CN106264502B - 一种非接触式生理信号检测方法 - Google Patents
一种非接触式生理信号检测方法 Download PDFInfo
- Publication number
- CN106264502B CN106264502B CN201610891027.3A CN201610891027A CN106264502B CN 106264502 B CN106264502 B CN 106264502B CN 201610891027 A CN201610891027 A CN 201610891027A CN 106264502 B CN106264502 B CN 106264502B
- Authority
- CN
- China
- Prior art keywords
- capacitor
- signal
- resistance
- foot
- filter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/0205—Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/08—Detecting, measuring or recording devices for evaluating the respiratory organs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/725—Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physiology (AREA)
- Surgery (AREA)
- Medical Informatics (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- Public Health (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Artificial Intelligence (AREA)
- Psychiatry (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Signal Processing (AREA)
- Cardiology (AREA)
- Pulmonology (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
本发明公开一种非接触式生理信号检测方法,包括以下步骤:通过多普勒雷达传感器向人体胸腔发射连续波雷达信号;将回波信号和发射震荡频率信号进行混频处理并检波后获取反应人体呼吸和心跳变化的低频信号;对多普勒雷达传感器输出端进行阻抗匹配并滤除低频信号中的直流分量;将经步骤S3处理后的信号进行信号放大;通过0.1Hz‑10Hz的带通滤波器对其输入信号进行滤波处理;采用数字滤波技术将经步骤S5处理后的信号进行频率滤波从而获取呼吸信号和心跳信号。采用本发明的技术方案,通过将通用多普勒雷达传感器工作在连续波模式,并采用多级滤波方法,从而实现非接触检测人体生理信号,避免传统接触式检测设备带给患者的束缚和不舒适感。
Description
技术领域
本发明涉及生理信号检测领域,尤其涉及一种非接触式生理信号检测方法。
背景技术
生理参数(如呼吸、心跳信号等)是现代化医疗检测中一项重要的指标,生理参数的监测可为医生进行诊断和治疗提供可靠依据。接触式检测技术是目前生理监测设备较为普遍的使用方法,主要利用穿戴式传感器或粘贴式电极直接接触患者达到监测生理信号的目的,检测过程会对患者产生心理或生理约束。临床上对呼吸信号检测常用的方法包括电容式传感器检测、阻抗法检测、流量式传感器检测和应变式传感器检测等。心跳检测常用的方法包括触诊式心率测量法、心电、心音和光电式脉搏心率测量法等,此类检测方法监测到的生理信号具有高质量、低噪声的优点,由于限制了患者的行为动作,无法准确真实的反映测试者的生理变化情况,且测试电极使得系统安装复杂,可操作性差。
为了克服上述技术缺陷,将多普勒雷达技术实现非接触式生理信号检测成为本领域研究热点。多普勒雷达,又名脉冲多普勒雷达,通常工作在脉冲触发模式,是一种利用多普勒效应来探测运动目标的位置和相对运动速度的雷达。现有技术中多普勒雷达广泛用于军事领域和民用领域,比如机载预警、导航、导弹制导、卫星跟踪、战场侦察、靶场测量、武器等军用方面,以及人体感应、门禁系统、测速测距等民用领域。然而,由于生理信号检测的特殊性,难以将现有技术通用多普勒雷达模块直接应用于生理信号检测;呼吸和心跳信号及其微弱,很容易淹没在雷达的噪声和杂波中,采用现有技术多普勒雷达常规应用电路无法实现对人体的呼吸和心跳等生命特征的非接触式探测。因此,本领域技术人员通常通过改进雷达的识别精度和灵敏度达到应用要求,这大大增加了实现难度,同时在成本上也大幅度的提高。
故,针对目前现有技术中存在的上述缺陷,实有必要进行研究,以提供一种方案,解决现有技术中存在的缺陷。
发明内容
有鉴于此,确有必要提供一种非接触式生理信号检测方法,将通用多普勒雷达工作在连续波模式,并通过多级滤波电路进行信号处理,从而实现非接触式生理信号检测。
