CN106289901A - 一种基于分解‑重构制作裂隙岩体模型的方法 - Google Patents

一种基于分解‑重构制作裂隙岩体模型的方法 Download PDF

Info

Publication number
CN106289901A
CN106289901A CN201610600134.6A CN201610600134A CN106289901A CN 106289901 A CN106289901 A CN 106289901A CN 201610600134 A CN201610600134 A CN 201610600134A CN 106289901 A CN106289901 A CN 106289901A
Authority
CN
China
Prior art keywords
rock
reference point
model
crack
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610600134.6A
Other languages
English (en)
Other versions
CN106289901B (zh
Inventor
李博
杜时贵
张海鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shaoxing
Original Assignee
University of Shaoxing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shaoxing filed Critical University of Shaoxing
Priority to CN201610600134.6A priority Critical patent/CN106289901B/zh
Publication of CN106289901A publication Critical patent/CN106289901A/zh
Application granted granted Critical
Publication of CN106289901B publication Critical patent/CN106289901B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising

Abstract

一种基于分解‑重构制作裂隙岩体模型的方法,包括如下步骤:1)在裂隙岩体表面贴上参考点;2)利用三维扫描仪对岩体表面进行扫描,获得裂隙岩体的三维表面形态的测量数据,利用逆向工程软件完成对扫描数据的拼合,获得裂隙岩体的三维数值模型,记录参考点的坐标;3)沿着岩体内部的天然贯通裂隙将块体分解,分解后获得含有内部裂隙面的各块体,保留块体上的参考点;4)利用三维扫描仪对分解的块体进行逐个扫描,同步骤2)处理,利用分解之前参考点的坐标对获得的三维数值模型进行坐标转化拼接,即获得重构的三维数值模型;5)根据获得的三维数值模制作基于天然岩体的三维裂隙岩体模型。本发明能真实反映天然贯通裂隙岩体几何形态。

