CN106290429B - A kind of PGNAA characteristic gamma rays power spectrum backoff algorithm - Google Patents
A kind of PGNAA characteristic gamma rays power spectrum backoff algorithm Download PDFInfo
- Publication number
- CN106290429B CN106290429B CN201610886933.4A CN201610886933A CN106290429B CN 106290429 B CN106290429 B CN 106290429B CN 201610886933 A CN201610886933 A CN 201610886933A CN 106290429 B CN106290429 B CN 106290429B
- Authority
- CN
- China
- Prior art keywords
- power spectrum
- pgnaa
- gamma ray
- characteristic gamma
- characteristic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001228 spectrum Methods 0.000 title claims abstract description 27
- 230000005251 gamma ray Effects 0.000 claims abstract description 31
- 239000000463 material Substances 0.000 claims abstract description 27
- 238000010521 absorption reaction Methods 0.000 claims abstract description 7
- 239000000126 substance Substances 0.000 claims description 9
- 230000002285 radioactive effect Effects 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 230000004913 activation Effects 0.000 claims description 2
- 230000000149 penetrating effect Effects 0.000 abstract 1
- 238000004364 calculation method Methods 0.000 description 7
- 239000004568 cement Substances 0.000 description 6
- 235000012054 meals Nutrition 0.000 description 5
- 230000005855 radiation Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000003947 neutron activation analysis Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000005619 thermoelectricity Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/20—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
- G01N23/207—Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
- G01N23/2076—Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions for spectrometry, i.e. using an analysing crystal, e.g. for measuring X-ray fluorescence spectrum of a sample with wavelength-dispersion, i.e. WDXFS
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Dispersion Chemistry (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
技术领域:Technical field:
本发明涉及一种能谱补偿算法,具体是一种PGNAA特征伽马射线能谱补偿算法。The invention relates to an energy spectrum compensation algorithm, in particular to a PGNAA characteristic gamma ray energy spectrum compensation algorithm.
背景技术:Background technique:
瞬发伽玛中子活化分析技术(PGNAA)是一种快速、无接触多元素分析技术,在建材、煤炭、热电、冶金、矿山等行业得到了大量的应用。瞬发伽玛中子活化分析技术的原理是被测物料与热中子发生俘获反应,产生特征伽马射线,特征伽马射线穿过被测物料到达伽马射线探测器形成核脉冲信号,核脉冲信号经过多道处理器转变成数字信号,最终形成特征伽马射线能谱。特征伽马射线在穿透被测物料的同时,部分射线会被被测物料自身吸收,致使最终的特征伽马射线能谱不能代表真实的特征伽马射线能谱,当被测物料总量发生变化时,特征伽马射线的衰减量也会发生变化,最终得到的伽马射线能谱就会存在失真现象。Prompt gamma neutron activation analysis (PGNAA) is a rapid, non-contact multi-element analysis technique, which has been widely used in building materials, coal, thermoelectricity, metallurgy, mining and other industries. The principle of the prompt gamma neutron activation analysis technology is that the measured material reacts with thermal neutrons to generate characteristic gamma rays, which pass through the measured material and reach the gamma ray detector to form a nuclear pulse signal. The pulse signal is converted into a digital signal through a multi-channel processor, and finally forms a characteristic gamma ray energy spectrum. When the characteristic gamma ray penetrates the measured material, part of the rays will be absorbed by the measured material itself, so that the final characteristic gamma ray energy spectrum cannot represent the real characteristic gamma ray energy spectrum. When the total amount of the measured material occurs When , the attenuation of characteristic gamma rays will also change, and the finally obtained gamma ray energy spectrum will be distorted.
发明内容:Invention content:
为解特征伽马射线能谱失真问题,如图1所示本发明在PGNAA设备后加装一台核子皮带秤,核子皮带秤由137Cs放射源和电离室两部分构成,电离室的信号传送给PGNAA设备计算主机。In order to solve the problem of characteristic gamma ray energy spectrum distortion, as shown in Figure 1, the present invention installs a nuclear belt scale after the PGNAA equipment. The nuclear belt scale is composed of a 137 Cs radiation source and an ionization chamber. The signal transmission of the ionization chamber Compute the host for the PGNAA device.
