CN106289378B - 基于激光跟踪仪的工业机器人性能测量方法 - Google Patents

基于激光跟踪仪的工业机器人性能测量方法 Download PDF

Info

Publication number
CN106289378B
CN106289378B CN201610664737.2A CN201610664737A CN106289378B CN 106289378 B CN106289378 B CN 106289378B CN 201610664737 A CN201610664737 A CN 201610664737A CN 106289378 B CN106289378 B CN 106289378B
Authority
CN
China
Prior art keywords
robot
computer
laser tracker
distance
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610664737.2A
Other languages
English (en)
Other versions
CN106289378A (zh
Inventor
贺惠农
施威涛
黄宝丽
孙颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Spectrum Technology Co., Ltd.
Original Assignee
HANGZHOU VICON TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HANGZHOU VICON TECHNOLOGY Co Ltd filed Critical HANGZHOU VICON TECHNOLOGY Co Ltd
Priority to CN201610664737.2A priority Critical patent/CN106289378B/zh
Publication of CN106289378A publication Critical patent/CN106289378A/zh
Application granted granted Critical
Publication of CN106289378B publication Critical patent/CN106289378B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

本发明公开了一种基于激光跟踪仪的工业机器人性能测量方法,包括激光跟踪仪、计算机和设于机器人上的示教器,计算机分别与激光跟踪仪和示教器电连接;包括如下步骤:建立机器人工具坐标系;坐标准直;确定机器人测量平面和试验位姿;选择距离准确度作为测量项目;激光跟踪仪测量2个激光靶球的空间位置数据;计算机计算测量距离和指令距离;计算机输出距离准确度指标,生成测试报告。本发明具有可精确实现机器人性能测量,测量精度高、操作简单,测量时间短的特点。