Description

一种基于分解-重构制作裂隙岩体模型的方法
技术领域
本发明涉及一种在对裂隙岩体进行分解-重构后制作裂隙岩体模型的方法,适用于内部存在贯通裂隙的天然岩体。
背景技术
天然岩体的形成需要经历一个复杂而又漫长的过程,由于不同的地质成因,岩体在经历多次构造运动的改造作用,发生了构造变形与破裂,破坏了岩体的连续性和完整性。以上作用会在其内部形成众多节理、裂隙等不连续构造,其裂隙岩体内部富含各种缺陷,包括微裂纹、孔隙以及节理裂隙等宏观非连续面,在地下内部复杂的水环境下,这些岩体裂隙严重影响着岩体的力学特性和渗透特性。
随着经济的发展,边坡加固、地铁、隧道、水利水电等岩土工程正在快速的建设中,而岩体内部的裂隙对工程岩体的稳定性有着十分重要的影响,国内外很多岩土工程的事故都是由于贯通裂隙造成的。针对此问题,国内外众多学者对岩体的力学与渗流问题进行了广泛的讨论和理论研究。由于天然岩体在试验时局限性较大,且无法进行重复试验,因此,国内外众多学者制作含裂隙岩石模型来代替天然岩石试样,进行相关研究。如何制作含裂隙岩石试样已发展成为岩体力学试验领域的重点和难点。如下为目前制作裂隙岩体试样通常采用的几种方法。
申请号为201511018137.0的中国专利申请《一种基于3D打印技术的贯通裂隙岩体试样的制备方法》公开了一种模拟实际岩体,通过三维数值建模,基于3D打印得到模具,在模具中制作裂隙岩体试样的方法。该方法的裂隙岩体模型模拟实际情况,并非基于天然岩体,在实际使用过程中与实际会有误差。
申请号为201510568441.6的中国专利申请《一种用于裂隙岩体渗流试验仿真裂隙制作方法》公开了一种基于CAD软件绘制数字化的粗糙度轮廓曲线的数值模型,采用3D打印技术制作出裂隙板,进而通过裂隙板制作模具获得裂隙试样的方法。该方法只能模拟单裂隙面的渗流情况,对于复杂裂隙岩体的情况没有考虑。
申请号为201410052815.4的中国专利申请《一种随机裂隙岩石试样的制作方法》公开了一种用锡条模拟裂隙的方法,将锡条和砂浆材料混合搅拌,形成含大量随机裂隙的岩石试样。该方法采用锡条模拟的裂隙,与实际岩体裂隙结构面有较大出入,且锡条脆性较低,容易发生断裂,进而影响裂隙的分布。
申请号为201310721631.8的中国专利申请《一种随机裂隙试验模型的制备方法》公开了一种将不同厚度、不同大小以及不同数量的裂隙碎片随机掺入到介质模型材料中,以制备能够模拟岩体裂隙的方法。该方法对于各裂隙空间形态和具体形状不可控。
申请号20130592035.4的中国专利申请《用于岩土工程三维随机裂隙的均匀施作装置及操作方法》公开了一种用于岩土工程三维随机裂隙的均匀施作装置及操作方法,该装置中,裂隙可通过插入试验试件内部的刀盘深度进行控制。该方法无法制作岩石内部存在交叉裂隙结构面的模型,局限性较大。
发明内容
为了克服现有制作裂隙岩体模型的无法真实反映天然贯通裂隙岩体几何形态的不足,本发明提供了一种原理简单、操作方便、成型效果好,能真实反映天然贯通裂隙岩体几何形态的基于分解-重构制作裂隙岩体模型的方法。
本发明所采用的技术方案是:
一种基于分解-重构制作裂隙岩体模型的方法,包括如下步骤:
1)在裂隙岩体表面贴上参考点:对岩体试样的表面进行清理,贴上参考点;
2)岩石块体的三维数值模型:利用三维扫描仪对岩体表面进行扫描,获得裂隙岩体的三维表面形态的测量数据,利用逆向工程软件完成对扫描数据的拼合,获得裂隙岩体的三维数值模型,记录参考点的坐标;
3)岩石块体的分解:沿着岩体内部的天然贯通裂隙将块体分解,分解后获得含有内部裂隙面的各块体,保留块体上的参考点;
4)岩体三维数值模型的重构:利用三维扫描仪对分解的块体进行逐个扫描,同步骤2)获得三维数值模型,记录此次扫描的参考点坐标,利用分解之前参考点的坐标对获得的三维数值模型进行坐标转化拼接,即获得重构的三维数值模型;
5)根据获得的三维数值模制作基于天然岩体的三维裂隙岩体模型。
