Substances 0.000 description 1
- 239000005437 stratosphere Substances 0.000 description 1
- 239000005439 thermosphere Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01W—METEOROLOGY
- G01W1/00—Meteorology
- G01W1/02—Instruments for indicating weather conditions by measuring two or more variables, e.g. humidity, pressure, temperature, cloud cover or wind speed
Landscapes
- Environmental & Geological Engineering (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Atmospheric Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Ecology (AREA)
- Environmental Sciences (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
Abstract
临近空间大气虚拟环境资源的构建方法,涉及一种大气虚拟环境资源的构建方法。本发明为了填补国内虚拟试验系统中临近空间的大气虚拟环境资源空缺的问题。本发明获取临近空间大气环境资源的历史数据,并对异常数据进行处理;然后将每个事件获取的高度数据进行归一化;然后坐标转换并获取每个事件的空间范围;针对各资源数据构建每个高度层的二维数组并进行二维平滑处理;最后构建各资源数据的三维数组,得到温度、密度和压强的三维数组的立方体网格,最后进行数据格式转换,完成符合SEDRIS规范的临近空间大气虚拟环境资源的构建。本发明适用于虚拟试验中临近空间大气环境资源的构建领域。
A method for constructing atmospheric virtual environment resources in adjacent space relates to a method for constructing atmospheric virtual environment resources. The invention aims to fill the problem of lack of atmospheric virtual environment resources in the adjacent space in the domestic virtual test system. The present invention acquires the historical data of the atmospheric environment resources in the adjacent space, and processes the abnormal data; then normalizes the height data obtained by each event; then converts the coordinates and obtains the spatial range of each event; The two-dimensional array of each height layer is processed by two-dimensional smoothing; finally, the three-dimensional array of each resource data is constructed to obtain the cubic grid of the three-dimensional array of temperature, density and pressure, and finally the data format is converted to complete the approach conforming to the SEDRIS specification Construction of space atmosphere virtual environment resources. The invention is applicable to the construction field of atmospheric environment resources near space in virtual experiment.
Description
技术领域technical field
本发明涉及一种大气虚拟环境资源的构建方法。The invention relates to a method for constructing atmospheric virtual environment resources.
背景技术Background technique
虚拟自然环境资源作为支撑虚拟试验的重要组成部分,其完善性和可信性直接影响虚拟试验的逼真度。大气环境作为综合自然环境的重要组成部分,构建临近空间大气虚拟环境资源对于完善虚拟试验系统具有重要意义。Virtual natural environment resources are an important part of supporting virtual experiments, and their perfection and credibility directly affect the fidelity of virtual experiments. Atmospheric environment is an important part of the comprehensive natural environment, and the construction of atmospheric virtual environment resources in adjacent space is of great significance for improving the virtual test system.
临近空间是指距地面20~100公里的空域,包括平流层,中间层和低热层。作为综合自然环境数据的重要组成部分和综合自然环境数据库开发的基础,大气环境资源的生成和完善十分重要。目前,临近空间的开发利用还处于初期阶段,飞行器在此空间内飞行的影响因素和影响程度还不明确,如果直接用实体飞行器在大气空间进行试验,将会产生许多未知的后果,甚至带来不可估量的损失。“十二五”以来,国内20km以下的大气虚拟环境资源日渐完善,而对于临近空间的大气虚拟环境资源构建方法仅仅处于起步阶段。Adjacent space refers to the airspace 20 to 100 kilometers above the ground, including the stratosphere, mesosphere and low thermosphere. As an important part of comprehensive natural environment data and the basis of comprehensive natural environment database development, the generation and improvement of atmospheric environmental resources are very important. At present, the development and utilization of adjacent space is still in the initial stage, and the influencing factors and degree of influence of aircraft flying in this space are still unclear. If a physical aircraft is directly used to conduct experiments in atmospheric space, many unknown consequences will occur, and even bring immeasurable loss. Since the "Twelfth Five-Year Plan", domestic atmospheric virtual environment resources below 20km have been gradually improved, while the construction method of atmospheric virtual environment resources in adjacent spaces is only in its infancy.
发明内容Contents of the invention
本发明为了填补国内虚拟试验系统中临近空间的大气虚拟环境资源空缺的问题。The invention aims to fill the problem of lack of atmospheric virtual environment resources in the adjacent space in the domestic virtual test system.
临近空间大气虚拟环境资源的构建方法,包括以下步骤:A method for constructing a near-space atmospheric virtual environment resource includes the following steps:
步骤1、获取临近空间大气环境资源的历史数据,包括经度、纬度、高度数据以及其对应的温度数据;Step 1. Obtain the historical data of atmospheric environment resources in the adjacent space, including longitude, latitude, height data and corresponding temperature data;
步骤2、对经度、纬度、高度和温度数据中的异常数据进行处理;Step 2, processing the abnormal data in the longitude, latitude, height and temperature data;
步骤3、将每个事件获取的高度数据进行归一化:针对每个事件对应的高度,先对每个事件中的高度数据进行四舍五入取整;然后以κ千米为间隔进行分层,将相同的高度值视为同一层的高度层,如果一个高度层内存在多个温度数据,取多个温度数据的均值作为最终该事件中该高度层的温度值;Step 3. Normalize the height data acquired by each event: For the height corresponding to each event, first round the height data in each event; The same altitude value is regarded as the altitude layer of the same layer. If there are multiple temperature data in one altitude layer, the average value of multiple temperature data is taken as the temperature value of the altitude layer in the final event;
步骤4、坐标转换:将经纬度坐标转换为直角坐标;Step 4, coordinate conversion: convert the latitude and longitude coordinates into Cartesian coordinates;
步骤5、获取每个事件的空间范围:取坐标转换后每个事件中经纬度的起点最小值和终点最大值,画出单个事件的区域范围和每个高度层所有事件表示的区域范围,便于之后的分析和数据处理;Step 5. Obtain the spatial range of each event: take the minimum value of the starting point and the maximum value of the latitude and longitude of each event after the coordinate conversion, and draw the area range of a single event and the area range represented by all events at each level, which is convenient for later analysis and data processing;
步骤6、构建每个高度层的二维数组:以经度和纬度作为维度,并将其归一化为κ′千米间隔,构建每个高度层的温度二维数组;各个事件表示的区域范围有重叠部分,在构建二维数组时,重叠部分的温度值通过求两个事件温度均值作为该区域的温度值,没有重叠则存入原温度值;Step 6. Construct a two-dimensional array of each altitude layer: take longitude and latitude as dimensions, and normalize it to κ′ kilometer interval, construct a two-dimensional array of temperature for each altitude layer; the area range represented by each event If there is an overlapping part, when constructing a two-dimensional array, the temperature value of the overlapping part is calculated as the temperature value of the area by calculating the average temperature of the two events, and if there is no overlap, it will be stored in the original temperature value;
步骤7、二维平滑处理:对每个二维数组进行2D平滑处理;Step 7, two-dimensional smoothing processing: performing 2D smoothing processing on each two-dimensional array;
步骤8、构建本年本月温度的三维数组:高度从20km开始,100km结束,针对以κ千米为递增间隔的高度层,逐层将平滑处理后的温度二维数组写入,最终得到以经度、纬度和高度为维度的三维数组;Step 8. Construct the three-dimensional array of the temperature of this year and this month: the height starts from 20km and ends at 100km. For the altitude layer with an incremental interval of κ km, write the smoothed two-dimensional array of temperature layer by layer, and finally get the following 3D array with longitude, latitude and altitude as dimensions;
步骤9、按照步骤1至步骤8将若干年内同时期的温度数据进行构建并取平均值,建立可靠的三维数组的立方网格,作为虚拟试验中该月份的临近空间温度数据资源;Step 9. According to steps 1 to 8, the temperature data of the same period in several years are constructed and averaged, and a reliable three-dimensional array of cubic grids is established as the adjacent space temperature data resource of the month in the virtual test;
步骤10、根据步骤1至步骤9对密度、压强进行相同的处理,得到密度和压强的三维数组的立方体网格;Step 10, according to step 1 to step 9, carry out the same processing to density, pressure, obtain the cubic grid of the three-dimensional array of density and pressure;
步骤11、将已构建好的包括温度、密度、压强在内的数据写入文本文件T;Step 11, write the constructed data including temperature, density and pressure into text file T;
步骤12D、然后从写入数据的文本文件T中读取大气环境数据,根据SEDRIS(Synthetic Environment Data Representation and Interchange Specification,综合环境数据表示与交换规范)的DRM(Data Representation Model,数据表示模型)、SRM(Spatial Reference Model,空间参考模型)和EDCS(Environment Data CodingSpecification,环境数据编码规范)三个规范对数据进行表示,并将大气环境数据保存为SEDRIS标准格式。Step 12D, then read the atmospheric environment data from the text file T of writing data, according to the DRM (Data Representation Model, data representation model) of SEDRIS (Synthetic Environment Data Representation and Interchange Specification, comprehensive environmental data representation and exchange specification), The three specifications of SRM (Spatial Reference Model, spatial reference model) and EDCS (Environment Data Coding Specification, environmental data coding specification) represent the data, and save the atmospheric environment data in the SEDRIS standard format.
优选地,临近空间大气虚拟环境资源的构建方法,还包括大气水平风场的构建过程,具体过程如下:Preferably, the method for constructing the atmospheric virtual environment resource in the adjacent space also includes the construction process of the atmospheric horizontal wind field, and the specific process is as follows:
步骤12A、根据纬度范围,确定相应的大气水平风场计算公式:Step 12A, according to the range of latitude, determine the corresponding atmospheric horizontal wind field calculation formula:
(一)在纬度范围为15°~80°范围内,根据式(1)计算地转风:(1) In the range of latitude from 15° to 80°, the geostrophic wind is calculated according to formula (1):
其中,P为气压,ρ为大气密度;称为地转参数,Ω为地转角速度,为地理纬度;x为向东的距离,y为向北的距离;ug、vg分别为15°~80°范围内水平纬向、经向地转风;Among them, P is the air pressure, and ρ is the atmospheric density; is called the geostrophic parameter, Ω is the geostrophic angular velocity, is the geographic latitude; x is the distance to the east, and y is the distance to the north; u g and v g are the horizontal latitudinal and meridional geostrophic winds within the range of 15°-80°, respectively;
再根据公式(2)计算梯度风:Then calculate the gradient wind according to formula (2):
其中,a为地球半径;ugr、vgr分别为水平纬向、经向梯度风;in, a is the radius of the earth; u gr and v gr are the horizontal latitudinal and meridional gradient winds respectively;
(二)在纬度范围为15°S~15°N范围内,根据公式(3)计算梯度风:(2) Within the latitude range of 15°S to 15°N, the gradient wind is calculated according to formula (3):
其中,ue、ve分别为15°S~15°N内水平纬向、经向梯度风;Among them, u e and v e are the horizontal latitudinal and meridional gradient winds within 15°S~15°N, respectively;
步骤12B、构建大气水平风场的三维数组的均匀立方体网格:将之前构建的该区域范围的密度和压强三维数组代入风场计算公式,得到对应位置的地转风和梯度风三维数组的均匀立方体网格,由此生成该区域临近空间大气水平风场资源;Step 12B. Construct a uniform cubic grid of the three-dimensional array of the atmospheric horizontal wind field: Substitute the previously constructed three-dimensional array of density and pressure in the area into the wind field calculation formula to obtain the uniform three-dimensional array of the geostrophic wind and gradient wind at the corresponding position Cube grid, which generates the atmospheric horizontal wind field resources in the adjacent space of the region;
步骤12C、将已构建好的风场数据写入所述的文本文件T。Step 12C, write the constructed wind field data into the text file T.