Description

基于激光跟踪仪的工业机器人性能测量方法
技术领域
本发明涉及电子测量和数据处理技术领域,特别涉及一种测量精度高、操作简单,测量时间短的基于激光跟踪仪的工业机器人性能测量方法。
背景技术
工业机器人是现代化生产和流水线作业的核心设备,根据国家相关法规规定,需要对出厂或者长时间使用后的机器人进行性能测量以确保机器人性能能够达到规定的精度要求。《GB/T 12642-2013工业机器人性能规范及试验方法》对工业机器人的各项性能指标进行了明确详细的阐述。规范规定了工业机器人14项需要进行测量的性能指标及其测试方法。14项指标在测量时都被要求进行多次循环测试,多项指标又要求测量机器人末端的姿态,而传统的测量方法一般无法测量得到机器人末端的姿态数据,同时存在测量精度低、需要手动设置试验位姿、手动保存原始数据、记录原始参数、手动计算测量结果、填写测试报告,操作过程非常复杂,测量耗费时间长,对测量人员技术水平要求高等问题。
发明内容
本发明的发明目的是为了克服现有技术中的测量方法测量精度低、操作过程复杂,测量时间长的不足,提供了一种测量精度高、操作简单,测量时间短的基于激光跟踪仪的工业机器人性能测量方法。
为了实现上述目的,本发明采用以下技术方案:
一种基于激光跟踪仪的工业机器人性能测量方法,包括激光跟踪仪、计算机和设于机器人上的示教器,计算机分别与激光跟踪仪和示教器电连接;包括如下步骤:
(1-1)建立机器人工具坐标系;
(1-2)计算机座坐标系下的位置数据;
(1-3)确定机器人测量平面和试验位姿;
(1-4)选择距离准确度作为测量项目;
(1-5)激光跟踪仪测量2个激光靶球的空间位置数据;
(1-6)计算机计算测量距离和指令距离;
(1-7)计算机输出距离准确度指标,生成测试报告。
现有技术的工业机器人末端姿态数据无法得到、测量精度低、过程复杂、耗费时间长、对测量人员技术水平要求高;本发明依托激光跟踪仪,实现精确地机器人自动化性能测量,测量精度高、操作简单,测量时间短,有效提高了机器人性能测量结果的可靠性。
本发明将机器人末端的坐标系转换到机器人TCP点上,建立工具坐标系之后,机器人示教器上显示的位置和姿态均为TCP点的位置和姿态,将激光跟踪仪测量点和机器人示教器上显示点统一为空间同一点;将测量系统和指令系统的坐标数值统一在同一坐标系下。
作为优选,所述步骤(1-1)包括如下步骤:
将若干个激光靶球固定在机器人末端的夹具上,选取其中一个靶球作为TCP点,将机器人依次移动至运动空间中不在同一直线上的n 个位置,在每个位置处的机器人姿态均进行变化;
激光跟踪仪测量TCP点的n组位置数据m(i)=(xm(i),ym(i),zm(i)),i=1,2,...,n;
计算机从示教器上读取n组机器人末端的位姿数据 p(i)=(x(i),y(i),z(i),a(i),b(i),c(i)),其中,x(i),y(i),z(i)为TCP点相对机器人末端的三维坐标平移量;
将p(i)用如下矩阵表示:
其中,向量n0(i),o0(i),a0(i),n1(i),o1(i),a1(i),n2(i),o2(i),a2(i) 由(a(i),b(i),c(i))唯一确定;
设定x,y,z为TCP点相对机器人末端的三维坐标平移量,则机器人末端转换到TCP点的旋转矩阵T可表示为
利用公式
计算得到xt(i),yt(i),zt(i),其中,TCP点位置数据 Pt(i)=(xt(i),yt(i),zt(i));
利用公式
|Pt(i)-Pt(j)|=|m(i)-m(j)|,求解x,y,z;i,j=1,2,..n;i≠j;
将x,y,z输入到机器人示教器上,示教器建立工具坐标系,示教器显示TCP点的空间位姿数据。
作为优选,步骤(1-2)包括如下步骤:
将机器人依次移动至运动空间中不在同一直线上的任意n个位置,每个位置处的机器人姿态均进行变化;
激光跟踪仪测量n组空间位置数据m(i)=(xm(i),ym(i),zm(i)),计算机读取示教器的位置数据p(i)=(x(i),y(i),z(i));
利用公式T=B*A-1计算测量坐标系和机座坐标系之间的转换矩阵T,其中, A-1为矩阵A的逆;
利用公式计算机座坐标系下的位置数据。
作为优选,步骤(1-3)包括如下步骤:
根据被测机器人实际工作空间范围,从GB/T 12642-2013标准提供的4个测试立方体中选择最合适的测试立方体和测试平面,确定机器人测量平面和试验位姿。
作为优选,步骤(1-4)包括如下步骤:
激光跟踪仪测量2个激光靶球的位置,得到2个激光靶球的位姿数据pt(i1)=(xm(i1),ym(i1),zm(i1),am(i1),bm(i1),cm(i1)),其中i1=1,2;每个激光靶球的位置循环测量30次,分别得到两个激光靶球的30组测试数据pm(i1,j1),i1=1,2;j1=1,2,...,30。
作为优选,步骤(1-6)包括如下步骤:
(6-1)计算机读取示教器上的指令位置p(i1)
p(i1)=(xc(i1),yc(i1),zc(i1),ac(i1),bc(i1),cc(i1));
(6-2)计算机计算测量距离
(6-2-1)计算机利用公式
计算2个激光靶球位置距离Dp(j1);