进一步,所述步骤5)中,基于3D打印制作模型:将获得的三维数值模型导入3D打印机中,自选打印材料对数值模型进行打印,即得到基于天然岩体的三维裂隙岩体模型。
所述的参考点为特制可用于坐标识别的参考点,三维扫描仪扫描之后建立三维数值模型,参考点可被识别和标记出。
更进一步,所述三维扫描仪在扫描过程中,收集的数据即为点云的三维坐标,因此,只要参考点可被三维扫描仪识别,即可记录参考点的坐标。
再进一步,所述的贴参考点需要注意的是,在岩体表面贴参考点,不得覆盖表面裂隙,且参考点为了便于块体的重构拼接,不能规则分布,在分解块体时,不得对参考点进行任何的移动、撕毁。
优选的,所述三维扫描仪为高精度结构光三维扫描仪,亦可是其他高精度三维扫描仪。
所述逆向工程软件及参考点坐标转化拼接,需要用到数据采集软件、数据分析软件和点云处理软件。
所述的打印材料通常以ABS(Acrylonitrile-butadine-styrene,即丙烯腈-丁二烯-苯乙烯共聚物)、PLA(Polylactic acid,即生物降解塑料聚乳酸)和PVA(Polyvinylalcohol,vinylalcohol polymer,即聚乙烯醇)为原材料,可以较好的进行力学和渗流试验。
由于采用了上述技术方案,本发明所取得有益效果为:
1)对于存在贯通裂隙的岩体,通过分解重构可以还原原岩内部的真实情况。无需制作复杂的制样模具,不会将模具所带来的误差传递给模型。
2)利用高精度三维扫描仪,可精确的还原裂隙结构面的粗糙度情况,且无需考虑岩石试样的形状。
3)利用高精度3D打印技术可将三维数值模型完好的打印出来,制样过程简单快捷,所选材料为通用材料,模型无需考虑模具的限制。
附图说明
图1为贴了参考点的裂隙岩体以及沿裂隙分解块体的式样。
图2为扫描前裂隙岩体的三维数值模型。
图3为3D打印的裂隙岩体三维模型。
其中,1、参考点,2、分解的块体。
具体实施方式
下面结合附图对本发明作进一步描述。
参照图1~图3,一种基于分解-重构制作裂隙岩体模型的方法,包括如下步骤:
1)现场采集天然裂隙岩体试样,对岩体试样的表面进行清理,贴上参考点(如附图1)。参考点如附图1上所示,不能规则分布,不得覆盖裂隙。
2)利用三维扫描仪对岩体表面进行扫描,获得裂隙岩体各个表面的测量数据,利用逆向工程软件完成对扫描数据的拼合,获得裂隙岩体的三维表面数值模型,记录参考点的坐标。即附图2所示的三维模型,对岩体表面的扫描只能显示表面裂缝的情况,不能反映内部裂隙的发育。
3)沿着岩体内部的天然裂隙将块体分解,分解后获得含有内部裂隙面的各块体,保留块体上的参考点。
4)利用三维扫描仪对分解的块体进行逐个扫描,同步骤2)获得三维数值模型,记录扫描的参考点坐标,利用分解之前参考点的坐标对获得的三维数值模型进行坐标转化拼接,即获得重构的三维数值模型。
5)将获得的三维数值模型导入3D打印机中,可自选打印材料对数值模型进行打印,即可得到基于天然岩体的裂隙岩体模型。附图3为3D打印的裂隙岩体三维模型,可以精确反映内部裂隙的表面形态和空间分布情况。在进行力学试验时可根据岩石的力学性能选取强度相似的打印材料,在进行渗流试验时可选用刚性透明树脂材料,实现流体的可视化。
所述的参考点为特制可用于坐标识别的参考点,三维扫描仪扫描之后建立三维数值模型,参考点可被识别和标记出。
更进一步,所述三维扫描仪在扫描过程中,收集的数据即为点云的三维坐标,因此,只要参考点可被三维扫描仪识别,即可记录参考点的坐标。
再进一步,所述的贴参考点需要注意的是,在岩体表面贴参考点,不得覆盖表面裂隙,且参考点为了便于块体的重构拼接,不能规则分布,在分解块体时,不得对参考点进行任何的移动、撕毁。
优选的,所述三维扫描仪为高精度结构光三维扫描仪,亦可是其他高精度三维扫描仪。
所述逆向工程软件及参考点坐标转化拼接,需要用到数据采集软件、数据分析软件和点云处理软件。
所述的打印材料通常以ABS、PLA和PVA为原材料,可以较好的进行力学和渗流试验。