优选地,步骤2所述的对经度、纬度、高度和温度数据中的异常数据进行处理的具体过程如下:Preferably, the specific process of processing the abnormal data in the longitude, latitude, height and temperature data described in step 2 is as follows:
针对每个事件中经度、纬度、高度和温度数据,获取数据的原始平均分辨率,然后剔除异常数据,并将异常数据的前一个数据作为基础,在此基础上添加利用分辨率进行递推得到与剔除的异常数据数量相等的递推数据。For the longitude, latitude, altitude and temperature data in each event, the original average resolution of the data is obtained, and then the abnormal data is eliminated, and the previous data of the abnormal data is used as the basis, and the resolution is added on this basis to obtain Recursive data equal to the number of abnormal data removed.
优选地,步骤4所述坐标转换的具体过程如下:Preferably, the specific process of coordinate transformation described in step 4 is as follows:
最终建立的坐标系的网格是以距离为单位的,因此根据Matlab2014a中的坐标投影系统,将每个事件中获取的经纬度数据转换为直角坐标下的距离数据,并就近取整。The grid of the finally established coordinate system is based on distance. Therefore, according to the coordinate projection system in Matlab2014a, the latitude and longitude data obtained in each event are converted into distance data in Cartesian coordinates and rounded to the nearest integer.
优选地,所述的κ与所述的κ′相等。Preferably, said κ is equal to said κ'.
优选地,κ=κ′=1。Preferably, κ=κ′=1.
优选地,步骤1中获取临近空间大气环境资源的历史数据的具体过程为:Preferably, the specific process of obtaining the historical data of the atmospheric environment resources in the adjacent space in step 1 is:
选择SABER特定空间范围和时间范围对应的临近空间大气环境数据NC文件;读取NC文件,获取临近空间大气环境资源的历史数据。Select the NC file of near-space atmospheric environment data corresponding to the specific space range and time range of SABER; read the NC file to obtain the historical data of near-space atmospheric environment resources.
有益效果:Beneficial effect:
(1)本发明采用的经验大气模式能够使大气环境资源构建结果随探测资料准确度的提高而更加准确,不需考虑临近空间大气的复杂性及许多过程的参数化方案的选择等。(1) The empirical atmospheric model adopted by the present invention can make the construction results of the atmospheric environment resources more accurate with the improvement of the accuracy of the detection data, without considering the complexity of the adjacent space atmosphere and the selection of parameterization schemes for many processes.
(2)基于卫星探测数据进行临近空间大气环境资源的构建,数据源真实可靠,构建的结果具有较高的可信度。(2) The construction of near-space atmospheric environment resources is based on satellite detection data. The data source is authentic and reliable, and the construction results have high credibility.
(3)此种临近空间大气环境资源构建方法具有普遍适用性,对于全球任意大小的任何区域,资源构建过程基本不变,可以满足绝大多数情况下对虚拟试验中临近空间大气环境的要求。(3) This method of constructing near-space atmospheric environment resources has universal applicability. For any region of any size in the world, the resource construction process is basically unchanged, and it can meet the requirements of near-space atmospheric environment in most cases in virtual experiments.
附图说明Description of drawings
图1为某事件的区域范围示意图;Figure 1 is a schematic diagram of the regional scope of an event;
图2为某个高度层10个事件的区域范围示意图;Figure 2 is a schematic diagram of the area range of 10 events at a certain altitude;
图3为某个事件处理过后的温度分布图;Figure 3 is a temperature distribution diagram after an event has been processed;
图4为对图3所表示的事件进行平滑处理后的温度分布示意图;Figure 4 is a schematic diagram of the temperature distribution after smoothing the events shown in Figure 3;
图5为实施方式一的流程示意图;FIG. 5 is a schematic flow chart of Embodiment 1;
图6为实施方式二的流程示意图。FIG. 6 is a schematic flow chart of Embodiment 2.
具体实施方式Detailed ways
具体实施方式一:结合图5说明本实施方式;Specific implementation mode 1: This implementation mode is described in conjunction with FIG. 5 ;
临近空间大气虚拟环境资源的构建方法,包括以下步骤:A method for constructing a near-space atmospheric virtual environment resource includes the following steps:
步骤1、获取临近空间大气环境资源的历史数据,包括经度、纬度、高度数据以及其对应的温度数据;Step 1. Obtain the historical data of atmospheric environment resources in the adjacent space, including longitude, latitude, height data and corresponding temperature data;
步骤2、对经度、纬度、高度和温度数据中的异常数据进行处理;从而获得无异常数据的二维矩阵,便于之后的归一化、求平均等数据处理操作;Step 2, processing the abnormal data in the longitude, latitude, height and temperature data; thereby obtaining a two-dimensional matrix without abnormal data, which is convenient for subsequent data processing operations such as normalization and averaging;
步骤3、将每个事件获取的高度数据进行归一化:针对每个事件对应的高度,先对每个事件中的高度数据进行四舍五入取整;然后以κ千米为间隔进行分层,将相同的高度值视为同一层的高度层,如果一个高度层内存在多个温度数据,取多个温度数据的均值作为最终该事件中该高度层的温度值;Step 3. Normalize the height data acquired by each event: For the height corresponding to each event, first round the height data in each event; The same altitude value is regarded as the altitude layer of the same layer. If there are multiple temperature data in one altitude layer, the average value of multiple temperature data is taken as the temperature value of the altitude layer in the final event;
例:针对某个事件中的高度数据(km)99.98444366、99.61489105、99.24510956、98.87528229、98.50534821、98.13528442、97.76511383、97.39484406、97.0244751、96.65398407,该事件每个高度对应的温度值为225.5196838、225.0498047、224.7708435、224.5986786、224.3938904、224.054245、223.5292511、222.8206482、221.9805908、221.1124725,以1km为间隔进行分层,高度数据取整后得到100、100、99、99、99、98、98、97、97、97,可见在100km这个高度层对应225.5196838、225.0498047两个温度值,需要求两者均值225.28474425作为该事件100km高度层的温度,其他高度层处理方法类似。例:针对某个事件中的高度数据(km)99.98444366、99.61489105、99.24510956、98.87528229、98.50534821、98.13528442、97.76511383、97.39484406、97.0244751、96.65398407,该事件每个高度对应的温度值为225.5196838、225.0498047、224.7708435、224.5986786 . This level corresponds to two temperature values of 225.5196838 and 225.0498047, and the average value of the two needs to be 225.28474425 as the temperature at the 100km level of the event. The processing methods for other levels are similar.
步骤4、坐标转换:将经纬度坐标转换为直角坐标;Step 4, coordinate conversion: convert the latitude and longitude coordinates into Cartesian coordinates;
步骤5、获取每个事件的空间范围:取坐标转换后每个事件中经纬度的起点最小值和终点最大值,画出单个事件的区域范围和每个高度层所有事件表示的区域范围,便于之后的分析和数据处理;Step 5. Obtain the spatial range of each event: take the minimum value of the starting point and the maximum value of the latitude and longitude of each event after the coordinate conversion, and draw the area range of a single event and the area range represented by all events at each level, which is convenient for later analysis and data processing;
以某1km的高度层为例,获取高度层温度的空间范围,如图1和图2所示。由图可知,各个事件表示的区域范围之间是有重叠部分的。Taking a height layer of 1 km as an example, the spatial range of temperature at the height layer is obtained, as shown in Figures 1 and 2. It can be seen from the figure that there is overlap between the ranges represented by each event.
步骤6、构建每个高度层的二维数组:以经度和纬度作为维度,并将其归一化为κ′千米间隔,构建每个高度层的温度二维数组;各个事件表示的区域范围有重叠部分,所以在构建二维数组时,重叠部分的温度值通过求两个事件温度均值作为该区域的温度值,没有重叠则存入原温度值;Step 6. Construct a two-dimensional array of each altitude layer: take longitude and latitude as dimensions, and normalize it to κ′ kilometer interval, construct a two-dimensional array of temperature for each altitude layer; the area range represented by each event There are overlapping parts, so when constructing a two-dimensional array, the temperature value of the overlapping part is calculated as the temperature value of the area by calculating the average temperature of the two events, and the original temperature value is stored if there is no overlap;
如图3所示,为某个事件处理过后的温度分布图;As shown in Figure 3, it is a temperature distribution diagram after an event is processed;
步骤7、二维平滑处理:对每个二维数组进行2D平滑处理,使重叠部分与其他部分的过渡更为均匀;Step 7, two-dimensional smoothing processing: perform 2D smoothing processing on each two-dimensional array, so that the transition between the overlapping part and other parts is more uniform;
如图4所示,如图4为对图3所表示的事件进行平滑处理后的温度分布;As shown in Figure 4, Figure 4 is the temperature distribution after smoothing the event shown in Figure 3;
步骤8、构建本年本月温度的三维数组:由于下载的NC文件以月为时间范围,所以构建的三维数组时间分辨率为月平均,根据具体要求,可截取一定的空间范围;高度从20km开始,100km结束,针对以κ千米为递增间隔的高度层,逐层将平滑处理后的温度二维数组写入,最终得到以经度、纬度和高度为维度的三维数组;Step 8. Construct a three-dimensional array of the temperature of this year and this month: Since the downloaded NC file takes months as the time range, the time resolution of the constructed three-dimensional array is the monthly average. According to specific requirements, a certain spatial range can be intercepted; the height is from 20km Start and end at 100km, write the smoothed temperature two-dimensional array layer by layer for the height layer with increasing interval of κ km, and finally get a three-dimensional array with longitude, latitude and height as dimensions;
步骤9、按照步骤1至步骤8将若干年内(例如前4年)同时期的温度数据进行构建并取平均值,建立更为可靠的三维数组的立方网格,作为虚拟试验中具有普遍适用性的该月份的临近空间温度数据资源;Step 9. According to steps 1 to 8, the temperature data of the same period in several years (for example, the first 4 years) are constructed and averaged to establish a more reliable three-dimensional array of cubic grids, which has universal applicability in virtual experiments. Nearby spatial temperature data resources for the month;
步骤10、根据步骤1至步骤9对密度、压强进行相同的处理,得到密度和压强的三维数组的立方体网格;Step 10, according to step 1 to step 9, carry out the same processing to density, pressure, obtain the cubic grid of the three-dimensional array of density and pressure;
步骤11、将已构建好的包括温度、密度、压强在内的数据写入文本文件T;Step 11, write the constructed data including temperature, density and pressure into text file T;
步骤12D、然后从写入数据的文本文件T中读取大气环境数据,根据SEDRIS(Synthetic Environment Data Representation and Interchange Specification,综合环境数据表示与交换规范)的DRM(Data Representation Model,数据表示模型)、SRM(Spatial Reference Model,空间参考模型)和EDCS(Environment Data CodingSpecification,环境数据编码规范)三个规范对数据进行表示,并将大气环境数据保存为SEDRIS标准格式。Step 12D, then read the atmospheric environment data from the text file T of writing data, according to the DRM (Data Representation Model, data representation model) of SEDRIS (Synthetic Environment Data Representation and Interchange Specification, comprehensive environmental data representation and exchange specification), The three specifications of SRM (Spatial Reference Model, spatial reference model) and EDCS (Environment Data Coding Specification, environmental data coding specification) represent the data, and save the atmospheric environment data in the SEDRIS standard format.
具体实施方式二:结合图6说明本实施方式;Specific implementation mode two: this implementation mode is described in conjunction with FIG. 6 ;
临近空间大气虚拟环境资源的构建方法,包括以下步骤:A method for constructing a near-space atmospheric virtual environment resource includes the following steps:
步骤1、获取临近空间大气环境资源的历史数据,包括经度、纬度、高度数据以及其对应的温度数据;Step 1. Obtain the historical data of atmospheric environment resources in the adjacent space, including longitude, latitude, height data and corresponding temperature data;
步骤2、对经度、纬度、高度和温度数据中的异常数据进行处理;从而获得无异常数据的二维矩阵,便于之后的归一化、求平均等数据处理操作;Step 2, processing the abnormal data in the longitude, latitude, height and temperature data; thereby obtaining a two-dimensional matrix without abnormal data, which is convenient for subsequent data processing operations such as normalization and averaging;
步骤3、将每个事件获取的高度数据进行归一化:针对每个事件对应的高度,先对每个事件中的高度数据进行四舍五入取整;然后以κ千米为间隔进行分层,将相同的高度值视为同一层的高度层,如果一个高度层内存在多个温度数据,取多个温度数据的均值作为最终该事件中该高度层的温度值;Step 3. Normalize the height data acquired by each event: For the height corresponding to each event, first round the height data in each event; The same altitude value is regarded as the altitude layer of the same layer. If there are multiple temperature data in one altitude layer, the average value of multiple temperature data is taken as the temperature value of the altitude layer in the final event;
例:针对某个事件中的高度数据(km)99.98444366、99.61489105、99.24510956、98.87528229、98.50534821、98.13528442、97.76511383、97.39484406、97.0244751、96.65398407,该事件每个高度对应的温度值为225.5196838、225.0498047、224.7708435、224.5986786、224.3938904、224.054245、223.5292511、222.8206482、221.9805908、221.1124725,以1km为间隔进行分层,高度数据取整后得到100、100、99、99、99、98、98、97、97、97,可见在100km这个高度层对应225.5196838、225.0498047两个温度值,需要求两者均值225.28474425作为该事件100km高度层的温度,其他高度层处理方法类似。例:针对某个事件中的高度数据(km)99.98444366、99.61489105、99.24510956、98.87528229、98.50534821、98.13528442、97.76511383、97.39484406、97.0244751、96.65398407,该事件每个高度对应的温度值为225.5196838、225.0498047、224.7708435、224.5986786 . This level corresponds to two temperature values of 225.5196838 and 225.0498047, and the average value of the two needs to be 225.28474425 as the temperature at the 100km level of the event. The processing methods for other levels are similar.
步骤4、坐标转换:将经纬度坐标转换为直角坐标;Step 4, coordinate conversion: convert the latitude and longitude coordinates into Cartesian coordinates;
步骤5、获取每个事件的空间范围:取坐标转换后每个事件中经纬度的起点最小值和终点最大值,画出单个事件的区域范围和每个高度层所有事件表示的区域范围,便于之后的分析和数据处理;Step 5. Obtain the spatial range of each event: take the minimum value of the starting point and the maximum value of the latitude and longitude of each event after the coordinate conversion, and draw the area range of a single event and the area range represented by all events at each level, which is convenient for later analysis and data processing;
以某1km的高度层为例,获取高度层温度的空间范围,如图1和图2所示。由图可知,各个事件表示的区域范围之间是有重叠部分的。Taking a height layer of 1 km as an example, the spatial range of temperature at the height layer is obtained, as shown in Figures 1 and 2. It can be seen from the figure that there is overlap between the ranges represented by each event.
步骤6、构建每个高度层的二维数组:以经度和纬度作为维度,并将其归一化为κ′千米间隔,构建每个高度层的温度二维数组;各个事件表示的区域范围有重叠部分,所以在构建二维数组时,重叠部分的温度值通过求两个事件温度均值作为该区域的温度值,没有重叠则存入原温度值;Step 6. Construct a two-dimensional array of each altitude layer: take longitude and latitude as dimensions, and normalize it to κ′ kilometer interval, construct a two-dimensional array of temperature for each altitude layer; the area range represented by each event There are overlapping parts, so when constructing a two-dimensional array, the temperature value of the overlapping part is calculated as the temperature value of the area by calculating the average temperature of the two events, and the original temperature value is stored if there is no overlap;
如图3所示,为某个事件处理过后的温度分布图;As shown in Figure 3, it is a temperature distribution diagram after an event is processed;
步骤7、二维平滑处理:对每个二维数组进行2D平滑处理,使重叠部分与其他部分的过渡更为均匀;Step 7, two-dimensional smoothing processing: perform 2D smoothing processing on each two-dimensional array, so that the transition between the overlapping part and other parts is more uniform;
如图4所示,如图4为对图3所表示的事件进行平滑处理后的温度分布;As shown in Figure 4, Figure 4 is the temperature distribution after smoothing the event shown in Figure 3;
步骤8、构建本年本月温度的三维数组:由于下载的NC文件以月为时间范围,所以构建的三维数组时间分辨率为月平均,根据具体要求,可截取一定的空间范围;高度从20km开始,100km结束,针对以κ千米为递增间隔的高度层,逐层将平滑处理后的温度二维数组写入,最终得到以经度、纬度和高度为维度的三维数组;Step 8. Construct a three-dimensional array of the temperature of this year and this month: Since the downloaded NC file takes months as the time range, the time resolution of the constructed three-dimensional array is the monthly average. According to specific requirements, a certain spatial range can be intercepted; the height is from 20km Start and end at 100km, write the smoothed temperature two-dimensional array layer by layer for the height layer with increasing interval of κ km, and finally get a three-dimensional array with longitude, latitude and height as dimensions;
步骤9、按照步骤1至步骤8将若干年内(例如前4年)同时期的温度数据进行构建并取平均值,建立更为可靠的三维数组的立方网格,作为虚拟试验中具有普遍适用性的该月份的临近空间温度数据资源;Step 9. According to steps 1 to 8, the temperature data of the same period in several years (for example, the first 4 years) are constructed and averaged to establish a more reliable three-dimensional array of cubic grids, which has universal applicability in virtual experiments. Nearby spatial temperature data resources for the month;
步骤10、根据步骤1至步骤9对密度、压强进行相同的处理,得到密度和压强的三维数组的立方体网格;Step 10, according to step 1 to step 9, carry out the same processing to density, pressure, obtain the cubic grid of the three-dimensional array of density and pressure;
步骤11、将已构建好的包括温度、密度、压强在内的数据写入文本文件T;Step 11, write the constructed data including temperature, density and pressure into text file T;
步骤12A、确定大气水平风场的计算公式:大气水平风场指的是水平梯度风场,包括纬向风和经向风;由于不同的纬度风场的特点也不同,所以其计算方法在纬度范围15°~80°范围内和赤道上空需要根据不同的公式计算梯度风;而15°S~15°N之间的风场可以通过线性插值的方法得到;Step 12A, determine the calculation formula of the atmospheric horizontal wind field: the atmospheric horizontal wind field refers to the horizontal gradient wind field, including latitudinal wind and meridional wind; since the characteristics of the wind field at different latitudes are also different, its calculation method is different in latitude In the range of 15° to 80° and above the equator, the gradient wind needs to be calculated according to different formulas; while the wind field between 15°S and 15°N can be obtained by linear interpolation;
根据纬度范围,确定相应的风场计算公式:According to the latitude range, determine the corresponding wind field calculation formula:
(一)在纬度范围为15°~80°范围内,根据式(1)计算地转风:(1) In the range of latitude from 15° to 80°, the geostrophic wind is calculated according to formula (1):
其中,P为气压,ρ为大气密度;称为地转参数,Ω为地转角速度,为地理纬度;x为向东的距离,y为向北的距离;ug、vg分别为15°~80°范围内水平纬向、经向地转风;Among them, P is the air pressure, and ρ is the atmospheric density; is called the geostrophic parameter, Ω is the geostrophic angular velocity, is the geographic latitude; x is the distance to the east, and y is the distance to the north; u g and v g are the horizontal latitudinal and meridional geostrophic winds within the range of 15°-80°, respectively;
再根据公式(2)计算梯度风:Then calculate the gradient wind according to formula (2):
其中,a为地球半径;ugr、vgr分别为水平纬向、经向梯度风;in, a is the radius of the earth; u gr and v gr are the horizontal latitudinal and meridional gradient winds respectively;
(二)赤道上空需要特殊求解,在纬度范围为15°S~15°N范围内,根据公式(3)计算梯度风:(2) The sky over the equator requires a special solution. Within the latitude range of 15°S to 15°N, the gradient wind is calculated according to formula (3):
其中,ue、ve分别为15°S~15°N内水平纬向、经向梯度风;Among them, u e and v e are the horizontal latitudinal and meridional gradient winds within 15°S~15°N, respectively;
步骤12B、构建大气水平风场的三维数组的均匀立方体网格:大气水平风场主要利用大气密度和压强、地球轨道半径和转角速度等计算得到,因此将之前构建的该区域范围的密度和压强三维数组代入风场计算公式,得到对应位置的地转风和梯度风三维数组的均匀立方体网格,由此生成该区域临近空间大气水平风场资源;Step 12B, constructing a uniform cubic grid of three-dimensional arrays of the atmospheric horizontal wind field: the atmospheric horizontal wind field is mainly calculated using the atmospheric density and pressure, the radius of the earth's orbit, and the angular velocity, etc., so the previously constructed density and pressure of the region The three-dimensional array is substituted into the calculation formula of the wind field to obtain the uniform cubic grid of the three-dimensional array of the geostrophic wind and the gradient wind at the corresponding position, thereby generating the atmospheric horizontal wind field resources in the adjacent space of the region;
步骤12C、将已构建好的风场数据写入所述的文本文件T;Step 12C, writing the constructed wind field data into the text file T;
步骤12D、然后从写入数据的文本文件T中读取大气环境数据,根据SEDRIS的DRM、SRM和EDCS三个规范对数据进行表示,并将大气环境数据保存为SEDRIS标准格式。Step 12D, then read the atmospheric environment data from the text file T where the data is written, represent the data according to the three specifications of SEDRIS DRM, SRM and EDCS, and save the atmospheric environment data in the SEDRIS standard format.
至此,临近空间大气环境数据资源的构建完成,构建了包括温度、密度、压强和风场在内的数据库。每个大气元素的数据以三维均匀网格形式保存,为了便于之后的数据转换,将其写入txt文件。So far, the construction of near-space atmospheric environment data resources has been completed, and the database including temperature, density, pressure and wind field has been constructed. The data of each atmospheric element is saved in the form of a three-dimensional uniform grid. In order to facilitate subsequent data conversion, it is written into a txt file.
具体实施方式三:Specific implementation mode three:
本实施方式步骤2所述的对经度、纬度、高度和温度数据中的异常数据进行处理的具体过程如下:The specific process of processing the abnormal data in the longitude, latitude, height and temperature data described in step 2 of this embodiment is as follows:
针对每个事件中经度、纬度、高度和温度数据,获取数据的原始平均分辨率,然后剔除异常数据,并将异常数据的前一个数据作为基础,在此基础上添加利用分辨率进行递推得到与剔除的异常数据数量相等的递推数据。For the longitude, latitude, altitude and temperature data in each event, the original average resolution of the data is obtained, and then the abnormal data is eliminated, and the previous data of the abnormal data is used as the basis, and the resolution is added on this basis to obtain Recursive data equal to the number of abnormal data removed.
以温度数据的异常值处理为例:异常极大值一般分布在每个事件中温度数据的最后两个数据中,以温度数据的后10个温度数据为例,事先根据温度数据获得原始平均分辨率,温度数据的后10个温度数据:225.5196838、225.0498047、224.7708435、224.5986786、224.3938904、224.054245、223.5292511、222.8206482、221.9805908、221.1124725、220.2646179、219.3830872、218.3756866、217.1251678、215.4690247、213.3180847、210.8113708、208.0403748、9.96921E+36、9.96921E+36,可见最后两个数据为异常数据。首先根据温度数据获得原始平均分辨率,将异常值前的所有温度数据取相邻温度差值,然后对这些差值求平均值,并将平均值作为该事件的温度原始分辨率。数据中的最后两个数据为异常数据,以倒数第三个数据为基础,在倒数第三个数据的基础上添加原始分辨率递推得到最后两个数据。Take the abnormal value processing of temperature data as an example: the abnormal maximum value is generally distributed in the last two data of the temperature data in each event. Taking the last 10 temperature data of the temperature data as an example, the original average resolution is obtained according to the temperature data in advance.率,温度数据的后10个温度数据:225.5196838、225.0498047、224.7708435、224.5986786、224.3938904、224.054245、223.5292511、222.8206482、221.9805908、221.1124725、220.2646179、219.3830872、218.3756866、217.1251678、215.4690247、213.3180847、210.8113708、208.0403748、9.96921E+ 36. 9.96921E+36, it can be seen that the last two data are abnormal data. Firstly, the original average resolution is obtained according to the temperature data, and all the temperature data before the outlier are taken as the adjacent temperature difference, and then these differences are averaged, and the average value is used as the original temperature resolution of the event. The last two data in the data are abnormal data. Based on the penultimate data, the last two data are recursively obtained by adding the original resolution on the basis of the penultimate data.
其它步骤及参数与具体实施方式一或二相同。Other steps and parameters are the same as those in Embodiment 1 or Embodiment 2.
具体实施方式四:Specific implementation mode four:
本实施方式步骤4所述坐标转换的具体过程如下:The specific process of the coordinate conversion described in step 4 of the present embodiment is as follows:
因为最终建立的坐标系的网格是以距离为单位的,因此根据Matlab2014a中的坐标投影系统,将每个事件中获取的经纬度数据转换为直角坐标下的距离数据,并就近取整。Because the grid of the final coordinate system is based on distance, according to the coordinate projection system in Matlab2014a, the latitude and longitude data obtained in each event are converted into distance data in Cartesian coordinates and rounded to the nearest integer.
其它步骤及参数与具体实施方式一至三之一相同。Other steps and parameters are the same as those in Embodiments 1 to 3.
具体实施方式五:Specific implementation mode five:
本实施方式所述的κ与所述的κ′相等。当κ=κ′时经度、纬度和高度构成的方格为正方体方格。κ described in this embodiment is equal to κ′ described above. When κ=κ', the grid formed by longitude, latitude and height is a cube grid.
其它步骤及参数与具体实施方式一至四之一相同。Other steps and parameters are the same as in one of the specific embodiments 1 to 4.
具体实施方式六:Specific implementation method six:
本实施方式所述的κ=κ′=1。In this embodiment, κ=κ′=1.
其它步骤及参数与具体实施方式一至五之一相同。Other steps and parameters are the same as one of the specific embodiments 1 to 5.
具体实施方式七:Specific implementation mode seven:
本实施方式所述步骤1中获取临近空间大气环境资源的历史数据的具体过程为:The specific process of obtaining the historical data of the atmospheric environment resources in the adjacent space in step 1 described in this embodiment is as follows:
选择SABER特定空间范围和时间范围对应的临近空间大气环境数据NC文件;读取NC文件,获取临近空间大气环境资源的历史数据。Select the NC file of near-space atmospheric environment data corresponding to the specific space range and time range of SABER; read the NC file to obtain the historical data of near-space atmospheric environment resources.
以获取某个地区四年的数据为例,2012~2015四年的48个月的48个NC文件,每个文件中包含NC文件的信息、存储的经度、纬度、高度、温度等数据,利用NetCDF4Excel插件和matlab读取NC文件,获得临近空间大气环境资源的历史数据。Take the four-year data of a certain region as an example, 48 NC files in 48 months from 2012 to 2015, each file contains NC file information, stored data such as longitude, latitude, altitude, temperature, etc., using The NetCDF4Excel plug-in and matlab read NC files to obtain historical data of atmospheric environment resources in adjacent spaces.
其它步骤及参数与具体实施方式一至六之一相同。Other steps and parameters are the same as one of the specific embodiments 1 to 6.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610624527.0A CN106291756B (en) | 2016-08-02 | 2016-08-02 | The construction method of near space air virtual environment resource |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610624527.0A CN106291756B (en) | 2016-08-02 | 2016-08-02 | The construction method of near space air virtual environment resource |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106291756A CN106291756A (en) | 2017-01-04 |
CN106291756B true CN106291756B (en) | 2018-07-03 |
Family
ID=57664174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610624527.0A Expired - Fee Related CN106291756B (en) | 2016-08-02 | 2016-08-02 | The construction method of near space air virtual environment resource |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106291756B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108710753A (en) * | 2018-05-18 | 2018-10-26 | 上海精密计量测试研究所 | Near space Neutron Environment emulation mode |
CN110347375B (en) * | 2019-06-21 | 2022-11-29 | 哈尔滨工业大学 | Resource-combined virtual integrated natural environment framework and method for virtual experiments |
CN111352173A (en) * | 2020-02-17 | 2020-06-30 | 东南大学 | Calculation method of weighted average temperature based on spatial location |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101655568A (en) * | 2009-07-06 | 2010-02-24 | 民航数据通信有限责任公司 | Four-dimensional interpolation method of high-altitude grid point meteorological data |
CN103093410A (en) * | 2013-01-06 | 2013-05-08 | 国家海洋局第二海洋研究所 | Surveying and mapping method of submarine topography six-dimension mesh |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7391899B2 (en) * | 2005-03-31 | 2008-06-24 | Harris Corporation | System and method for three dimensional change detection and measurement of a scene using change analysis |
-
2016
- 2016-08-02 CN CN201610624527.0A patent/CN106291756B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101655568A (en) * | 2009-07-06 | 2010-02-24 | 民航数据通信有限责任公司 | Four-dimensional interpolation method of high-altitude grid point meteorological data |
CN103093410A (en) * | 2013-01-06 | 2013-05-08 | 国家海洋局第二海洋研究所 | Surveying and mapping method of submarine topography six-dimension mesh |
Non-Patent Citations (1)
Title |
---|
"电子海图云服务关键技术研究与实践";刘灿由;《中国博士学位论文全文数据库(电子期刊)》;20140115;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN106291756A (en) | 2017-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114037911B (en) | Large-scale forest height remote sensing inversion method considering ecological zoning | |
CN102506824B (en) | Method for generating digital orthophoto map (DOM) by urban low altitude unmanned aerial vehicle | |
JP5461748B1 (en) | Power generation amount prediction device, power generation amount prediction method, and program | |
CN102509354B (en) | Manufacturing method for projection digital elevation model capable of changing together with image | |
CN106291756B (en) | The construction method of near space air virtual environment resource | |
CN104702685A (en) | Pollution source tracking method based on backward trajectory and system thereof | |
BR112014019836B1 (en) | METHOD OF PRODUCTION OF A DIGITAL ELEVATION MODEL OF IMPROVED RESOLUTION | |
KR20140029882A (en) | 3d spatial image based renewable energy site evaluation method and evaluation system | |
CN101598785B (en) | Method for generating rational function imaging model of each grade satellite image products | |
CN105868443B (en) | Construction method of micro-terrain microclimate element field | |
CN107391794A (en) | A kind of typhoon continuous stereo Wind-field Retrieval method | |
Pacina et al. | Pre‐dam valley reconstruction based on archival spatial data sources: Methods, accuracy, and 3D printing possibilities | |
CN113743027B (en) | Method and device for drawing wind resource map based on CFD technology | |
ESTOQUE et al. | < Original Papers> Validating ALOS PRISM DSM-derived surface feature height: Implications for urban volume estimation | |
CN110887495B (en) | Method for applying real-time road conditions of cloud platform to urban emergency GIS platform | |
CN104537614A (en) | Orthographic correction method of CCD image of HJ-1 satellite | |
CN117557681A (en) | High-precision topographic map generation method and device based on multi-source mapping data | |
CN115018973B (en) | Non-target evaluation method for low-altitude unmanned aerial vehicle point cloud modeling precision | |
CN102426010B (en) | Method for generating variable resolution digital elevation model | |
CN102132662B (en) | An Improved Method for Making Tropical Cyclone Wind Belts | |
Hron et al. | Automatic Generation of 3D building models from point clouds | |
CN115357675A (en) | Method and system for establishing image control point database through image control point standardization processing | |
CN110245202B (en) | A Method of Solving Target Grid Set in Polar Coordinate System Based on Iterative Proximity Search | |
CN110968656B (en) | Topographic map processing method and processing device | |
Oh et al. | Real-Time Terrain Correction of Satellite Imagery-Based Solar Irradiance Maps Using Precomputed Data and Memory Optimization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180703 |
|
CF01 | Termination of patent right due to non-payment of annual fee |