理论上被测物料越多中子活化产生的特征伽马射线也就越多,但是由于物料自身对伽马射线也具有衰减作用,探测器收集到的特征伽马射线也会随物料的增加成e指数衰减:Theoretically, the more the measured material is, the more characteristic gamma rays will be generated by neutron activation. However, since the material itself also has an attenuation effect on gamma rays, the characteristic gamma rays collected by the detector will also increase with the increase of materials. e exponential decay:
IEi=I0Ei×exp(-μmEitm) (1)I Ei =I0 Ei ×exp(-μ mEi t m ) (1)
式中IO0i代表产生能量为Ei的特征伽马射线的强度,IEi代表穿过物料后能量为Ei的伽马射线的强度,μmEi表示能量为Ei的特征伽马射线在物料中的质量衰减系数,与物质的原子序数以及射线能量有关,tm为物料的质量厚度。由公式1可知,如果知道μmEi和tm即可量化描述特征伽马射线的衰减程度,从而在数学上进行将测量特征伽马射线量还原为真实特征伽马射线量的补偿运算。In the formula, IO 0i represents the intensity of the characteristic gamma ray with energy Ei, I Ei represents the intensity of the gamma ray with energy Ei after passing through the material, and μmEi represents the quality of the characteristic gamma ray with energy Ei in the material The attenuation coefficient is related to the atomic number of the material and the energy of the ray, and t m is the mass thickness of the material. It can be seen from formula 1 that if μ mEi and t m are known, the attenuation degree of characteristic gamma rays can be quantified and described, so that the compensation operation of restoring the measured characteristic gamma ray amount to the real characteristic gamma ray amount can be performed mathematically.
本发明在PGNAA设备后安装了一台核子皮带秤,采用137Cs放射源、电离室透射结构,核子皮带秤遵循以下数学关系:The present invention installs a nuclear belt scale behind the PGNAA equipment, adopts 137 Cs radiation source, ionization chamber transmission structure, and the nuclear belt scale follows the following mathematical relationship:
N=N0×exp(-μm0tm) (2)N=N0×exp(-μ m0 t m ) (2)
式中N表示有物料时电离室计数,N0表示空皮带时电离室计数,μm0表示137Cs放射源对应的质量衰减系数,则可推导出将tm带入公式1,则可以得到:In the formula, N represents the ionization chamber count when there is material, N0 represents the ionization chamber count when the belt is empty, μ m0 represents the mass attenuation coefficient corresponding to the 137 Cs radioactive source, then it can be deduced Substituting t m into Equation 1, we can get:
式中当物质组成成分变化不大的时候,此比例系数近似为常数,这样我们只要求得常数kEi,通过电离室的计数N、N0即可得到特征伽马射线能谱的衰减程度,继而对能谱进行修正。In the formula When the material composition does not change much, the proportionality coefficient is approximately constant, so we only need to obtain the constant k Ei , and the attenuation degree of the characteristic gamma ray energy spectrum can be obtained by counting N and N0 in the ionization chamber, and then the energy The spectrum is corrected.
质量衰减系数与线性吸收系数关系如下:The relationship between the mass attenuation coefficient and the linear absorption coefficient is as follows:
μm=μ/ρ (4)μ m = μ/ρ (4)
式中μm为质量衰减系数,μ为线性吸收系数,ρ为物质密度。Where μ m is the mass attenuation coefficient, μ is the linear absorption coefficient, and ρ is the material density.
物质的线性吸收系数μ定义如下:The linear absorption coefficient μ of a substance is defined as follows:
式中Ni表示物质中第i种元素的原子数密度,为第i种元素的伽马光子与该元素的反应截面,m表示物质由m种元素构成。In the formula, N i represents the atomic number density of the i-th element in the substance, is the reaction cross-section between the gamma photon of the i-th element and the element, and m indicates that the substance is composed of m elements.
Ni的计算公式如下:The calculation formula of N i is as follows:
式中mρ表示物质的质量密度,Mi表示元素原子量,fi表示第i种元素在物质中所占的比例(归一化之后)。In the formula, m ρ represents the mass density of the substance, M i represents the atomic weight of the element, and f i represents the proportion of the i-th element in the substance (after normalization).
这样我们只要知道被测物质的大致元素组成成分,根据伽马光子与各种元素的反应截面-伽马射线能量的曲线,即可通过公式4、公式5、公式6计算出137Cs放射源对应的质量衰减系数μm0和能量为Ei的特征伽马射线在物料中的质量衰减系数μmEi,进而得到比例常数kEi与伽马射线能量的关系曲线,根据电离室计数N、N0以及公式3即可实现对能谱的补偿修正。In this way, as long as we know the approximate element composition of the substance to be measured, according to the curve of the reaction cross section of gamma photon and various elements-gamma ray energy, we can calculate the corresponding 137 Cs radioactive source through formula 4, formula 5 and formula 6 The mass attenuation coefficient μ m0 and the mass attenuation coefficient μ mEi of the characteristic gamma ray with energy Ei in the material, and then obtain the relationship curve between the proportional constant k Ei and the gamma ray energy, according to the ionization chamber count N, N0 and formula 3 The compensation and correction of the energy spectrum can be realized.
有益效果:Beneficial effect:
采用本发明对PGNAA设备的特征伽马射线能谱进行补偿运算,解决了特征伽马射线能谱失真的问题,可提升PGNAA设备的检测精度。By adopting the present invention, the characteristic gamma ray energy spectrum of the PGNAA equipment is compensated and calculated, the problem of distortion of the characteristic gamma ray energy spectrum is solved, and the detection accuracy of the PGNAA equipment can be improved.
附图说明:Description of drawings:
图1为本发明示意图,图2为各元素光子截面曲线图,图3为计算后比例常数kE曲线图,图4为补偿前后特征伽马射线能谱图。Fig. 1 is a schematic diagram of the present invention, Fig. 2 is a graph of the photon section of each element, Fig. 3 is a graph of proportionality constant k E after calculation, and Fig. 4 is a graph of characteristic gamma ray energy spectra before and after compensation.
1-PGNAA设备,2-PGNAA运算主机,3-输送皮带,4-被测物料,5-137Cs放射源,6-电离室。1-PGNAA equipment, 2-PGNAA computing host, 3-conveyor belt, 4-measured material, 5- 137 Cs radiation source, 6-ionization chamber.
具体实现方式:The specific implementation method:
本补偿算法具体实现方式由两部分构成:计算比例常数kEi矩阵、补偿运算。The specific implementation of the compensation algorithm consists of two parts: calculation of the proportional constant k Ei matrix, and compensation operation.
1、计算比例常数kEi矩阵1. Calculate the proportionality constant k Ei matrix
在这里我们假设被测物质为水泥生料,假设特征伽马射线均产生于被测物料厚度中心处,水泥生料主要由CaCO3、SiO2、Al2O3、Fe2O3、H2O构成,各物质大致成分见表1,则被测物料中主要含有H、C、O、Al、Si、Ca、Fe七种元素,根据氧化物成分计算各元素比例fi见表2,各元素光子截面曲线图见图2。Here we assume that the measured material is cement raw meal, assuming that the characteristic gamma rays are generated at the center of the thickness of the measured material, and the cement raw meal is mainly composed of CaCO 3 , SiO 2 , Al 2 O 3 , Fe 2 O 3 , H 2 O composition, the general composition of each substance is shown in Table 1, and the tested material mainly contains seven elements: H, C, O, Al, Si, Ca, and Fe. See Figure 2 for the photon cross-section curves of the elements.
表1 水泥生料成分含量表Table 1 Component content of cement raw meal
表2 水泥生料元素原子比例fi Table 2 Atomic ratio f i of cement raw meal elements
根据已知的各元素光子截面数据、各元素原子量、各元素比例以及公式6、公式5、公式4即可计算出137Cs放射源对应的质量衰减系数μm0和能量为Ei的特征伽马射线在物料中的质量衰减系数μmEi,进而得到比例常数kEi(i=1~1024,对应10keV~10.24MeV能量)矩阵,kE曲线见图3。According to the known photon cross-section data of each element, the atomic weight of each element, the ratio of each element, and Formula 6, Formula 5, and Formula 4, the mass attenuation coefficient μ m0 corresponding to the 137 Cs radiation source and the characteristic gamma ray with energy Ei can be calculated The mass attenuation coefficient μ mEi in the material, and then obtain the proportionality constant k Ei (i=1-1024, corresponding to 10keV-10.24MeV energy) matrix, the k E curve is shown in Figure 3.