Claims (6)

1.一种基于分解-重构制作裂隙岩体模型的方法,其特征在于:所述方法包括如下步骤:
1)在裂隙岩体表面贴上参考点:对岩体试样的表面进行清理,贴上参考点;
2)岩石块体的三维数值模型:利用三维扫描仪对岩体表面进行扫描,获得裂隙岩体的三维表面形态的测量数据,利用逆向工程软件完成对扫描数据的拼合,获得裂隙岩体的三维数值模型,记录参考点的坐标;
3)岩石块体的分解:沿着岩体内部的天然贯通裂隙将块体分解,分解后获得含有内部裂隙面的各块体,保留块体上的参考点;
4)岩体三维数值模型的重构:利用三维扫描仪对分解的块体进行逐个扫描,同步骤2)获得三维数值模型,记录此次扫描的参考点坐标,利用分解之前参考点的坐标对获得的三维数值模型进行坐标转化拼接,即获得重构的三维数值模型;
5)根据获得的三维数值模制作基于天然岩体的三维裂隙岩体模型。
2.如权利要求1所述的一种基于分解-重构制作裂隙岩体模型的方法,其特征在于:所述步骤5)中,基于3D打印制作模型:将获得的三维数值模型导入3D打印机中,自选打印材料对数值模型进行打印,即得到基于天然岩体的三维裂隙岩体模型。
3.如权利要求1或2所述的一种基于分解-重构制作裂隙岩体模型的方法,其特征在于:所述步骤2)中,所述三维扫描仪在扫描过程中,收集的数据即为点云的三维坐标,因此,只要参考点可被三维扫描仪识别,即可记录参考点的坐标。
4.如权利要求1或2所述的一种基于分解-重构制作裂隙岩体模型的方法,其特征在于:所述步骤1)中,在岩体表面贴参考点,不得覆盖表面裂隙,且参考点为了便于块体的重构拼接,不能规则分布,在分解块体时,不得对参考点进行任何的移动、撕毁。
5.如权利要求1或2所述的一种基于分解-重构制作裂隙岩体模型的方法,其特征在于:所述步骤2)中,所述逆向工程软件及参考点坐标转化拼接,需要用到数据采集软件、数据分析软件和点云处理软件。
6.如权利要求2所述的一种基于分解-重构制作裂隙岩体模型的方法,其特征在于:所述的打印材料采用ABS、PLA或PVA。
CN201610600134.6A 2016-07-26 2016-07-26 一种基于分解-重构制作裂隙岩体模型的方法 Active CN106289901B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610600134.6A CN106289901B (zh) 2016-07-26 2016-07-26 一种基于分解-重构制作裂隙岩体模型的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610600134.6A CN106289901B (zh) 2016-07-26 2016-07-26 一种基于分解-重构制作裂隙岩体模型的方法

Publications (2)

Publication Number Publication Date
CN106289901A true CN106289901A (zh) 2017-01-04
CN106289901B CN106289901B (zh) 2018-11-30

Family

ID=57662567

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610600134.6A Active CN106289901B (zh) 2016-07-26 2016-07-26 一种基于分解-重构制作裂隙岩体模型的方法

Country Status (1)

Country Link
CN (1) CN106289901B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107146226A (zh) * 2017-05-05 2017-09-08 国家测绘地理信息局四川测绘产品质量监督检验站 基于独立面收缩的面裂隙检查方法及装置
CN108304629A (zh) * 2018-01-19 2018-07-20 石家庄铁道大学 一种工程构筑物基础表面粗糙度界定方法
CN108376422A (zh) * 2018-01-05 2018-08-07 中山大学 一种岩土材料连续跨尺度量测表征方法
CN110244653A (zh) * 2019-06-13 2019-09-17 深圳市腾浩科技有限公司 工件的加工轨迹规划方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140052420A1 (en) * 2012-08-20 2014-02-20 Ingrain Inc. Digital Rock Analysis Systems and Methods that Estimate a Maturity Level
CN104819874A (zh) * 2015-03-19 2015-08-05 绍兴文理学院 一种岩石相似表面形态模型结构面制作方法
CN105158039A (zh) * 2015-09-08 2015-12-16 河海大学 一种用于裂隙岩体渗流试验仿真裂隙制作方法
CN105203359A (zh) * 2015-09-15 2015-12-30 中国矿业大学 一种类岩石试件标准粗糙度节理面的预制方法
CN105628470A (zh) * 2015-12-29 2016-06-01 河海大学 一种基于3d打印技术的贯通裂隙岩体试样的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140052420A1 (en) * 2012-08-20 2014-02-20 Ingrain Inc. Digital Rock Analysis Systems and Methods that Estimate a Maturity Level
CN104819874A (zh) * 2015-03-19 2015-08-05 绍兴文理学院 一种岩石相似表面形态模型结构面制作方法
CN105158039A (zh) * 2015-09-08 2015-12-16 河海大学 一种用于裂隙岩体渗流试验仿真裂隙制作方法
CN105203359A (zh) * 2015-09-15 2015-12-30 中国矿业大学 一种类岩石试件标准粗糙度节理面的预制方法
CN105628470A (zh) * 2015-12-29 2016-06-01 河海大学 一种基于3d打印技术的贯通裂隙岩体试样的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
QUAN JIANG ET AL.: ""Modeling rock specimens through 3D printing: Tentative experiments and prospects"", 《ACTA MECH. SIN.》 *
QUAN JIANG ET AL.: ""Reverse modelling of natural rock joints using 3D scanning and 3D printing"", 《COMPUTERS AND GEOTECHNICS 》 *
闫俊 等: ""三维激光扫描在矿山边坡岩体结构调查中的应用"", 《人民长江》 *
鞠杨 等: "基于3D打印技术的岩体复杂结构与应力场的可视化方法", 《科学通报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107146226A (zh) * 2017-05-05 2017-09-08 国家测绘地理信息局四川测绘产品质量监督检验站 基于独立面收缩的面裂隙检查方法及装置
CN108376422A (zh) * 2018-01-05 2018-08-07 中山大学 一种岩土材料连续跨尺度量测表征方法
CN108304629A (zh) * 2018-01-19 2018-07-20 石家庄铁道大学 一种工程构筑物基础表面粗糙度界定方法
CN110244653A (zh) * 2019-06-13 2019-09-17 深圳市腾浩科技有限公司 工件的加工轨迹规划方法
CN110244653B (zh) * 2019-06-13 2020-10-09 深圳市腾浩科技有限公司 工件的加工轨迹规划方法