(6-2-2)计算机利用公式计算每个激光靶球的姿态距离Da(j1),Db(j1),Dc(j1);
(6-2-3)计算机利用公式计算每个激光靶球的平均距离Avg(Dp),Avg(Da),Avg(Db)和Avg(Dc);
(6-3)计算指令距离
(6-3-1)计算机利用公式
计算位置距离Dcp
(6-3-2)计算机利用公式计算姿态距离Dca,Dcb和Dcc
(6-4)计算机利用公式计算距离准确度指标ADp、ADb和ADc
因此,本发明具有如下有益效果:可精确实现机器人性能测量,测量精度高、操作简单,测量时间短,有效提高了机器人性能测量结果的可靠性。
附图说明
图1是本发明的一种流程图。
具体实施方式
下面结合附图和具体实施方式对本发明做进一步的描述。
如图1所示的实施例是一种基于激光跟踪仪的工业机器人性能测量方法,包括激光跟踪仪、计算机和设于机器人上的示教器,计算机分别与激光跟踪仪和示教器电连接;包括如下步骤:
步骤100,建立机器人工具坐标系
将5个激光靶球固定在机器人末端的夹具上,选取其中一个靶球作为TCP点,将机器人依次移动至运动空间中不在同一直线上的n=8 个位置,在每个位置处的机器人姿态均进行变化;
激光跟踪仪测量TCP点的n组位置数据m(i)=(xm(i),ym(i),zm(i)),i=1,2,...,n;
计算机从示教器上读取n组机器人末端的位姿数据 p(i)=(x(i),y(i),z(i),a(i),b(i),c(i)),其中,x(i),y(i),z(i)为TCP点相对机器人末端的三维坐标平移量;
将p(i)用如下矩阵表示:
其中,向量n0(i),o0(i),a0(i),n1(i),o1(i),a1(i),n2(i),o2(i),a2(i) 由(a(i),b(i),c(i))唯一确定;
设定x,y,z为TCP点相对机器人末端的三维坐标平移量,则机器人末端转换到TCP点的旋转矩阵T可表示为
利用公式
计算得到xt(i),yt(i),zt(i),其中,TCP点位置数据 Pt(i)=(xt(i),yt(i),zt(i));
利用公式
|Pt(i)-Pt(j)|=|m(i)-m(j)|,求解x,y,z;i,j=1,2,..n;i≠j;
将x,y,z输入到机器人示教器上,示教器建立工具坐标系,示教器显示TCP点的空间位姿数据。
步骤200,计算机座坐标系下的位置数据;
将机器人依次移动至运动空间中不在同一直线上的任意n个位置,每个位置处的机器人姿态均进行变化;
激光跟踪仪测量n组空间位置数据m(i)=(xm(i),ym(i),zm(i)),计算机读取示教器的位置数据p(i)=(x(i),y(i),z(i));
利用公式T=B*A-1计算测量坐标系和机座坐标系之间的转换矩阵T,其中, A-1为矩阵A的逆;
利用公式计算机座坐标系下的位置数据。
步骤300,确定机器人测量平面和试验位姿;
根据被测机器人实际工作空间范围,从GB/T 12642-2013标准提供的4个测试立方体中选择最合适的测试立方体和测试平面,确定机器人测量平面和试验位姿。
步骤400,选择距离准确度作为测量项目;
根据GB/T 12642-2013,测量项目类型可分为两大类,一:位姿类型测量项目,主要包括:位姿准确度和位姿重复性、多方向位姿准确度变动、距离准确度和距离重复性、位姿特性漂移、互换性、静态柔顺性,这类测量项目特点是只需要关注机器人运动到达某一位姿的性能,不需要关注运动过程的具体轨迹,对测量来说,只需要在机器人运动到某一位姿后,等待机器人稳定,进行测量;二:轨迹类型测量项目,主要包括:位置稳定时间、位置超调量、轨迹准确度和轨迹重复性、重复定向轨迹准确度、拐角偏差、轨迹速度特性、最小定位时间、摆动偏差,这类测量项目需要关注机器人整个运动过程,需要测量整条轨迹。
步骤500,激光跟踪仪测量2个激光靶球的空间位置数据;
激光跟踪仪测量2个激光靶球的位置,得到2个激光靶球的位姿数据pt(i1)=(xm(i1),ym(i1),zm(i1),am(i1),bm(i1),cm(i1)),其中i1=1,2;每个激光靶球的位置循环测量30次,分别得到两个激光靶球的30组测试数据pm(i1,j1),i1=1,2;j1=1,2,...,30。
步骤600,计算机计算测量距离和指令距离;
步骤610,计算机读取示教器上的指令位置p(i1)
p(i1)=(xc(i1),yc(i1),zc(i1),ac(i1),bc(i1),cc(i1));
步骤620,计算机计算测量距离
步骤621,计算机利用公式
计算2个激光靶球位置距离Dp(j1);
步骤622,计算机利用公式 计算每个激光靶球的姿态距离Da(j1),Db(j1),Dc(j1);
步骤623,计算机利用公式计算每个激光靶球的平均距离Avg(Dp),Avg(Da),Avg(Db)和Avg(Dc);
步骤630,计算指令距离
步骤631,计算机利用公式
计算位置距离Dcp
步骤632,计算机利用公式计算姿态距离Dca,Dcb和Dcc
步骤640,计算机利用公式计算距离准确度指标ADp、ADb和ADc
步骤700,计算机输出距离准确度指标,生成测试报告。
应理解,本实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (5)

1.一种基于激光跟踪仪的工业机器人性能测量方法,其特征是,包括激光跟踪仪、计算机和设于机器人上的示教器,计算机分别与激光跟踪仪和示教器电连接;包括如下步骤:
(1-1)建立机器人工具坐标系:
将若干个激光靶球固定在机器人末端的夹具上,选取其中一个靶球作为TCP点,将机器人依次移动至运动空间中不在同一直线上的n个位置,在每个位置处的机器人姿态均进行变化;
激光跟踪仪测量TCP点的n组位置数据m(i)=(xm(i),ym(i),zm(i)),i=1,2,...,n;
计算机从示教器上读取n组机器人末端的位姿数据p(i)=(x(i),y(i),z(i),a(i),b(i),c(i));
将p(i)用如下矩阵表示:
其中,向量n0(i),o0(i),a0(i),n1(i),o1(i),a1(i),n2(i),o2(i),a2(i)由(a(i),b(i),c(i))唯一确定;
设定x,y,z为TCP点相对机器人末端的三维坐标平移量,则机器人末端转换到TCP点的旋转矩阵T可表示为
利用公式
计算得到xt(i),yt(i),zt(i),其中,TCP点位置数据Pt(i)=(xt(i),yt(i),zt(i));
利用公式
|Pt(i)-Pt(j)|=|m(i)-m(j)|,求解x,y,z;i,j=1,2,..n;i≠j;
将x,y,z输入到机器人示教器上,示教器建立工具坐标系,示教器显示TCP点的空间位姿数据;
(1-2)计算机座坐标系下的位置数据;
(1-3)确定机器人测量平面和试验位姿;
(1-4)选择距离准确度作为测量项目;
(1-5)激光跟踪仪测量2个激光靶球的空间位置数据;
(1-6)计算机计算测量距离和指令距离;
(1-7)计算机输出距离准确度指标,生成测试报告。
2.根据权利要求1所述的基于激光跟踪仪的工业机器人性能测量方法,其特征是,步骤(1-2)包括如下步骤:
将机器人依次移动至运动空间中不在同一直线上的任意n个位置,每个位置处的机器人姿态均进行变化;
激光跟踪仪测量n组空间位置数据m(i)=(xm(i),ym(i),zm(i)),计算机读取示教器的位置数据p(i)=(x(i),y(i),z(i));
利用公式T=B*A-1计算测量坐标系和机座坐标系之间的转换矩阵T,其中,A-1为矩阵A的逆;
利用公式计算机座坐标系下的位置数据。
3.根据权利要求1所述的基于激光跟踪仪的工业机器人性能测量方法,其特征是,步骤(1-3)包括如下步骤:
根据被测机器人实际工作空间范围,从GB/T 12642-2013标准提供的4个测试立方体中选择最合适的测试立方体和测试平面,确定机器人测量平面和试验位姿。
4.根据权利要求1或2或3所述的基于激光跟踪仪的工业机器人性能测量方法,其特征是,步骤(1-5)包括如下步骤:
激光跟踪仪测量2个激光靶球的位置,得到2个激光靶球的位姿数据pt(i1)=(xm(i1),ym(i1),zm(i1),am(i1),bm(i1),cm(i1)),其中i1=1,2;每个激光靶球的位置循环测量30次,分别得到两个激光靶球的30组测试数据pm(i1,j1),i1=1,2;j1=1,2,...,30。
5.根据权利要求4所述的基于激光跟踪仪的工业机器人性能测量方法,其特征是,步骤(1-6)包括如下步骤:
(5-1)计算机读取示教器上的指令位置p(i1)
p(i1)=(xc(i1),yc(i1),zc(i1),ac(i1),bc(i1),cc(i1));
(5-2)计算机计算测量距离
(5-2-1)计算机利用公式
计算2个激光靶球位置距离Dp(j1);
(5-2-2)计算机利用公式计算每个激光靶球的姿态距离Da(j1),Db(j1),Dc(j1);
(5-2-3)计算机利用公式计算每个激光靶球的平均距离Avg(Dp),Avg(Da),Avg(Db)和Avg(Dc);
(5-3)计算指令距离
(5-3-1)计算机利用公式
计算位置距离Dcp
(5-3-2)计算机利用公式计算姿态距离Dca,Dcb和Dcc
(5-4)计算机利用公式计算距离准确度指标ADp、ADb和ADc
CN201610664737.2A 2016-08-12 2016-08-12 基于激光跟踪仪的工业机器人性能测量方法 Active CN106289378B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610664737.2A CN106289378B (zh) 2016-08-12 2016-08-12 基于激光跟踪仪的工业机器人性能测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610664737.2A CN106289378B (zh) 2016-08-12 2016-08-12 基于激光跟踪仪的工业机器人性能测量方法

Publications (2)

Publication Number Publication Date
CN106289378A CN106289378A (zh) 2017-01-04
CN106289378B true CN106289378B (zh) 2018-07-27

Family

ID=57670290

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610664737.2A Active CN106289378B (zh) 2016-08-12 2016-08-12 基于激光跟踪仪的工业机器人性能测量方法

Country Status (1)

Country Link
CN (1) CN106289378B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108107871B (zh) * 2017-12-26 2020-03-27 中科新松有限公司 优化的机器人性能测试方法及装置
CN109238764B (zh) * 2018-11-05 2024-03-19 重庆凯瑞机器人技术有限公司 一种静态柔顺性加载设备及加载测试系统
CN110228067B (zh) * 2019-06-13 2022-04-08 哈工大机器人(合肥)国际创新研究院 一种基于激光跟踪仪的双臂机器人组合操作测试方法
CN111336969A (zh) * 2020-03-27 2020-06-26 伯朗特机器人股份有限公司 工业机器人位姿特性中多方向位姿准确度变动的测量方法
CN111409104B (zh) * 2020-03-27 2022-11-04 伯朗特机器人股份有限公司 工业机器人位姿特性中位姿特性漂移的测量方法
CN111409103A (zh) * 2020-03-27 2020-07-14 伯朗特机器人股份有限公司 工业机器人位姿特性中互换性的测量方法
CN111409105A (zh) * 2020-03-27 2020-07-14 伯朗特机器人股份有限公司 工业机器人位姿特性中准确度、重复性的测量方法
CN111390971B (zh) * 2020-04-01 2022-11-29 伯朗特机器人股份有限公司 工业机器人轨迹准确性、重复度、速度特性的测量方法
CN111633687A (zh) * 2020-06-12 2020-09-08 上海机器人产业技术研究院有限公司 一种工业机器人末端抖动参数检测系统及方法
CN112720574B (zh) * 2020-12-03 2022-04-08 埃夫特智能装备股份有限公司 一种工业机器人抖动程度测量方法
CN112747675A (zh) * 2020-12-28 2021-05-04 许海波 一种基于软件的可纠正机器人离线轨迹的标定方法
CN113188444B (zh) * 2021-05-06 2023-01-13 上海航天测控通信研究所 激光测量系统不确定度测试实验与计算方法
CN114248270A (zh) * 2021-12-28 2022-03-29 杭州亿恒科技有限公司 基于人工智能的工业机器人精度补偿方法
CN114571506B (zh) * 2022-04-18 2023-06-27 浙江谱麦科技有限公司 工业机器人性能测量的姿态对齐方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8634950B2 (en) * 2009-12-14 2014-01-21 Embraer S.A. Automated positioning and alignment method and system for aircraft structures using robots
CN102198857B (zh) * 2010-11-12 2013-04-17 浙江大学 基于机器人和高度检测单元的飞机机翼水平评估方法
CN102062576B (zh) * 2010-11-12 2012-11-21 浙江大学 基于激光跟踪测量的附加外轴机器人自动标定方法
CN102087096B (zh) * 2010-11-12 2012-07-25 浙江大学 一种基于激光跟踪测量的机器人工具坐标系自动标定装置及方法
CN102601684B (zh) * 2012-04-06 2013-11-20 南京航空航天大学 基于间接测量法的高精度制孔机器人的工具参数标定方法
CN104729407B (zh) * 2015-03-26 2018-02-02 北京星航机电装备有限公司 机器人基坐标系与世界坐标系之间关系的自动确定方法
CN105157567B (zh) * 2015-05-15 2017-10-10 天津智通机器人有限公司 一种测量机器人的工具坐标系标定方法及系统
CN105058387A (zh) * 2015-07-17 2015-11-18 北京航空航天大学 基于激光跟踪仪的一种工业机器人基坐标系标定方法

Also Published As

Publication number Publication date
CN106289378A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
CN106289378B (zh) 基于激光跟踪仪的工业机器人性能测量方法
CN106289379B (zh) 工业机器人性能测量方法
CN110695993B (zh) 一种柔性机械臂同步测量方法、系统及装置
CN107972070B (zh) 机器人性能的测试方法、测试系统及计算机可读存储介质
CN105509671B (zh) 一种利用平面标定板的机器人工具中心点标定方法
CN109752003A (zh) 一种机器人视觉惯性点线特征定位方法及装置
CN107588731B (zh) 一种pcb板线宽测量方法及系统
CN113370221B (zh) 机器人tcp标定系统、方法、装置、设备及存储介质
CN107038275B (zh) 一种机械臂误差分析方法
Collins et al. Benchmarking simulated robotic manipulation through a real world dataset
CN110595479B (zh) 一种基于icp算法的slam轨迹评估方法
CN109676602A (zh) 行走机器人的自适应标定方法、系统、设备及存储介质
CN113419233A (zh) 感知效果的测试方法、装置和设备
Garcia et al. Guidance of robot arms using depth data from RGB-D camera
CN210361314U (zh) 一种基于增强现实技术的机器人示教装置
Yang et al. Aided inertial navigation: Unified feature representations and observability analysis
KR102152217B1 (ko) Vr 장비와 ar 장비간의 좌표계 일치용 지그 및 이를 이용한 물리 공간 공유 방법
CN113814987B (zh) 多相机机器人手眼标定方法、装置、电子设备及存储介质
CN106483984B (zh) 一种控制机器人跟随传送带运动的方法和装置
CN106643601B (zh) 工业机器人动态六维参数测量方法
Li et al. A performance evaluation method to compare the multi-view point cloud data registration based on ICP algorithm and reference marker
CN111390971B (zh) 工业机器人轨迹准确性、重复度、速度特性的测量方法
Nalepa et al. Investigation of movement of mobile robot work
CN109754408A (zh) 轨迹跟踪方法及装置
CN108733211A (zh) 追踪系统、其操作方法、控制器、及电脑可读取记录媒体

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20191106

Address after: 315000 7-1-1, building 033, building 2, No. 15, Lane 587, Juxian Road, Ningbo hi tech Zone, Ningbo City, Zhejiang Province

Patentee after: Zhejiang Spectrum Technology Co., Ltd.

Address before: Hangzhou City, Zhejiang province 310013 Shangcheng District No. 1418 Moganshan Road No. 4, building 2-4, standard workshop

Patentee before: Hangzhou Vicon Technology Co., Ltd.

TR01 Transfer of patent right