μm=μ/ρ (4)μ m = μ/ρ (4)
2、补偿运算2. Compensation calculation
已知特征伽马射线能谱IEi(i=1~1024)、常数kEi(i=1~1024)、电离室信号N、N0,即可通过公式3计算出补偿后的特征伽马射线能谱I0Ei(i=1~1024)。Given the characteristic gamma ray energy spectrum I Ei (i=1~1024), constant k Ei (i=1~1024), and ionization chamber signals N, N0, the compensated characteristic gamma ray can be calculated by formula 3 Energy spectrum I0 Ei (i=1~1024).
在水泥生料检测应用中,我们比较关心的能谱区域是2.8MeV~10.24MeV,因此我们在计算时只将此部分区域能谱进行补偿运算,如图4所示,曲线I为实测水泥生料能谱(2.8MeV~10.24MeV放大15倍),曲线I0为补偿计算后能谱曲线(补偿计算区间为2.8MeV~10.24MeV,此区间曲线放大15倍)。In the application of cement raw meal detection, the energy spectrum region we are more concerned about is 2.8MeV ~ 10.24MeV, so we only compensate this part of the energy spectrum in the calculation, as shown in Figure 4, the curve I is the measured cement raw material. The energy spectrum of the material (2.8MeV~10.24MeV is enlarged by 15 times), and the curve I0 is the energy spectrum curve after compensation calculation (the compensation calculation interval is 2.8MeV~10.24MeV, and the curve in this interval is enlarged by 15 times).
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610886933.4A CN106290429B (en) | 2016-10-11 | 2016-10-11 | A kind of PGNAA characteristic gamma rays power spectrum backoff algorithm |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610886933.4A CN106290429B (en) | 2016-10-11 | 2016-10-11 | A kind of PGNAA characteristic gamma rays power spectrum backoff algorithm |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106290429A CN106290429A (en) | 2017-01-04 |
CN106290429B true CN106290429B (en) | 2018-10-09 |
Family
ID=57718586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610886933.4A Expired - Fee Related CN106290429B (en) | 2016-10-11 | 2016-10-11 | A kind of PGNAA characteristic gamma rays power spectrum backoff algorithm |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106290429B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108645880B (en) * | 2018-05-11 | 2021-02-02 | 南京航空航天大学 | Energy spectrum analysis method for large-volume sample |
CN112432965A (en) * | 2019-08-10 | 2021-03-02 | 丹东东方测控技术股份有限公司 | Method for on-line detection of sinter components |
CN112392454B (en) * | 2020-11-16 | 2023-02-03 | 中国石油大学(华东) | Fracture bulk density quantitative calculation method based on neutron activation analysis self-shielding correction |
CN115616010B (en) * | 2022-12-19 | 2023-03-21 | 合肥金星智控科技股份有限公司 | Material component detection method and detection device based on cross-belt neutron activation analysis |
CN118483260B (en) * | 2024-07-09 | 2024-11-12 | 同方威视科技江苏有限公司 | Elemental analysis system, method and device, and program product |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1892252A (en) * | 2005-06-27 | 2007-01-10 | 通用电气公司 | Gamma and neutron radiation detector |
CN204556840U (en) * | 2015-04-20 | 2015-08-12 | 清华大学 | Distinguish the on-line measurement device of uranium ore |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7152002B2 (en) * | 2002-06-03 | 2006-12-19 | Sabia, Inc. | Method and apparatus for analysis of elements in bulk substance |
US9291580B2 (en) * | 2014-07-11 | 2016-03-22 | Sabia Inc. | Prompt gamma neutron activation substance analyzers |
-
2016
- 2016-10-11 CN CN201610886933.4A patent/CN106290429B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1892252A (en) * | 2005-06-27 | 2007-01-10 | 通用电气公司 | Gamma and neutron radiation detector |
CN204556840U (en) * | 2015-04-20 | 2015-08-12 | 清华大学 | Distinguish the on-line measurement device of uranium ore |
Non-Patent Citations (5)
Title |
---|
不同材料对γ射线衰减系数的MCNP模拟;刘自霞 等;《核电子学与探测技术》;20131130;第33卷(第11期);第1376-1380页 * |
中子场及γ射线自吸收在PGNAA测量中的影响研究;程璨 等;《原子能科学技术》;20141031;第48卷;第802-806页 * |
中子活化分析中煤样厚度及探测器位置的选择;王二永 等;《吉林大学学报》;20150930;第53卷(第5期);第1031-1033页 * |
大样品中子活化分析中γ衰减系数的研究;张海青 等;《第十二届全国活化分析学术交流会》;20101018;第35页第1-7段 * |
大样品中子活化分析的理论依据和误差修正;张海青 等;《原子能科学技术》;20101031;第44卷(第10期);第1238-1242页 * |
Also Published As
Publication number | Publication date |
---|---|
CN106290429A (en) | 2017-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106290429B (en) | A kind of PGNAA characteristic gamma rays power spectrum backoff algorithm | |
Lépy et al. | Uncertainties in gamma-ray spectrometry | |
Akkurt et al. | Chemical corrosion on gamma-ray attenuation properties of barite concrete | |
CN102608649B (en) | Statistical Distributed Gamma or X-ray Energy Spectrum Decomposition Method | |
CN108680943B (en) | A neutron energy spectrum measurement device and method based on prompt gamma ray neutron activation analysis technology | |
Smith et al. | Prompt Gamma Rays Accompanying the Spontaneous Fission of Cf 252 | |
Demir et al. | Radiation transmission of heavyweight and normal-weight concretes containing colemanite for 6 MV and 18 MV X-rays using linear accelerator | |
US9518941B1 (en) | Weight-percent analysis for prompt gamma neutron activation substance analyzers | |
JP2015087115A5 (en) | ||
Velo et al. | A portable tomography system with seventy detectors and five gamma-ray sources in fan beam geometry simulated by Monte Carlo method | |
Kurudirek et al. | A simple method to determine effective atomic numbers of some compounds for multi-energetic photons | |
Kazui et al. | Study of the radiation hardness of CsI (Tl) crystals for the BELLE detector | |
Azaryan | Research of influence of monocrystal thickness NAJ (TL) on the intensity of the integrated flux of scattered gamma radiation | |
CN103901460B (en) | A kind of spontaneous emission gamma-ray Gamma spectrum analysis method under the conditions of complex dielectrics | |
Wang et al. | A new numerical correction method for gamma spectra based on the system transformation theory of random signals | |
Scherrer et al. | Gamma rays from interaction of 14-Mev neutrons with various materials | |
CN112444533A (en) | Method for detecting moisture content and element content in sintering material | |
Singh et al. | Effect of finite sample dimensions and total scatter acceptance angle on the gamma ray buildup factor | |
Jeon et al. | Automatic energy calibration of radiation portal monitors using deep learning and spectral remapping | |
Moreira et al. | Determination of 51Cr and 241Am X-ray and gamma-ray emission probabilities per decay | |
Gjorgieva et al. | Measurement of the mass attenuation coefficient from 81 keV to 1333 keV for elemental materials Al, Cu and Pb | |
Hosobuchi et al. | Demonstrative measurement of proton-nuclear reaction by deconvolving the prompt gamma-ray spectra | |
Walg et al. | Solar Flare Detection Method using Rn-222 Radioactive Source | |
Pillalamarri et al. | A solution for 40K interference from K internal to the human body, in an underground high sensitivity whole body counter at the Waste Isolation Pilot Plant, Carlsbad, NM, USA | |
Miyamaru et al. | Development of anticoincidence detector specializing in small-angle Compton scattering gamma rays for boron neutron capture therapy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CB03 | Change of inventor or designer information |
Inventor after: Lu Jingbin Inventor after: Zhao Long Inventor after: Xu Xu Inventor before: Zhao Long Inventor before: Lu Jingbin Inventor before: Xu Xu |
|
CB03 | Change of inventor or designer information | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20181009 Termination date: 20201011 |
|
CF01 | Termination of patent right due to non-payment of annual fee |