Also Published As

Publication number Publication date
CN106289901B (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
CN106228559B (zh) 基于分解-重构建立裂隙岩体三维数值模型的方法
CN106289901B (zh) 一种基于分解-重构制作裂隙岩体模型的方法
Korumaz et al. An integrated Terrestrial Laser Scanner (TLS), Deviation Analysis (DA) and Finite Element (FE) approach for health assessment of historical structures. A minaret case study
Zhu et al. Challenges and prospects of digital core-reconstruction research
Chen et al. Automatic extraction of blocks from 3D point clouds of fractured rock
Ghazvinian et al. 3D random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing
CN109269914A (zh) 一种研究岩石节理面剪切破坏过程的分析方法及试验系统
CN104374619B (zh) 一种不规则柱状节理裂隙网络模型岩芯试样的制备方法
US20220383475A1 (en) Method for identifying potential landslide hazard of reservoir bank based on rock mass degradation feature
CN102222359A (zh) 一种岩心三维孔隙结构重构方法
CN106501090B (zh) 用于水力压裂模拟实验的裂缝表征方法
CN105758875B (zh) 一种裂隙岩体可视化模拟方法
CN108819215A (zh) 高精度非常规岩石模型3d打印方法与装置
Zhang et al. Failure mechanism of bedded salt formations surrounding salt caverns for underground gas storage
CN105547831A (zh) 一种测定含复杂结构面岩体变形性质的模型试验方法
CN111896565A (zh) 一种深埋高压注浆隧洞围岩渗透特性与承载能力测试方法
CN108240930A (zh) 一种基于3d打印技术的含内置裂隙的类岩石试样制备方法
CN114235519A (zh) 一种基于3d打印技术研究软硬互层岩体力学行为的方法
CN111829887B (zh) 一种基于高压压汞的岩石压裂模拟实验方法
White et al. Newly discovered Aurignacian engraved blocks from Abri Cellier: History, context and dating
CN112231818A (zh) 一种基于bim的山地城市三维地质建模方法
CN106338257A (zh) 一种定量测量支撑剂嵌入深度的方法
CN105717021A (zh) 一种定量确定裂隙岩体渗透各向异性的方法
CN109752230A (zh) 一种含人工充填节理的岩体试样的制作方法
Wang et al. Study on the influence of hole defects with different shapes on the mechanical behavior and damage law of coal and rock

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant