CN106276988A - A kind of method preparing battery-level lithium carbonate for precipitant with potassium carbonate - Google Patents
A kind of method preparing battery-level lithium carbonate for precipitant with potassium carbonate Download PDFInfo
- Publication number
- CN106276988A CN106276988A CN201610658960.6A CN201610658960A CN106276988A CN 106276988 A CN106276988 A CN 106276988A CN 201610658960 A CN201610658960 A CN 201610658960A CN 106276988 A CN106276988 A CN 106276988A
- Authority
- CN
- China
- Prior art keywords
- lithium
- carbonate
- solution
- potassium
- lithium carbonate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D15/00—Lithium compounds
- C01D15/08—Carbonates; Bicarbonates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D3/00—Halides of sodium, potassium or alkali metals in general
- C01D3/04—Chlorides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D7/00—Carbonates of sodium, potassium or alkali metals in general
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
一种以碳酸钾为沉淀剂制备电池级碳酸锂的方法,涉及化工技术领域,其有以下步骤完成,碱液配制→除杂→离子交换→蒸发浓缩→反应陈化→过滤洗涤→干燥→成品;本发明的有益效果在于:本发明以碳酸钾作为沉淀剂与氯化锂反应制备碳酸锂,最后得到的母液为纯度较高的氯化钾溶液,该母液可直接用于生产氯化钾或碳酸钾,无废物产生;采用加入晶种与反应温度配合解决了反应过程中较为严重的粘壁问题;采用晶种、反应温度、搅拌速度、超声结合避免了碳酸锂晶体聚集、粒度分布宽的问题。
A method for preparing battery-grade lithium carbonate by using potassium carbonate as a precipitating agent, involving the technical field of chemical industry, which comprises the following steps: preparation of lye → impurity removal → ion exchange → evaporation and concentration → reaction aging → filtration and washing → drying → finished product The beneficial effect of the present invention is: the present invention prepares lithium carbonate with salt of wormwood as precipitating agent and lithium chloride reaction, and the mother liquor obtained at last is the higher potassium chloride solution of purity, and this mother liquor can be directly used in the production of potassium chloride or Potassium carbonate, no waste generation; the more serious wall sticking problem in the reaction process is solved by adding seed crystals and the reaction temperature; the combination of seed crystals, reaction temperature, stirring speed, and ultrasound avoids the aggregation of lithium carbonate crystals and wide particle size distribution question.
Description
一、技术领域1. Technical field
本发明涉及化工技术领域,特别是涉及一种以碳酸钾为沉淀剂制备电池级碳酸锂的方法。The invention relates to the technical field of chemical engineering, in particular to a method for preparing battery-grade lithium carbonate by using potassium carbonate as a precipitating agent.
二、背景技术2. Background technology
碳酸锂是锂化合物中最基础的锂盐,是制备其它锂化合物和锂合金的主要原料。近年来,随着碳酸锂在新能源和新材料等高新技术领域,尤其是电动汽车领域崭露头角,表现出诱人的应用前景。Lithium carbonate is the most basic lithium salt among lithium compounds, and is the main raw material for preparing other lithium compounds and lithium alloys. In recent years, as lithium carbonate has emerged in high-tech fields such as new energy and new materials, especially in the field of electric vehicles, it has shown attractive application prospects.
我国拥有丰富的盐湖锂资源。在科技工作者和企业界的共同努力下逐步形成了盐湖锂资源开发、锂电池材料生产、锂电池制造、纯电动汽车组装为一体的完整的锂产业链。近年来,青海盐湖工业股份有限公司、青海中信国安科技发展有限公司以及青海锂业有限公司等盐湖企业分别采用吸附法、煅烧法和离子选择迁移法实现高镁锂比盐湖卤水提锂技术工业化,采用提取出的氯化锂溶液与碳酸钠(纯碱)反应沉淀(结晶)生产碳酸锂。my country has abundant salt lake lithium resources. With the joint efforts of scientific and technological workers and the business community, a complete lithium industry chain integrating the development of lithium resources in Salt Lake, the production of lithium battery materials, lithium battery manufacturing, and the assembly of pure electric vehicles has gradually been formed. In recent years, salt lake enterprises such as Qinghai Salt Lake Industry Co., Ltd., Qinghai CITIC Guoan Technology Development Co., Ltd., and Qinghai Lithium Industry Co., Ltd. have adopted the adsorption method, calcination method and ion selective migration method to realize the industrialization of lithium extraction technology from salt lake brine with high magnesium-lithium ratio. Lithium carbonate is produced by reacting and precipitating (crystallizing) the extracted lithium chloride solution with sodium carbonate (soda ash).
目前电池级碳酸锂制备方法主要有硫酸法、碳化法和电渗析法等。At present, the preparation methods of battery grade lithium carbonate mainly include sulfuric acid method, carbonization method and electrodialysis method.
硫酸法主要用于从锂辉石、锂云母等锂矿石中提取锂,基本流程如下:首先将锂精矿进行转型焙烧,酸化焙烧,再用硫酸浸取转化为硫酸锂溶液,经进一步分离金属杂质离子后,加入碳酸钠进行沉淀,制得电池级碳酸锂(徐龙泉,曾祖亮,梁虎,涂明江,米茂龙,硫酸法生产电池级碳酸锂,CN1267636;杨春晖,王运旭,赵江,张晓洪,李朝红,一种电池级碳酸锂的清洁化生产方法,CN103086405A;姚开林,金鹏,霍立明,黄春莲,涂明江,梁平武,张炳元,赵伟,硫酸锂溶液生产低镁电池级碳酸锂的方法CN101125668),硫酸法存在高品质锂精矿依赖进口、生产过程能耗高、尾矿以及废水难处理、污染严重等问题。自1996年以来,盐湖卤水提锂逐步成为全球锂工业的主导,目前全球生产的碳酸锂产品中80%的是从盐湖卤水提取。The sulfuric acid method is mainly used to extract lithium from lithium ores such as spodumene and lepidolite. The basic process is as follows: first, the lithium concentrate is transformed into roasted, acidified and roasted, and then leached with sulfuric acid to convert it into a lithium sulfate solution. After further separation of the metal After impurity ion, add sodium carbonate and carry out precipitation, make battery grade lithium carbonate (Xu Longquan, Zeng Zuliang, Liang Hu, Tu Mingjiang, Mi Maolong, sulfuric acid method produces battery grade lithium carbonate, CN1267636; Yang Chunhui, Wang Yunxu, Zhao Jiang , Zhang Xiaohong, Li Chaohong, A clean production method of battery-grade lithium carbonate, CN103086405A; Yao Kailin, Jinpeng, Huo Liming, Huang Chunlian, Tu Mingjiang, Liang Pingwu, Zhang Bingyuan, Zhao Wei, Method for producing low-magnesium battery-grade lithium carbonate from lithium sulfate solution CN101125668), the sulfuric acid method has problems such as dependence on imports of high-quality lithium concentrate, high energy consumption in the production process, difficult treatment of tailings and waste water, and serious pollution. Since 1996, lithium extraction from salt lake brine has gradually become the leading role in the global lithium industry. At present, 80% of the lithium carbonate products produced globally are extracted from salt lake brine.
碳化法所用原料主要来源于盐湖企业生产的含有一定杂质的碳酸锂,基本流程如下:首先将碳酸锂与水配制成悬浮液,然后通入二氧化碳将难溶的碳酸锂转化为溶解度较大的碳酸氢锂,过滤除去难溶杂质,然后通过离子交换等方法除去可溶性杂质,再通过热分解反应或加入高纯氢氧化锂制得电池级碳酸锂(彭秋华,戴扬,徐忠吉,深度碳化法处理碳酸盐型锂精矿生产电池级碳酸锂工艺,CN102502720A;苏康,杜洪文,向东,一种生产电池级碳酸锂或高纯碳酸锂的工业化方法,CN102583453A;谭秀民,张利珍,张秀峰,李琦,赵恒勤,利用工业级碳酸锂制备电池级碳酸锂或高纯碳酸锂的方法,CN103539169A;李伟达,袁爱武,周桂月,张军梅,一种从锂精矿生产电池级碳酸锂的方法,CN103708505A),碳化法会延长工艺流程,增加设备投入,大幅度增加生产成本,并且还存在工程化困难等问题。The raw materials used in the carbonization method mainly come from lithium carbonate containing certain impurities produced by salt lake enterprises. The basic process is as follows: firstly, lithium carbonate and water are prepared into a suspension, and then carbon dioxide is introduced to convert the insoluble lithium carbonate into carbonate with high solubility. Lithium hydrogen, filter to remove insoluble impurities, and then remove soluble impurities by ion exchange and other methods, and then obtain battery-grade lithium carbonate by thermal decomposition reaction or adding high-purity lithium hydroxide (Peng Qiuhua, Dai Yang, Xu Zhongji, deep carbonization method to treat carbonic acid Process for producing battery-grade lithium carbonate from salt-type lithium concentrate, CN102502720A; Su Kang, Du Hongwen, Xiang Dong, An industrial method for producing battery-grade lithium carbonate or high-purity lithium carbonate, CN102583453A; Tan Xiumin, Zhang Lizhen, Zhang Xiufeng, Li Qi, Zhao Hengqin , a method for preparing battery-grade lithium carbonate or high-purity lithium carbonate using industrial-grade lithium carbonate, CN103539169A; Li Weida, Yuan Aiwu, Zhou Guiyue, Zhang Junmei, a method for producing battery-grade lithium carbonate from lithium concentrate, CN103708505A), the carbonization method will be extended The technological process increases equipment investment, greatly increases production costs, and there are also problems such as engineering difficulties.
电渗析法是用盐湖卤水通过电渗析分离Li+和Mg2+得到氯化锂,再用碳酸钠沉淀得到碳酸锂,基本流程如下:以盐湖卤水为原料,利用离子选择性分离装置,在电场作用下使原料卤水中的镁离子、锂离子得到迁移,当原料卤水通过具有选择性的分离膜时,锂、钠等一价离子通过膜,镁、钙等二价离子被隔离,分离后得到了低镁锂比的富锂卤水,对低镁锂比的富锂卤水进行深度除Ca2+、Mg2、K+、S042- +等杂质,并进行辅料纯碱溶液的净化,深度除杂后的富锂卤水调酸中和后进行三效蒸发浓缩,浓缩后的富锂卤水在一定温度下进行加碳酸钠沉锂,然后进行压滤、浆洗、离心分离洗涤,最后进行干燥和冷却即得电池级碳酸锂成品(马培华,李增荣,李健,周晓军,刘国旺,赵颖,唐发满,马军,一种利用盐湖卤水制取电池级碳酸埋的方法,CN102976367;马培华,郭永楠,从高镁锂比盐湖卤水中直接制取电池级碳酸锂的方法,CN105540619A),电渗析法工艺流程长,多级电渗析的水消耗与电力消耗较高,生产成本过高。The electrodialysis method uses salt lake brine to separate Li+ and Mg2+ through electrodialysis to obtain lithium chloride, and then precipitates with sodium carbonate to obtain lithium carbonate. The magnesium ions and lithium ions in the raw brine are migrated. When the raw brine passes through the selective separation membrane, monovalent ions such as lithium and sodium pass through the membrane, and divalent ions such as magnesium and calcium are isolated. After separation, low-magnesium Lithium-rich brine with a low ratio of magnesium to lithium, deep removal of impurities such as Ca2+, Mg2, K+, S042- +, etc. And after three-effect evaporation and concentration, the concentrated lithium-rich brine is added with sodium carbonate to precipitate lithium at a certain temperature, then press-filtered, pulp washed, centrifuged and washed, and finally dried and cooled to obtain the battery-grade lithium carbonate product (Ma Peihua , Li Zengrong, Li Jian, Zhou Xiaojun, Liu Guowang, Zhao Ying, Tang Faman, Ma Jun, A method of using salt lake brine to produce battery-grade carbon dioxide, CN102976367; Ma Peihua, Guo Yongnan, Direct production of batteries from salt lake brine with high magnesium-lithium ratio Level lithium carbonate method, CN105540619A), the electrodialysis process is long, the water consumption and power consumption of multi-stage electrodialysis are high, and the production cost is too high.
还有文献报道以氯化锂为原料,用碳酸钠沉淀法制备电池级碳酸锂(李良彬,胡耐根,黄学武,葛钮玮,朱实贵,熊训满,马振千,一种利用氯化锂溶液制备电池级碳酸锂的方法,CN101609888;马进,马爱军,徐忠吉,何国才,易超,鲁兴武,程亮,李俞良,纪武仁,贡大雷,邵传兵,李守荣,张恩玉,李玉,薛莹莹,一种电池级碳酸锂的制备工艺,CN103351010A),该法缺点是对原料纯度要求很高,无法处理含杂碳酸锂原料。There are also literature reports that lithium chloride is used as raw material to prepare battery-grade lithium carbonate by sodium carbonate precipitation (Li Liangbin, Hu Naigen, Huang Xuewu, Ge Niuwei, Zhu Shigui, Xiong Xunman, Ma Zhenqian, a lithium chloride solution is used to prepare battery-grade carbonic acid Methods of Lithium, CN101609888; Ma Jin, Ma Aijun, Xu Zhongji, He Guocai, Yi Chao, Lu Xingwu, Cheng Liang, Li Yuliang, Ji Wuren, Gong Dalei, Shao Chuanbing, Li Shourong, Zhang Enyu, Li Yu, Xue Yingying, a The preparation process of battery-grade lithium carbonate, CN103351010A), the disadvantage of this method is that the purity of the raw materials is very high, and the raw materials containing lithium carbonate cannot be processed.
总之,在电池级碳酸锂制备方面,以上专利均采用碳酸钠(纯碱)作为沉淀剂。但是,使用碳酸钠作为沉淀剂存在粒度分布过宽等问题(见图1),与电池级碳酸锂的质量要求往往有一定的差距。另外,生产用碳酸钠作为沉淀剂生产碳酸锂后得到的母液中含有高浓度的氯化钠,回收价值不大(青海盐湖拥有丰富的优质氯化钠资源),如返回盐湖将影响盐湖的元素平衡,不利于盐湖企业的可持续发展。In short, in the preparation of battery-grade lithium carbonate, the above patents all use sodium carbonate (soda ash) as a precipitant. However, the use of sodium carbonate as a precipitant has problems such as too wide particle size distribution (see Figure 1), and there is often a certain gap with the quality requirements of battery-grade lithium carbonate. In addition, the mother liquor obtained after producing lithium carbonate with sodium carbonate as a precipitant contains high concentration of sodium chloride, which has little recovery value (Qinghai Salt Lake has abundant high-quality sodium chloride resources), and returning to the salt lake will affect the elements of the salt lake Balance is not conducive to the sustainable development of Salt Lake enterprises.
三、发明内容3. Contents of the invention
为了克服上述现有技术的不足,本发明提供了一种以碳酸钾为沉淀剂制备电池级碳酸锂的方法,其特征在于:其有以下步骤完成,碱液配制→除杂→离子交换→蒸发浓缩→反应陈化→过滤洗涤→干燥→成品;碱液配制工序的工艺步骤:配制质量百分比为10~35%的氢氧化钾溶液,配制浓度为1~3mol/L的碳酸钾溶液,并且按质量比氢氧化钾:碳酸钾为10~50:1将两种溶液混合备用;In order to overcome the above-mentioned deficiencies in the prior art, the present invention provides a kind of method with potassium carbonate as precipitant to prepare battery-grade lithium carbonate, it is characterized in that: it has the following steps to complete, lye preparation→impurity removal→ion exchange→evaporation Concentration→reaction aging→filtering and washing→drying→finished product; the process steps of the lye preparation process: preparing a potassium hydroxide solution with a mass percentage of 10-35%, preparing a potassium carbonate solution with a concentration of 1-3mol/L, and pressing The mass ratio of potassium hydroxide: potassium carbonate is 10~50:1 and the two solutions are mixed for later use;
除杂工序的工艺步骤:取盐湖卤水置于反应器中并加入氢氧化钾和碳酸钾混合溶液,将盐湖卤水的PH调至10~14,并搅拌,搅拌速度10~200转/min,反应0.5~3h,溶液反应温度保持在10~90℃,盐湖卤水中的镁离子与氢氧化钾反应生成氢氧化镁沉淀,钙离子与碳酸钾反应生成碳酸钙沉淀,通过过滤将氢氧化镁和碳酸钙沉淀与氯化锂分离,氯化锂溶液备用;The process steps of the impurity removal process: take the salt lake brine and put it in the reactor, add potassium hydroxide and potassium carbonate mixed solution, adjust the pH of the salt lake brine to 10~14, and stir at a stirring speed of 10~200 rpm. 0.5~3h, the reaction temperature of the solution is kept at 10~90°C, the magnesium ions in the brine of the salt lake react with potassium hydroxide to form magnesium hydroxide precipitates, and the calcium ions react with potassium carbonate to form calcium carbonate precipitates, and the magnesium hydroxide and carbonate The calcium precipitate is separated from the lithium chloride, and the lithium chloride solution is used for standby;
离子交换工序的工艺步骤:将备用的氯化锂溶液连续通过填有阳离子交换树脂的离子交换柱,得到精制的氯化锂溶液备用;The process steps of the ion exchange process: the spare lithium chloride solution is continuously passed through an ion exchange column filled with a cation exchange resin to obtain a refined lithium chloride solution for standby use;
蒸发浓缩工序的工艺步骤:将精制后的氯化锂溶液蒸发浓缩,锂离子的浓度控制在1.5~3.5mol/L,氯化锂溶液蒸发浓缩冷却备用;The process steps of the evaporation and concentration process: evaporate and concentrate the refined lithium chloride solution, control the concentration of lithium ions at 1.5~3.5mol/L, evaporate and concentrate the lithium chloride solution, and cool it for later use;
反应陈化工序的工艺步骤:在备用的氯化锂溶液加入碳酸锂晶种,碳酸锂晶种加入量为每升氯化锂溶液中加1.0~30g,然后缓慢加入浓度为1~3mol/L的碳酸钾溶液,碳酸钾加料速度1mL/min~200mL/min,反应温度控制在10℃~95℃,搅拌转速控制在100转/min~1000转/min,在加入碳酸钾溶液的同时开启超声装置,超声功率5w~2000w/L溶液,超声频率50KHZ~1MHZ,超声时间0~2h;The process steps of the reaction aging process: adding lithium carbonate seed crystals to the spare lithium chloride solution, the amount of lithium carbonate seed crystals added is 1.0-30g per liter of lithium chloride solution, and then slowly added at a concentration of 1-3mol/L Potassium carbonate solution, the feeding rate of potassium carbonate is 1mL/min~200mL/min, the reaction temperature is controlled at 10℃~95℃, the stirring speed is controlled at 100rpm~1000rpm, and the ultrasonic wave is turned on while adding potassium carbonate solution. Device, ultrasonic power 5w~2000w/L solution, ultrasonic frequency 50KHZ~1MHZ, ultrasonic time 0~2h;
碳酸钾溶液加料完成后,进行碳酸锂晶体的陈化,陈化时间0~2h;碳酸锂悬浮液陈化后备用;After potassium carbonate solution feeding is finished, carry out the aging of lithium carbonate crystal, aging time 0~2h; The lithium carbonate suspension is standby after aging;
过滤洗涤工序的工艺步骤:将上述陈化备用的碳酸锂悬浮液在室温下用中速滤纸过滤,过滤得到的滤饼用70℃~90℃去离子水洗涤3次以上备用;The process steps of the filtering and washing process: filter the above-mentioned aged lithium carbonate suspension with medium-speed filter paper at room temperature, and wash the filter cake obtained by filtering with 70°C-90°C deionized water for more than 3 times for standby;
干燥工序的工艺步骤:将上述备用的滤饼在烘箱中干燥,干燥温度为50℃~120℃,干燥时间为4h~16h,干燥之后得到电池级碳酸锂成品。电池级碳酸锂成品储存应注意避免阳光直射、避免在高湿条件下储存。The technical steps of the drying process: drying the above spare filter cake in an oven, the drying temperature is 50°C-120°C, and the drying time is 4h-16h, and the battery-grade lithium carbonate product is obtained after drying. When storing finished battery grade lithium carbonate products, care should be taken to avoid direct sunlight and storage under high humidity conditions.
本发明的有益效果在于:本发明以碳酸钾作为沉淀剂与氯化锂反应制备碳酸锂,最后得到的母液为纯度较高的氯化钾溶液,该母液可直接用于生产氯化钾或碳酸钾,无废物产生;采用加入晶种与反应温度配合解决了反应过程中较为严重的粘壁问题;采用晶种、反应温度、搅拌速度、超声结合避免了碳酸锂晶体聚集、粒度分布宽等影响电池级碳酸锂产品质量的问题。在本条件下得到的碳酸锂晶体形貌较好,产品质量稳定。The beneficial effect of the present invention is: the present invention uses potassium carbonate as precipitating agent and lithium chloride reaction to prepare lithium carbonate, and the mother liquor obtained at last is potassium chloride solution with higher purity, and this mother liquor can be directly used to produce potassium chloride or carbonate Potassium, no waste generation; the more serious wall sticking problem in the reaction process is solved by adding seed crystals and the reaction temperature; the combination of seed crystals, reaction temperature, stirring speed, and ultrasound avoids the influence of lithium carbonate crystal aggregation and wide particle size distribution The quality of battery grade lithium carbonate products. The lithium carbonate crystal morphology that obtains under this condition is better, and product quality is stable.
四、说明书附图4. Attached drawings
图1为采用碳酸钠为沉淀剂的碳酸锂的粒度分布图(无超声)Figure 1 is the particle size distribution of lithium carbonate using sodium carbonate as precipitant (without ultrasound)
图2为采用碳酸钾为沉淀剂的碳酸锂的粒度分布图(无超声)Figure 2 is the particle size distribution of lithium carbonate using potassium carbonate as precipitant (without ultrasound)
图3为采用常规方法制备的碳酸锂晶体SEM图(无超声)Figure 3 is the SEM image of lithium carbonate crystals prepared by conventional methods (without ultrasound)
图4为采用本方法制备的碳酸锂晶体SEM图(有超声)Figure 4 is the SEM image of lithium carbonate crystals prepared by this method (with ultrasound)
五、具体实施方式5. Specific implementation
案例1Case 1
取1000mL氯化锂溶液,其中含锂离子2.16 mol /L、含镁离子0.09 mol /L、含钙离子0.012 mol /L、含钾离子0.076 mol、含钠离子0.26 mol /L,加入30%氢氧化钾溶液将pH调至12,控制温度70℃,搅拌速度100转/min,反应时间2h,经过滤后得到分离镁离子和钙离子的氯化锂溶液。氯化锂溶液过装有D751螯合型离子交换树脂,经吸附后的氯化锂溶液进行浓缩,最终锂离子含量为3.01mol/L。取LiCl溶液350mL加入到1000mL的反应釜中,加入碳酸锂晶种2g,然后加入1.5mol/L碳酸钾溶液,加料速度10mL/min,反应温度90℃,搅拌速度300转/min。开启超声装置,超声功率1000w溶液,超声时间35min。碳酸钾溶液加料完成后,进行碳酸锂晶体的陈化,陈化时间1h。然后将碳酸锂悬浮液进行过滤,并用纯水洗涤3次。最后,在70℃下烘干。Take 1000mL lithium chloride solution, which contains lithium ions 2.16 mol/L, magnesium ions 0.09 mol/L, calcium ions 0.012 mol/L, potassium ions 0.076 mol, sodium ions 0.26 mol/L, add 30% hydrogen The pH of the potassium oxide solution was adjusted to 12, the temperature was controlled at 70°C, the stirring speed was 100 rpm, and the reaction time was 2 hours. After filtration, a lithium chloride solution was obtained for separating magnesium ions and calcium ions. The lithium chloride solution is filled with D751 chelating ion exchange resin, and the absorbed lithium chloride solution is concentrated, and the final lithium ion content is 3.01mol/L. Take 350 mL of LiCl solution and add it to a 1000 mL reaction kettle, add 2 g of lithium carbonate seed crystals, and then add 1.5 mol/L potassium carbonate solution, the feeding speed is 10 mL/min, the reaction temperature is 90 ° C, and the stirring speed is 300 rpm. Turn on the ultrasonic device, ultrasonic power 1000w solution, ultrasonic time 35min. After the addition of the potassium carbonate solution was completed, the lithium carbonate crystals were aged for 1 h. Then the lithium carbonate suspension was filtered and washed 3 times with pure water. Finally, dry at 70°C.
案例2Case 2
取1000mL氯化锂溶液,其中含锂离子2.16 mol /L、含镁离子0.09 mol /L、含钙离子0.012 mol /L、含钾离子0.076 mol、含钠离子0.26 mol /L,加入30%氢氧化钾溶液将pH调至11,控制温度70℃,反应时间2h,搅拌速度200转/min,经过滤后得到分离镁离子的氯化锂溶液。氯化锂溶液过装有D751螯合型离子交换树脂,经吸附后的氯化锂溶液进行浓缩,最终锂离子含量为3.01mol/L。取LiCl溶液350mL加入到1000mL的反应釜中,加入碳酸锂晶种2g,然后加入1.5mol/L碳酸钾溶液,加料速度10mL/min,反应温度80℃,搅拌速度400转/min。开启超声装置,超声功率800w溶液,超声时间35min。碳酸钾溶液加料完成后,进行碳酸锂晶体的陈化,陈化时间1h。然后将碳酸锂悬浮液进行过滤,并用纯水洗涤3次。最后,在70℃下烘干。Take 1000mL lithium chloride solution, which contains lithium ions 2.16 mol/L, magnesium ions 0.09 mol/L, calcium ions 0.012 mol/L, potassium ions 0.076 mol, sodium ions 0.26 mol/L, add 30% hydrogen The pH of the potassium oxide solution was adjusted to 11, the temperature was controlled at 70° C., the reaction time was 2 hours, and the stirring speed was 200 rpm. After filtration, a lithium chloride solution for separating magnesium ions was obtained. The lithium chloride solution is filled with D751 chelating ion exchange resin, and the absorbed lithium chloride solution is concentrated, and the final lithium ion content is 3.01mol/L. Take 350 mL of LiCl solution and add it to a 1000 mL reaction kettle, add 2 g of lithium carbonate seed crystals, and then add 1.5 mol/L potassium carbonate solution, the feeding speed is 10 mL/min, the reaction temperature is 80 ° C, and the stirring speed is 400 rpm. Turn on the ultrasonic device, the ultrasonic power is 800w solution, and the ultrasonic time is 35min. After the addition of the potassium carbonate solution was completed, the lithium carbonate crystals were aged for 1 h. Then the lithium carbonate suspension was filtered and washed 3 times with pure water. Finally, dry at 70°C.
案例3Case 3
取1000mL氯化锂溶液,其中含锂离子2.16 mol /L、含镁离子0.09 mol /L、含钙离子0.012 mol /L、含钾离子0.076 mol、含钠离子0.26 mol /L,加入30%氢氧化钾溶液将pH调至11,控制温度70℃,反应时间2h,搅拌速度200转/min,经过滤后得到分离镁离子的氯化锂溶液。氯化锂溶液过装有D751螯合型离子交换树脂,经吸附后的氯化锂溶液进行浓缩,最终锂离子含量为3.01mol/L。取LiCl溶液350mL加入到1000mL的反应釜中,加入碳酸锂晶种3g,然后加入1.5mol/L碳酸钾溶液,加料速度20mL/min,反应温度80℃,搅拌速度400转/min。开启超声装置,超声功率800w溶液,超声时间25min。碳酸钾溶液加料完成后,进行碳酸锂晶体的陈化,陈化时间2h。然后将碳酸锂悬浮液进行过滤,并用纯水洗涤3次。最后,在70℃下烘干。Take 1000mL lithium chloride solution, which contains lithium ions 2.16 mol/L, magnesium ions 0.09 mol/L, calcium ions 0.012 mol/L, potassium ions 0.076 mol, sodium ions 0.26 mol/L, add 30% hydrogen The pH of the potassium oxide solution was adjusted to 11, the temperature was controlled at 70° C., the reaction time was 2 hours, and the stirring speed was 200 rpm. After filtration, a lithium chloride solution for separating magnesium ions was obtained. The lithium chloride solution is filled with D751 chelating ion exchange resin, and the absorbed lithium chloride solution is concentrated, and the final lithium ion content is 3.01mol/L. Take 350 mL of LiCl solution and add it to a 1000 mL reaction kettle, add 3 g of lithium carbonate seed crystals, and then add 1.5 mol/L potassium carbonate solution, the feeding speed is 20 mL/min, the reaction temperature is 80 ° C, and the stirring speed is 400 rpm. Turn on the ultrasonic device, ultrasonic power 800w solution, ultrasonic time 25min. After the addition of the potassium carbonate solution was completed, the lithium carbonate crystals were aged for 2 hours. Then the lithium carbonate suspension was filtered and washed 3 times with pure water. Finally, dry at 70°C.
权利要求:Rights request:
(1)氯化锂溶液中的镁离子和钙离子采用氢氧化钾和碳酸钾反应沉淀除去,氢氧化钾和碳酸钾的比例为质量比10~50:1。(1) The magnesium ions and calcium ions in the lithium chloride solution are removed by reactive precipitation of potassium hydroxide and potassium carbonate, and the ratio of potassium hydroxide and potassium carbonate is 10~50:1 by mass.
(2)氯化锂溶液中加入氢氧化钾溶液将pH调至10~14,在10℃~90℃下反应0.5~3h,搅拌速度10~200转/min,将pH调至11,控制温度70℃,反应时间2h。(2) Add potassium hydroxide solution to the lithium chloride solution to adjust the pH to 10~14, react at 10°C~90°C for 0.5~3h, stir at 10~200 rpm, adjust the pH to 11, and control the temperature 70°C, reaction time 2h.
(3)以碳酸钾作为氯化锂溶液的沉淀剂,碳酸钾浓度控制在1mol/L~3mol/L。(3) Potassium carbonate is used as the precipitating agent for the lithium chloride solution, and the concentration of potassium carbonate is controlled at 1mol/L~3mol/L.
(4)氯化锂溶液中加入碳酸锂晶种,晶种加入量为1.0~30g/L氯化锂溶液。(4) Lithium carbonate seed crystals are added to the lithium chloride solution, and the amount of seed crystals added is 1.0~30g/L lithium chloride solution.
(5)碳酸钾溶液的加料速度1mL/min~ 200mL/min,反应温度控制在10℃~95℃,搅拌转速控制在100转/min~1000转/min。(5) The feeding rate of potassium carbonate solution is 1mL/min~200mL/min, the reaction temperature is controlled at 10℃~95℃, and the stirring speed is controlled at 100rpm~1000rpm.
(6)在加入碳酸钾溶液的同时开启超声装置,超声功率5w~2000w/L溶液,超声频率50KHZ~1MHZ,超声时间0~2h。(6) Turn on the ultrasonic device while adding the potassium carbonate solution, the ultrasonic power is 5w~2000w/L solution, the ultrasonic frequency is 50KHZ~1MHZ, and the ultrasonic time is 0~2h.
(7)碳酸钾溶液加料完成后,进行碳酸锂晶体的陈化,陈化时间0~2h。(7) After the potassium carbonate solution is fed, the lithium carbonate crystals are aged for 0-2 hours.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610658960.6A CN106276988B (en) | 2016-08-12 | 2016-08-12 | A kind of method that battery-level lithium carbonate is prepared using potassium carbonate as precipitating reagent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610658960.6A CN106276988B (en) | 2016-08-12 | 2016-08-12 | A kind of method that battery-level lithium carbonate is prepared using potassium carbonate as precipitating reagent |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106276988A true CN106276988A (en) | 2017-01-04 |
CN106276988B CN106276988B (en) | 2018-06-29 |
Family
ID=57668558
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610658960.6A Active CN106276988B (en) | 2016-08-12 | 2016-08-12 | A kind of method that battery-level lithium carbonate is prepared using potassium carbonate as precipitating reagent |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106276988B (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106882822A (en) * | 2017-03-15 | 2017-06-23 | 江苏容汇通用锂业股份有限公司 | A kind of method that lithium is recycled into battery-level lithium carbonate in sinker mother liquor |
CN107963643A (en) * | 2017-12-19 | 2018-04-27 | 唐朝辉 | A kind of method for preparing battery-level lithium carbonate |
CN108840354A (en) * | 2018-08-16 | 2018-11-20 | 湖北上和化学有限公司 | LITHIUM BATTERY lithium chloride deep impurity-removing method |
CN110563009A (en) * | 2019-09-29 | 2019-12-13 | 华东理工大学 | A kind of carbonization decomposition method prepares the method for battery grade lithium carbonate from fly ash |
CN110817908A (en) * | 2018-08-13 | 2020-02-21 | 中国石油化工股份有限公司 | System and method for preparing high-purity lithium carbonate by using lithium-containing waste material |
WO2020126974A1 (en) * | 2018-12-20 | 2020-06-25 | Lanxess Deutschland Gmbh | Production of high purity lithium carbonate from brines |
CN112875731A (en) * | 2021-04-19 | 2021-06-01 | 青海盐湖工业股份有限公司 | Preparation method of lithium carbonate |
CN113120924A (en) * | 2019-12-31 | 2021-07-16 | 中国石油化工股份有限公司 | Recovery method of alkali activator for preparing activated carbon |
CN113955776A (en) * | 2021-12-02 | 2022-01-21 | 江苏容汇通用锂业股份有限公司 | Preparation method of lithium carbonate |
DE202022102465U1 (en) | 2022-04-29 | 2022-05-12 | Hte Gmbh The High Throughput Experimentation Company | Device for the production of solid particles |
CN115286017A (en) * | 2022-08-25 | 2022-11-04 | 广东邦普循环科技有限公司 | Preparation method of battery-grade lithium carbonate |
CN115448332A (en) * | 2022-11-11 | 2022-12-09 | 山东海化集团有限公司 | Method for preparing potassium carbonate by continuous ion exchange of fixed bed |
WO2023208742A1 (en) | 2022-04-29 | 2023-11-02 | Hte Gmbh The High Throughput Experimentation Company | Device and method for producing solid particles |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101024502A (en) * | 2007-01-30 | 2007-08-29 | 西部矿业集团有限公司 | Method for combined extracting boron, magnesium and lithium from salt lake bittern |
CN101209846A (en) * | 2006-12-31 | 2008-07-02 | 比亚迪股份有限公司 | Method for preparing nano-scale lithium carbonate for battery |
CN101609888A (en) * | 2009-07-10 | 2009-12-23 | 江西赣锋锂业股份有限公司 | A kind of method of utilizing lithium chloride solution to prepare battery-level lithium carbonate |
CN105502442A (en) * | 2016-01-15 | 2016-04-20 | 清华大学 | Battery-grade lithium carbonate preparation method based on phase transformation |
-
2016
- 2016-08-12 CN CN201610658960.6A patent/CN106276988B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101209846A (en) * | 2006-12-31 | 2008-07-02 | 比亚迪股份有限公司 | Method for preparing nano-scale lithium carbonate for battery |
CN101024502A (en) * | 2007-01-30 | 2007-08-29 | 西部矿业集团有限公司 | Method for combined extracting boron, magnesium and lithium from salt lake bittern |
CN101609888A (en) * | 2009-07-10 | 2009-12-23 | 江西赣锋锂业股份有限公司 | A kind of method of utilizing lithium chloride solution to prepare battery-level lithium carbonate |
CN105502442A (en) * | 2016-01-15 | 2016-04-20 | 清华大学 | Battery-grade lithium carbonate preparation method based on phase transformation |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106882822A (en) * | 2017-03-15 | 2017-06-23 | 江苏容汇通用锂业股份有限公司 | A kind of method that lithium is recycled into battery-level lithium carbonate in sinker mother liquor |
CN107963643A (en) * | 2017-12-19 | 2018-04-27 | 唐朝辉 | A kind of method for preparing battery-level lithium carbonate |
CN110817908A (en) * | 2018-08-13 | 2020-02-21 | 中国石油化工股份有限公司 | System and method for preparing high-purity lithium carbonate by using lithium-containing waste material |
CN108840354A (en) * | 2018-08-16 | 2018-11-20 | 湖北上和化学有限公司 | LITHIUM BATTERY lithium chloride deep impurity-removing method |
CN108840354B (en) * | 2018-08-16 | 2020-12-15 | 湖北上和化学有限公司 | Deep impurity removal method for battery grade lithium chloride |
WO2020126974A1 (en) * | 2018-12-20 | 2020-06-25 | Lanxess Deutschland Gmbh | Production of high purity lithium carbonate from brines |
CN113195409A (en) * | 2018-12-20 | 2021-07-30 | 朗盛德国有限责任公司 | Preparation of high purity lithium carbonate from brine |
CN110563009A (en) * | 2019-09-29 | 2019-12-13 | 华东理工大学 | A kind of carbonization decomposition method prepares the method for battery grade lithium carbonate from fly ash |
CN113120924A (en) * | 2019-12-31 | 2021-07-16 | 中国石油化工股份有限公司 | Recovery method of alkali activator for preparing activated carbon |
CN112875731A (en) * | 2021-04-19 | 2021-06-01 | 青海盐湖工业股份有限公司 | Preparation method of lithium carbonate |
CN113955776A (en) * | 2021-12-02 | 2022-01-21 | 江苏容汇通用锂业股份有限公司 | Preparation method of lithium carbonate |
DE202022102465U1 (en) | 2022-04-29 | 2022-05-12 | Hte Gmbh The High Throughput Experimentation Company | Device for the production of solid particles |
WO2023208742A1 (en) | 2022-04-29 | 2023-11-02 | Hte Gmbh The High Throughput Experimentation Company | Device and method for producing solid particles |
CN115286017A (en) * | 2022-08-25 | 2022-11-04 | 广东邦普循环科技有限公司 | Preparation method of battery-grade lithium carbonate |
CN115286017B (en) * | 2022-08-25 | 2024-03-12 | 广东邦普循环科技有限公司 | Preparation method of battery-grade lithium carbonate |
CN115448332A (en) * | 2022-11-11 | 2022-12-09 | 山东海化集团有限公司 | Method for preparing potassium carbonate by continuous ion exchange of fixed bed |
Also Published As
Publication number | Publication date |
---|---|
CN106276988B (en) | 2018-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106276988B (en) | A kind of method that battery-level lithium carbonate is prepared using potassium carbonate as precipitating reagent | |
CN109879301B (en) | Method for efficient separation of magnesium and lithium from salt lake brine and simultaneous preparation of high-purity magnesium oxide and battery-grade lithium carbonate | |
CN106315625B (en) | The method of the high-purity monohydrate lithium hydroxide of laminating production, pure Lithium Carbonate and battery-level lithium carbonate | |
CN107043116B (en) | The method extracted lithium from demagging brine and prepare battery-level lithium carbonate | |
CN100469697C (en) | Lithium sulfate solution produces the method for low magnesium battery grade lithium carbonate | |
CN113264821B (en) | Recovery method and application of lithium iron phosphate waste | |
WO2012083678A1 (en) | Method for preparing high-purity lithium carbonate | |
CN107653378A (en) | The recovery method of valuable metal in a kind of waste and old nickel cobalt manganese lithium ion battery | |
CN105776257B (en) | Salt lake bittern separating magnesium and lithium and the method for producing magnesium hydroxide and high-purity magnesium oxide | |
CN114105172B (en) | Method for producing high-purity lithium carbonate by causticizing and carbonizing crude lithium carbonate lime | |
AU2024278126A1 (en) | Method for directly producing lithium carbonate and reducing sulphate radical content from lithium sulfate and sodium (potassium) carbonate | |
CN105271347B (en) | Method for preparing high-purity barium salt by using witherite-barytocalcite industrial waste residues | |
CN103145158A (en) | Method for preparing lithium carbonate from lepidolite through sulfuric acid roasting method | |
CN109110788A (en) | A kind of method of Lithium from Salt Lake Brine magnesium resource comprehensive utilization | |
CN105036159A (en) | Method for preparing lithium carbonate with high-lithium salt lake bittern | |
CN108840354A (en) | LITHIUM BATTERY lithium chloride deep impurity-removing method | |
CN103122411B (en) | Cyclic and comprehensive utilization method of sodium-free mangano-manganic oxide production mother solution | |
CN113896214B (en) | Method for preparing high-purity lithium carbonate by adsorbing and carbonizing lithium sulfate solution | |
CN116081670A (en) | A method for preparing lithium-aluminum adsorbent from brine with low magnesium-lithium ratio | |
CN113697829B (en) | A method for preparing lithium fluoride | |
CN115010152A (en) | Lithium carbonate purification production process | |
CN116903005A (en) | Method for preparing high-purity lithium carbonate from crude lithium carbonate | |
CN115594198A (en) | One-step method for preparing battery-grade sodium fluoride and product obtained therefrom | |
CN116212765A (en) | Waste lithium material recovery method and system based on ammonium chloride circulation | |
CN116397109B (en) | Method for recovering lithium from acid process intermediate alumina and lithium-containing solution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20231226 Address after: 338000 Jiangxi Dongpeng New Materials Co., Ltd., south of Sunshine Avenue and east of Quanzhou Avenue, High-tech Development Zone, Xinyu City, Jiangxi Province Patentee after: Jiangxi Chunpeng Lithium Industry Co.,Ltd. Address before: 1628 suzhao Road, Minhang District, Shanghai 201100 Patentee before: Shanghai Jiugui Information Technology Co.,Ltd. Effective date of registration: 20231226 Address after: 1628 suzhao Road, Minhang District, Shanghai 201100 Patentee after: Shanghai Jiugui Information Technology Co.,Ltd. Address before: 810016 No. 251 Ningda Road, Chengbei District, Xining City, Qinghai Province Patentee before: Qinghai University |
|
TR01 | Transfer of patent right |