为了克服现有技术的缺陷,本发明的技术方案如下:
一种非接触式生理信号检测方法,包括以下步骤:
步骤S1:通过多普勒雷达传感器向人体胸腔发射连续波雷达信号;
步骤S2:将回波信号和发射震荡频率信号进行混频处理并检波后获取反应人体呼吸和心跳变化的低频信号;
步骤S3:对多普勒雷达传感器输出端进行阻抗匹配并滤除低频信号中的直流分量;
步骤S4:将经步骤S3处理后的信号进行信号放大;
步骤S5:通过0.1Hz-10Hz的带通滤波器对其输入信号进行滤波处理;
步骤S6:采用数字滤波技术将经步骤S5处理后的信号进行频率滤波从而获取呼吸信号和心跳信号。
优选地,还包括将所获取的呼吸信号和心跳信号发送到服务器的步骤。
优选地,所述步骤S5中,通过四阶巴特沃斯低通滤波器和二阶巴特沃斯高通滤波器实现带通滤波器。
优选地,所述步骤S6中,采用FIR滤波器、IIR滤波器或者零相位IIR滤波器中的任一种实现呼吸信号和心跳信号的分离。
优选地,零相位IIR滤波器的实现步骤如下:
步骤S61:根据呼吸信号和心跳信号的特征分别设计呼吸信号IIR滤波器和心跳信号IIR滤波器;
步骤S62:将输入信号进行信号采样存储为数字信号序列;
步骤S63:将该数字信号序列分别输入到呼吸信号IIR滤波器和心跳信号IIR滤波器进行第一次滤波处理;
步骤S64:将经上述第一次滤波处理输出的信号执行第一次时域翻转;
步骤S65:将步骤S64输出信号再次输入到呼吸信号IIR滤波器和心跳信号IIR滤波器进行第二次滤波处理;
步骤S66:将经上述第二次滤波处理输出的信号执行第二次时域翻转,从而得到滤波后的呼吸信号和心跳信号;
步骤S67:对滤波后的呼吸信号和心跳信号进行FFT变换后分别求出频谱从而实现呼吸信号和心跳信号的分离。
优选地,在步骤S1中,所述多普勒雷达传感器采用工作频段为10.525GHz的微波多普勒雷达探测器探头传感器HB100模块。
优选地,在步骤S3中,采用通带频率为0.1Hz-150Hz的无源RC滤波器滤除低频信号中的直流分量。
优选地,在步骤S3中,采用电压跟随器对多普勒雷达传感器输出端进行阻抗匹配。
优选地,在步骤S6中采用的数字滤波器通过程序实现。
优选地,通过无线通讯模块以无线的方式将获取人体呼吸信号和心跳信号发送到服务器。
与现有技术相比较,本发明的技术方案具有以下技术效果:
(1)通过将通用多普勒雷达传感器工作在连续波模式,并相应设计多级滤波电路,从而实现非接触检测人体生理信号,避免传统接触式检测设备带给患者的束缚和不舒适感。
(2)有源滤波器采用巴特沃斯滤波器,巴特沃斯滤波器通频带频率响应曲线平坦,在阻频带下降缓慢,避免信号失真,在滤波的同时可实现信号的放大,提高信号的信噪比,实现信号无失真放大滤波。
(3)数字滤波器使用零相位IIR滤波器分离出呼吸和心跳信号,减少运算量的同时,消除信号的相位失真,实现患者生理变化和监测显示同步,提高监测设备的实时性。
附图说明
图1为雷达回波信号探测人体胸腔扩张模型。
图2为本发明一种非接触式生理信号检测方法的流程框图。
图3为本发明中零相位IIR滤波器的实现流程图。
图4为实现本发明中非接触式生理信号检测方法的系统框图。
图5为电源模块中雷达电源的电路原理图。
图6为电源模块中运放电源的电路原理图。
图7为电源模块中数字电源的电路原理图。
图8为电源模块中ADC基准电源的电路原理图。
图9为本发明信号预处理模块的电路原理图。
图10为本发明差分放大器一种实施方式的电路原理图。
图11为本发明有源带通滤波器一种实施方式的电路原理图。
图12为电平搬移电路的电路原理图。
图13为模数转换器的电路原理图。
图14为FIR和IIR滤波分离呼吸信号时域对比。
图15为FIR和IIR滤波分离呼吸信号频域对比。
图16为零相位滤波呼吸信号时域图。
图17为零相位滤波心跳信号时域图。
图18呼吸信号和心跳信号分离频域图。
如下具体实施例将结合上述附图进一步说明本发明。
具体实施方式
以下将结合附图对本发明提供的石墨烯复合粉体材料及其制备方法作进一步说明。
多普勒雷达广泛用于机载预警、导航、导弹制导、卫星跟踪、战场侦察、靶场测量、武器等军事领域。其工作原理可表述如下:当雷达发射一固定频率的脉冲波对空扫描时,如遇到活动目标,回波的频率与发射波的频率出现频率差,称为多普勒频率。根据多普勒频率的大小,可测出目标对雷达的径向相对运动速度;根据发射脉冲和接收的时间差,可以测出目标的距离。因此,军用领域的多普勒雷达通常工作在脉冲模式,通过检测频率差来检测活动目标。现有技术中,多普勒雷达也有在民用领域的应用,比如,利用多普勒雷达(DopplerRadar)原理设计的微波移动物体探测器HB100微波模块,广泛应用于自动门控制开关、安全防范系统、ATM自动提款机的自动录像控制系统、火车自动信号机等场所。然而,此类多普勒雷达在民用领域中的应用时,通常是将输出信号直接放大后检测频率,然后根据频率大小获得推测人体移动速度。
多普勒雷达传感器可以在特定距离范围内消除特定介质(如布料、丝绸等)的影响,检测人体胸腔的微动变化,从中获取到生理参数信息,实现非接触式生理信号的检测。非接触式监测系统克服了传统的生理监测系统的缺点,具有非接触、远距离监测、操作简易等优点,在临床医学、灾害医学、军事医学、城市反恐等领域得到了越来越多的关注,具有广泛的应用前景。然而,本领域技术人员在研究将多普勒雷达传感器实现实现非接触式生理信号检测时,通常致力于设计高识别精度和高灵敏度的多普勒雷达传感器,极大增加了实现难度。
在现有技术的基础上,申请人通过多次理论和试验研究发现,连续波雷达以人体的胸腔作为探测目标,经胸腔运动返回的雷达发射信号会产生相位调制,接收到的雷达回波信号经相位解调,从解调信息中提取出与胸腔运动相关联的相位信息,根据相位信息的变化反映测试者的呼吸和心跳的变化情况。
参见图1,所示为雷达回波信号探测人体胸腔扩张模型,现假设雷达发射信号T(t)为:
T(t)=cos[2πf0t+Φ(t)] (1)
式中f0是雷达发射信号频率,Φ(t)为相位噪声。
设胸腔运动振幅为x(t),雷达传感器到人体距离为d0,发射雷达信号到胸壁的距离为d(t),则往返一次延时时间为由于胸腔运动周期则经雷达反射调制后的接收信号R(t)为:
接收回波信号R(t)和雷达发射信号T(t)相乘经过低通滤波后解调出调制信号,获取基带信号为:
式中是残余相位噪声,是雷达和人体间距决定的固有相移。当θ是的奇数倍时,x(t)<<λ,可得:
其中ΔΦ(t)为固定目标产生的直流分量,由式(4)可得胸腔位移x(t)与基带输出的幅值呈线性关系。然而,人体正常呼吸和心跳引起的胸腔微动位移量范围仅为4-15mm,而现有技术中多普勒雷达模块在军用和民用领域的应用中,移动物体的分辨率至少为0.1米;同时,正常人的呼吸和心跳频率分别为0.15~0.4Hz和0.83~1.5Hz,频谱非常接近,在时域中很难将呼吸信号和心跳信号分辨出来。由式(4)可知,虽然人体正常呼吸和心跳引起的胸腔微动位移量范围较小,只要选取合适的多普勒雷达工作频率,能够很好的检测胸腔微动信号;虽然呼吸信号和心跳信号的频率非常接近,只要选择合适采样频率,依然能够区分呼吸信号和心跳信号,由于信号微弱且频率区分不是很明显,如何滤除干扰信号提取有用数据信号是解决本发明技术问题的关键。
为了解决上述技术问题,参见图2,所示为本发明一种非接触式生理信号检测方法的流程框图,包括以下步骤:
步骤S1:通过多普勒雷达传感器向人体胸腔发射连续波雷达信号;
步骤S2:将回波信号和发射震荡频率信号进行混频处理并检波后获取反应人体呼吸和心跳变化的低频信号;
步骤S3:对多普勒雷达传感器输出端进行阻抗匹配并滤除低频信号中的直流分量;
步骤S4:将经步骤S3处理后的信号进行信号放大;
步骤S5:通过0.1Hz-10Hz的带通滤波器对其输入信号进行滤波处理;
步骤S6:采用数字滤波技术将经步骤S5处理后的信号进行频率滤波从而获取呼吸信号和心跳信号。
其中,在步骤S1中,所述多普勒雷达传感器采用工作频段为10.525GHz的微波多普勒雷达探测器探头传感器HB100模块。现有技术中,多普勒雷达工作频率范围为2~75GHz,本发明结合雷达分辨率、穿透障碍物能力、体积大小以及功耗等因素,选取工作频率为10.525GHz的多普勒雷达传感器。HB100微波模块是利用多普勒雷达(Doppler Radar)原理设计的微波移动物体探测器,主要应用于自动门控制开关、安全防范系统、ATM自动提款机的自动录像控制系统、火车自动信号机等场所。HB100是标准的10.525GHz微波多普勒雷达探测器,内部由FET介质DRO微波震荡源(10.525GHz)、功率分配器、发射天线、接收天线、混频器、检波器等电路组成,其在连续直流供电模式下工作电流为35mA,总输出功率小于15mW。发射天线向外定向发射微波,遇到物体时被反射,反射波被接收天线接收,然后到混合器与振荡波混合,混合、检波后的低频信号反应了物体移动的速度。采用现有技术通用的探测模块,大大降低了成本以及开发难度。现有技术,通常采用HB100模块检测人体移动,也即对其输出的低频信号进行直接放大并检测该信号的频率,从而根据频率值计算出人体的移动速度,通常探测范围超过20米。然而,本发明的应用中,人体正常呼吸和心跳引起的胸腔微动位移量范围仅为4-15mm,各种噪声信号的强度远远超过有用信号,因此,采用传统HB100模块应用方法无法检测出生理信号。因此本发明提出了一种适用于生理信号检测的三级滤波方法,从而实现呼吸信号和心跳信号的检测,以下详细介绍该方法应用电路的设计原理。
在步骤S3中,采用通带频率为0.1Hz-150Hz的无源RC滤波器滤除低频信号中的直流分量。
在步骤S3中,采用电压跟随器对多普勒雷达传感器输出端进行阻抗匹配。电压跟随器用于对输入信号进行电压跟随,无源滤波器用于滤除输入信号中的直流分量;人体胸腔微动变化引起多普勒雷达传感器输出信号变化幅值范围1-20mV,具有幅度低、噪声大,带负载能力差等特点,对输入信号进行电压跟随消除输出阻抗影响,提高驱动能力;雷达信号为射频信号,空间的杂散信号过大,会导致后端的放大器饱和甚至损坏,为了防止由于直流分量导致放大器饱和,采用无源滤波器将直流分量滤除。
进一步的,通过有源带通滤波器对输入信号进行放大并消除差模噪声;雷达信号经过差分放大器后,共模干扰噪声能得到很好的消除。然而还有很大一部分的噪声是以差模的形式进入后级电路。这些噪声包含启动时的电源噪声、直流基线漂移噪声、以及工频干扰噪声。所以需要选择合适的滤波器对初级放大后的信号进行滤波,为了克服无源滤波电路消耗信号能量的缺点,使用由放大器和阻容网络组成的有源滤波,来提高滤波性能。相对于无源滤波而言,由于有运放的加入,有源滤波器不仅能进行功率补偿,还能在滤波的同时对信号进行放大,同时运放也能起到缓冲和隔离的效果。结合呼吸和心跳信号的频率以及人体扰动频率,本发明采用有源低通滤波器以及高通滤波器构成频率为0.1Hz-10Hz的带通滤波器。
根据滤波器幅频以及相频特性的不同,根据有源滤波器传输特性主要分为以下几类:
巴特沃斯滤波器:在通带以内幅频曲线的幅度最平坦,由通带到阻带衰减陡度较缓,相频特性是非线性的,是最平幅度滤波器。
切比雪夫滤波器:在通带内,具有相等的波纹。截频衰减陡度比同阶数的巴特沃斯特性更陡相位响应是非线性,但较之比巴特沃斯为差。
贝塞尔滤波器:延时特性最平坦,幅频特性最平坦区较小,从通带到阻带衰减缓慢。贝塞尔滤波器的幅频特性比巴特沃斯或切比雪夫滤波器都差。
椭圆函数滤波器:在通带和阻带内均出现相等的纹波。椭圆函数滤波器较其他类型的滤波器具有最陡的截频衰减陡度。但它的延时特性不如前三种好。
本发明设计要求滤波器幅频曲线在通频带尽可能平坦,并且具有良好的过渡带特性。在比较上述滤波器实际性能的基础上,最终选择,巴特沃兹滤波器是全极点滤波器,在所以n阶全极点滤波器中,当论靠近w=0处的幅频特性,则巴特沃斯滤波器最平直,因此巴特沃斯滤波器称为最平响应滤波器具有通带内最大平坦,巴特沃斯滤波器的相位特性比同阶数的切比雪夫、反切比雪夫和椭圆函数滤波器都好相移和频率的线性关系影响的比较小,可以实现更好的信号滤波效果和更小的信号衰减,适用于雷达呼吸心跳信号中噪声的去除。
在步骤S5中,采用二阶巴特沃斯高通滤波器以及四阶巴特沃斯低通滤波器构成滤波器组对信号进行放大滤波。
在步骤S6中,采用数字滤波技术实现呼吸信号和心跳信号的分离,可以采用FIR滤波器、IIR滤波器或者零相位IIR滤波器中的任一种。FIR滤波器、IIR滤波器的设计,将在实现本发明方法的系统中详述,在此不再赘述。
为了克服FIR滤波器和IIR滤波器的缺陷,本发明提出了一种零相位IIR滤波器,参见图3,所示为零相位IIR滤波器的实现流程图,具体包括以下步骤:
步骤S61:根据呼吸信号和心跳信号的特征分别设计呼吸信号IIR滤波器和心跳信号IIR滤波器;
步骤S62:将输入信号进行信号采样存储为数字信号序列;
步骤S63:将该数字信号序列分别输入到呼吸信号IIR滤波器和心跳信号IIR滤波器进行第一次滤波处理;
步骤S64:将经上述第一次滤波处理输出的信号执行第一次时域翻转;
步骤S65:将步骤S64输出信号再次输入到呼吸信号IIR滤波器和心跳信号IIR滤波器进行第二次滤波处理;
步骤S66:将经上述第二次滤波处理输出的信号执行第二次时域翻转,从而得到滤波后的呼吸信号和心跳信号;
步骤S67:对滤波后的呼吸信号和心跳信号进行FFT变换后分别求出频谱从而实现呼吸信号和心跳信号的分离。
在一种优选实施方式中,上述采用的数字滤波器通过程序实现。
以下详细描述下实现本发明方法的系统架构,参见图4,所示为实现本发明非接触式生理信号检测方法的系统框图,该系统包括多普勒雷达传感器、电源模块、信号预处理模块、差分放大器、有源带通滤波器、呼吸和心跳信号分离模块和MCU模块,其中,电源模块用于系统供电;多普勒雷达传感器用于向人体胸腔发射连续波雷达信号并接收回波信号进行处理后输出反应人体呼吸和心跳变化的低频信号,低频信号依次经信号预处理模块、差分放大器、有源带通滤波器、呼吸和心跳信号分离模块和MCU模块信号处理后,MCU模块获取人体呼吸信号和心跳信号。
为了提高系统的检测精度,在电源模块设计中需要充分考虑电压的波动性,以及起动时强大电流对系统的干扰。故需要选取宽电压输入稳压芯片,雷达信号输出很微弱,电源模块中需要特别注意电源纹波以及噪声问题,由于系统不仅包括数字电路部分,也包含A/D转换、小信号放大等模拟部分,需要隔离数字电源和模拟电源,故分别设计雷达电源、运放电源、数字电源以及ADC基准电源。
参见图5,所示为电源模块中雷达电源的电路原理图,包括第一电源接口P1、第一保险丝F1、第一瞬态二极管TVS1、第一二极管D1、第六电解电容C6、第七电容C7、第二电容C2、第五电源芯片U5、第十四电容C14、第十五钽电容C15,其中,电源接口P1的第二脚与第一保险丝F1的一端相连接,第一保险丝的另一端与第一瞬态二极管TVS1的一端和第一二极管D1的正端相连接,第一二极管D1的负端与第六电解电容C6的正端、第七电容C7的一端、第五电源芯片第五管脚、第八管脚相连,电源接口P1的第一管脚与第一瞬态二极管TVS1的另一端、第六电解电容C6的负端、第七电容C7的另一端、第五电源芯片U5的第六管脚和第七管脚以及第三管脚共同与模拟地端相连接,第二电容C2的第一管脚与第五电源芯片U5的第四管脚相连接,第二电容C2的另一端与第五电源芯片U5的第一管脚以及第二管脚相连接,第十四电容C14的第一脚与第十五钽电容C15的正端相连、第五电源芯片U5的第一管脚以及第二管脚相连接,第十四电容C14的另一端与第十五钽电容C15的负端共同与模拟地端相连接。
在上述电路中,第五电源芯片U5采样LT1763CS8-5,输出5V电源给雷达芯片供电,该芯片是一款低噪声、低压差微功率稳压器。在10Hz-100KHz输出噪声为20μVRMS,宽电压输入范围1.8V到20V,具有非常低的待机电流1μA,内部具有过流和过热保护功能,与开关电源相比,具有纹波噪声小的特点。在电源接口端采用MF-R09009对电路进行过流保护,并且端口处并联一颗TVS管,对电源过压脉冲起到很好的保护作用,电源端串联一颗二极管防止电源反接,对后级整个系统起保护作用。为减少纹波干扰,在每个电源芯片加上一颗高频去耦电容,在每个电解电容旁边加一个高频旁路电容。
由于单电源供电运放会降低低频特性,单电源放大器输入输出信号范围会缩小,放大器对内部和外部误差源变得更敏感,同时在低压单电源器件中,增益精度也会有所降低,本发明综合考虑并通过实验验证,最终采样选择双电源给运放供电。参见图6,所示为电源模块中运放电源的电路原理图,包括第十三电容C13、第三电源芯片U3、第十八电容C18、第四电阻R4、第五电阻R5、第十六电容C16、第十七电容C17、第十九电容C19、第六电阻R6、第三电阻R3、第二十电解电容C20、第二十一电容C21、第一电阻R1、第四电源芯片U4、第一电容C1、第二电感L2、第二二极管D2、第十一电解电容C11、第十二电容C12,其中,第十三电容C13一端与第三电源芯片U3的第一脚、第三脚、第五脚相连接,第十八电容的一端与第三电源芯片U3的第四脚相连接,第十六电容C16的一端与第十七电容C17的一端、第三电源芯片的第十脚、第十一脚相连接,第四电阻R4的一端与第三电源芯片的第九脚相连接,第五电阻R5的一端与第四电阻R4的另一端、第三电源芯片U3的第八脚相连接,第十三电容C13的另一端与第十八电容C18的另一端、第五电阻R5的另一端、第十六电容C16的另一端、第十七电容C17的另一端共同和模拟地相连接;第十九电容C19一端与第三电阻R3的一端、第六电阻R6的一端、第四电源芯片U4第三脚相连接,第三电阻R3的另一端与第二十电解电容C20的正端、第四电源芯片U4的第二脚相连接,第二十一电容C21的一端与第四电源芯片U4的第四脚相连接,第一电阻R1的一端与第四电源芯片U4的第八角、第一电容C1的一端相连接,第二二极管D2的正端与第四电源芯片U4的第五脚、第十一电容C11的负端、第十二电容的一端相连接,第二二极管D2的负端与第四电源芯片U4的第七脚、第二电感L2的一端相连接,第十九电容C19的另一端与第六电阻R6的另一端、第二十电解C20的负端、第二十一C21的另一端、第一电容C1的另一端、第二电感L2的另一端、第十一电容C11的正端、第十二电容C12的另一端共同与模拟地相连接。
上述电路中,第三电源芯片U3采用LP38798SDX_ADJ以及第四电源芯片U4采用TPS6735稳压芯片,从而实现输出正负5V电源供给运放,其中正5V电源同时给A/D芯片供电。LP38798SDX_ADJ是一款宽电压输入3.0V-20V,在10Hz-100KHz输出噪声为5μVRMS,TPS6735输入电压范围4V-6.2V,静态功耗达到1μA。所以可以满足运放电源精度要求。
参见图7,所示为电源模块中数字电源的电路原理图,包括第三电容C3、第一电源芯片U1、第一电感L1、第二电阻R2、第八电容C8、第九电容C9,其中,第三电容C3一端与第一电源芯片U1的第二脚、第三脚相连接,第二电阻R2一端与第一电源芯片U1的第八脚和第十脚、第一电感L1的一端、第八电容的一端、第九电容的一端相连接,第一电感L1的另一端与第一电源芯片U1的第九脚相连接,第三电容C3的另一端与第一电源芯片U1的第四脚、第九脚、第十脚、第七脚、第二电阻R2的另一端、第八电容的另一端、第九电容的另一端共同与数字地相连接。
第一电源芯片U1采用Ti芯片TPS62177DGCR芯片,给单片机以及无线模块NRF24L01供电。该芯片输入电压范围4.7V-28V,输入电流可达500mA,在睡眠模式下,静态电流仅有4.8μA,内部有过热保护、短路保护等。
参见图8,所示为电源模块中ADC基准模块的电路原理图,包括第四电容C4、第五电容C5、第二基准电源芯片U2、第十电容C10,其中,第四电容C4的一端与第五电容C5的一端、第二基准电源芯片U2第二脚相连接,第十电容C10的一端与第二基准电源芯片U2第六脚相连接,第四电容C4的另一端与第五电容C5的另一端、第二基准电源芯片U2的第四脚、第十电容的另一端共同与模拟地相连接。
第二基准电源芯片U2采用16位精度ADC转换器,数字量输出变化1LSB,对应模拟电压变化为76μV。故需要较高的基准电压源,ADR445基准电压芯片具有超低噪声、高精度和低温度漂移性能。电源变化峰峰值只有2.25μV,能满足本数据采集系统。
参见图9,所示为本发明信号预处理模块一种实施方式的电路原理图,包括:第二雷达模块P2、第十三电阻R13、第三十三电容C33、第九集成运放U9、第二十六电阻R26、第二十九电容C29、第二十五电阻R25、第十九电阻R19、第三十四电解电容C34,其中,第二雷达模块P2采用HB100模块,第二雷达模块P2的第三脚与第十三电阻R13的一端、第九集成运放U9的第二脚相连接,第二雷达模块P2的第二脚与第三十三电容C33的一端相连接,第二十六电阻一端与第九集成运放U9的第四脚相连接,第二十六电阻的另一端与第九集成运放U9的第一脚、第二十九电容C29的一端相连接,第二十九电容C29的另一端与第二十五电阻R25的一端、第十九电阻R19的一端、第三十四电解电容的正端相连接,第三雷达模块P3的第三脚与第三十三电容的另一端、第九集成运放U9的第二脚、第二十五电阻R25的另一端、第三十四电解电容的负端共同与模拟地相连接。
上述电路的原理如下,由于雷达信号输出阻抗高,带负载能力低,为了阻抗更容易匹配,前端采用TLV2631构成电压跟随器不但提供了高的输入阻抗和低的输出阻抗。同时也起到一个隔离缓冲作用,降低了信号处理对微波前端的影响,保证了输入信号的信噪比,也为后级设计的时候可以更方便的设计滤波器来抗混叠。而雷达发射电磁波到固定物体上时,电磁波回波不会产生多普勒频率,其回波信号出现在零频率处,体现在接收到的信号直流分量上,此外,雷达为射频信号,空间的杂散信号过大,会导致后端的放大器饱和甚至损坏,为了防止由于直流分量导致放大器饱和,必须将直流分量滤除。为了进一步保证信号具有高的信噪比,在跟随输出端设计频率为0.1Hz-150Hz无源RC滤波器,由于雷达呼吸心跳信号频率要高于0.1Hz,设计RC频率点要低于0.1Hz,而RC电阻的选取也需要特别注意,如果选取的输入电阻过大,那么这时候电阻的热噪声就会很大,会超过运放的输入电压噪声水平,对后级放大干扰较大,所以要尽可能选取大的输入电容,然后大的输入电容,漏电流较大,会造成后级放大电路直接饱和。所以此处电容需要选取漏电流较小的瓷片电容。
进一步的,差分放大器用于对输入信号进行放大并消除共模噪声;雷达信号经过初级放大时,中间夹杂了大量噪声。如果初级放大器放大倍数过大的话,容易造成信号的饱和。另一方面为了减少信号源的影响,必须提高放大器的输入阻抗,对于雷达信号干扰主要来源于共模干扰,初级放大器主要作用是消除共模噪声。本发明中采用差分输入方式,在实际系统中,噪声大多以共模的形式存在。对于差分输入来说,能够有效消除共模噪声,从而可以去除信号中很大一部分噪声。
对于集成运放而言,一个很重要的性能指标就是共模抑制比CMRR。其定义如下:
其中Avd和Avs分别代表运放对差模信号和共模信号的放大倍数。在本发明一种优选实施方式中,采用仪器仪表放大器。和普通的集成运放相比,仪器仪表放大器具有更高的共模抑制比。生理放大器的CMRR一般要求60dB-80dB,具体选用Analog Device公司的仪器仪表放大器AD627的CMRR达83dB。AD627提供灵活用户选择,通过一个外部电阻,就可以设置增益,最大编程增益可达到1000,是一款轨到轨低功耗仪表放大器,具有很高共模抑制比,具有很宽的供电范围(±18V),工作在双电源时,能够满电源幅度输出,是信号放大的理想选择。在低电源电压下工作时,满电源幅度输出级使动态范围达到最大。超低的功耗,适用于便携式低功耗设备的应用场合。
参见图10,所示为本发明差分放大器一种实施方式的电路原理图,包括:第二十四电阻R24、第三十六电容C36、第三十九电容C39、第二十九电阻R29、第十二集成仪放U12、第三十七电容C37、第三十八电容C38、第十八电阻R18、第二十四电容C24、第二十五电容C25、第十八电阻R18、第三十八电容C38,其中,第二十四电阻R24一端与第三十一电容C31的一端、第十二集成仪放U12的第三脚、第三十六电容C36一端相连接,第三十六电容C36另一端与第十二集成仪放U12的第二脚、第三十九电容C39的一端、第二十九电阻的一端相连接,第十八电阻R18的一端与第十二集成仪放U12的第八脚相连接,第十八电阻R18的另一端与第十二集成仪放U12的第一脚相连接,第二十四电容C24一端与第二十五电容C25一端相连接、第十二集成仪放U12第七脚相连接,第三十七电容C37一端与第三十八电容C38一端、第十二集成仪放U12的第四脚相连接,第三十九电容C39另一端与第二十九电阻R29的另一端、第二十四电容C24的另一端、第二十五电容C25的另一端、第三十九电容C39的另一端、第三十八电容C38的另一端共同与模拟地相连接。由此,AD627输出电压公式:VO=(5+(200KΩ/R18))Vi,实现信号放大。
参见图11,所示为本发明有源带通滤波器一种实施方式的电路原理图,包括:第二十电阻R20、第三十电阻R30、第九电阻R9、第二十七电阻R27、第十六电阻R16、第十七电阻R17、第七电阻R7、第二十一电阻R21、第二十二电阻R22、第八电阻R8、第二十六电容C26、第二十六电容C26、第二十七电容C27、第三十二电容C32、第二十二电容C22、第三十五电容C35、第二十三电容C23、第电容C、第八集成运放U8、第十集成运放U10、第十一集成运放U11,其中,第二十六电容C26一端与第二十七电容C27的一端、第九电阻R9的一端相连接,第二十七电容C27的另一端与第八集成运放U8的第三脚、第二十电阻R20的一端相连接,第九电阻R9的另一端与第八集成运放U8的第一脚、第二十七电阻R27一端、第十六电阻R16的一端相连接,第二十七电阻R27的另一端与第八集成运放U8的第四脚、第三十电阻R30的一端相连接,第十六电阻R16的另一端与第三十二电容C32一端、第七电阻R7的一端、第十七电阻R17一端相连接、第十七电阻R17与第十集成运放U10的第四脚、第二十二电容C22的一端相连接,第七电阻R7的另一端与第二十二电容C22的另一端、第十集成运放U10的第一脚、第二十一电阻R21一端相连接,第二十一电阻R21的另一端与第三十五电容C35一端、第二十二电阻R22一端、第八电阻R8的一端相连接、第二十二电阻R22的另一端与第十一集成运放U11的第四脚、第二十三电容C23的一端相连接,第八电阻R8的另一端与第二十三电容C23的另一端、第十一集成运放U11的第一脚相连接,第二十电阻R20另一端与第三十电阻另一端、第三十二电容C32另一端、第三十五电容C35另一端共同与模拟地相连接。
上述电路中,利用两个二阶多端反馈(MFB)低通滤波器级联构成四阶低通滤波器。对于单个二阶多端反馈(MFB)低通滤波器,根据基尔霍夫定理以及负反馈运放特性可得:
其中K为滤波器增益,ωc为滤波器截止频率,B和C是归一化系数。
根据无限增益多路反馈电路拓扑结构可得归一化系数B=1.414,C=1,由经验规则选定C32近似于10/fc,由设计指标截止频率fc=10Hz,可得C32=1uF,滤波器增益分别1和10,低通滤波电路器件参数如表1所示。仿真分析可得低通滤波器幅频特性响应,其3dB截频为8.237Hz,满足设计要求。具体涉及参数如下表所示。
表1低通滤波电路元器件参数选型
压控电压源高通滤波器电路设计原理为,利用RC滤波电路和同相比例放大电路组成二阶压控电压源高通滤波器,该滤波器具有输入阻抗高,输出阻抗低的特点。巴特沃斯高通滤波器的传递函数如为
其中K为滤波器增益,ωc为滤波器截止频率。
根据设计指标,截止频率fc=0.1Hz,滤波器增益K=10,在f=0.1fc时,要求幅度衰减大于30dB,令R9=R20=R,C26=C27=C,fc=1/(2πRC)。高通滤波电路元器件参数如表2所示。仿真结果为压控电压源高通滤波器的幅频响应,其3dB截频为0.099Hz,通带特性满足设计要求,具体电路器件参数如下表2所示。
表2高通滤波电路元器件参数选型
进一步的,呼吸和心跳信号分离模块包括电平搬移电路、模数转换器和数字滤波器。由于放大电路采用双电源运放,信号的摆幅变大,输出信号也出现正负电平,不可避免的为后级ADC转换器采样带来不便,所以需要通过电平搬移电路将信号电平搬移到ADC转换器允许的信号输入范围。
参见图12,所示为电平搬移电路的电路原理图,包括:第二十八电容C28、第三十电容C30、第十电阻R10、第十四电阻R14、第十二电阻R12、第二十三电阻R23、第二十八电阻R28、第十一电阻R11、第十五电阻R15、第六集成运放U6、第七集成运放U7、第三二极管D3、第四二极管D4,其中,第十电阻R10一端与第十四电阻R14的一端、第二十八电容C28的一端、第六集成运放U6的第三脚相连接,第六集成运放U6第四脚与第六集成运放U6第一脚、第十二电阻R12的一端相连接,第十二电阻R12的另一端与第十一电阻R11的一端、第七集成运放U7的第三脚相连接,第二十三电阻R23一端与第二十八电阻R28的一端、第七集成运放U7的第四脚相连接,第二十八电阻R28的另一端与第七集成运放U7的第一脚、第十五电阻R15的一端相连接,第十五电阻R15的另一端与第三十电容C30的一端、第三二极管D3的正端、第四二极管D4的负端相连接,第十四电阻R14的另一端与第二十八电容C28的另一端、第十一电阻R11的另一端、第三十电容C30的另一端、第四二极管D4的正端共同与模拟地相连接。
上述电路中,经过带通滤波器滤波后的雷达信号采样运放OPA188构成差分运算电路,在运放的正向输入端叠加恒定电压源,构成电平搬移电路,其中电压源采用运放TLV2631构成电压跟随器产生基准2.5V电压源。其中这样通过电平搬移可将输出负电平信号搬移到正电平。输出信号加上D3、D4两颗二极管,防止信号过大对运放造成损坏,也保证输出信号在ADC转换器输入电压范围内。
模数转换器用于将模拟量转换成离散的数字量,本系统设计雷达信号输出信号频率远低于20Hz,采样频率设置为50Hz,转换速度较低,可以使用普通转换速率的AD转换器。雷达信号放大输出包含呼吸和心跳信号,为保证后续数字滤波处理能够很好的分离呼吸和心跳信号,这就需要选择较高分辨率以及多通道的AD转换器。
参见图13,所示为模数转换器的电路原理图,包括:第四十三电容C43、第四十二电容C42、第四十四电容C44、第四十八电容C48、第四十九电容C49、第四十电容C40、第三十五电阻R35、第三十二电阻R32、第十三AD转换芯片U13,其中,第四十三电容C43的一端与第四十二电容C42的一端、第十三AD转换芯片U13的第九脚相连接,第四十四电容C44的一端与第十三AD转换芯片U13的第十脚相连接,第四十八电容C48一端与第四十九电容C49的一端、第三十五电阻的一端、第十三AD转换芯片U13的第十三脚相连接,第四十电容C40一端与第十三AD转换芯片U13的第十六脚相连接,第三十二电阻R32的一端与第十三AD转换芯片U13的第一脚相连接,第四十三电容C43的另一端与第四十二电容C42的另一端、第四十四电容的另一端、第十三AD转换芯片U13的第十一脚、第十二脚、第四十八电容C48的另一端、第四十九电容的另一端共同与模拟地相连接。第四十电容C40的另一端与数字地相连接。
其中,采用美信公司MAX1167模数转换器,该芯片为低功耗、多通道、16位逐次逼近型模数转换器(ADC),在10kps时,电流仅185μA。具有内部基准以及外部基准可供选择并带有一个高速SPI/QSPI/兼容的接口。MAX1167采用单+5V模拟电源工作,且具有独立的数字电源,允许直接与+2.7V至+5.5V的数字逻辑接口。MAX1167外部参考电压源为高精度ADR445,具有很高的稳定度。MAX1167优异的动态性能及低功耗,足以满足当前系统A/D转换器的要求。
数字滤波器采用数字滤波技术在频域对呼吸信号和心跳信号进行分离。在本发明一种优选实施方式中,数字滤波器采用FIR滤波器、IIR滤波器或者零相位IIR滤波器中的任一种。下面分别详述三种数字滤波器的设计原理。
FIR(Finite Impulse Response)滤波器是有限长单位冲激响应滤波器,它可以在保证任意幅频特性的同时具有严格的线性相频特性,同时其单位抽样响应是有限长的,因而滤波器是稳定的系统。由于生理信号中的呼吸、心跳信号,能量主要集中在零频附近,采用传统的数字滤波器必须满足以下要求:
(1)呼吸、心跳信号的频带范围主要集中在0.1Hz-4Hz,因此滤波器的带宽必须非常窄,以检测能量集中在低频段的目标信号;
(2)为了滤除有用信号频带范围之外的杂波干扰与噪声,在频域,滤波器的过渡带降落速度要非常快,以获得较陡的过渡带,尽量减少滤波器的波尾。
本发明中,生理信号滤波器的设计指标如下表3所示。
表3:生理信号滤波器设计指标
FIR滤波器的两种直接设计方法是加窗傅里叶级数法和频率抽样法。在设计滤波器过程中,选定数字滤波器的类型后,接下来就要估计满足给定滤波器指标所需要的滤波器的阶数。为了降低计算的复杂度,滤波器阶数应该选为大于或等于该估计值得最小整数。
用窗函数法设计的滤波器性能取决于窗函数w(n)的类型及窗口长度N的取值。在滤波器设计过程中,选定数字滤波器的类型后,接下来就要估算满足给定滤波器指标所需要的滤波器阶数。为降低计算的复杂度,滤波器阶数应该选为大于或者等于该估计值得最小整数。一些学者提出了从下面的数字滤波器的指标直接估计滤波器阶数为N的最小方程如Kaiser方程:设归一化通带边界角频率ωp,归一化阻带边界角频率ωs,峰值通带波纹δp,以及峰值阻带波纹δs。Kaiser方程:
其中,频率ωp和ωs分别称为通带边界频率和阻带边界频率。δp和δs称为通带和阻带的误差容值即波纹峰值。
而峰值通带波纹值αp=-20lg(1-δp)dB,最小阻带衰减αs=-20lg(δs)dB。
设采样频率为ft,fp和fs为通带和阻带边界频率,则以弧度为单位的归一化边界角频率可以表示为:
由此可以根据Kaiser估算出实际滤波器的窗口长度,然后可以按照过渡带及阻带衰减情况,选择窗函数形式。窗函数的选取应满足:在保证阻带衰减满足要求的情况下,尽量选择主瓣窄的窗函数以获取较陡的过渡带;尽量减少窗谱最大旁瓣的相对幅度以减小波纹峰值。表4为各种窗口函数的性能指标。
表4窗函数性能指标
根据Kaiser方程可以计算出呼吸和心跳信号窗函数长度N最小整数值分别为:227和302。依据阻带最大增益可以满足接近满足的窗函数有汉宁窗和汉明窗,由于呼吸信号和心跳信号在频域的谱峰离得非常近,因此需要选取一款频率分辨率高的窗函数。汉宁窗和汉明窗都属于升余弦窗,其特点是旁瓣泄露少。二者相比较而言,汉明窗的主瓣稍窄于汉宁窗,且汉明窗的第一旁瓣衰减速度快于汉宁窗,上述两点都致使汉明窗的频率分辨率优于汉宁窗,因此选用汉明窗作为滤波器窗函数。
IIR数字滤波器称之为递归滤波器,采用递归型结构,即结构上带有反馈环路。IIR滤波器运算结构通常由延时、乘以系数和相加等基本运算组成,可以组合成直接型、正准型、级联型、并联型四种结构形式,都具有反馈回路。对于IIR数字滤波器,最常用的设计手段是将数字滤波器的设计指标转化成模拟滤波器设计指标,从而确定满足这些指标的模拟滤波器的传递函数,然后再讲它转换为所求的数字滤波器的传递函数。其优势是可以利用一些经典的模拟滤波器形式快速完成设计。常用的模拟滤波器有巴特沃斯(Butterworth)滤波器、切比雪夫(Chebyshev)滤波器、椭圆(Ellipse)滤波器、贝塞尔(Bessel)滤波器等。数字滤波器和模拟滤波器有千丝万缕的联系,它们之间的转换是s平面和z平面的转换,转换的基本方式就是冲激响应不变法和双线性变换法。椭圆滤波器,它是采用椭圆法设计出低通的模拟滤波器,然后采用变换的方法得到数字的高通、低通、带通和带阻的滤波器。在模拟滤波器的设计中,椭圆滤波器的设计是几种滤波器设计方法中最为复杂的一种方法,但是它设计出的滤波器的阶数最小,而且它的过渡带比较窄。椭圆滤波器相比其他类型的滤波器,在阶数相同的条件下有着最小的通带和阻带波动,在通带和阻带的波动相同。
采用椭圆滤波器,可以得最小的阶数,实现给定的滤波器技术指标,椭圆滤波器需要的计算量最小。基于Matlab滤波器设计工具箱FDATOOL,滤波器参数同上一节设计参数一致的情况下,提取呼吸信号的椭圆滤波器阶数最小仅需要8阶,用于提取心跳信号的椭圆滤波器阶数最小只需要14阶,可以看出运算量远远小于FIR滤波器阶数。
参见图14和图15,所示为分别采用FIR滤波器和IIR滤波器进行滤波分离呼吸信号时域和频域对比图,从实验结果来看,在时域和频域的信号对比中,FIR滤波器和IIR滤波器都可以有效的分离出呼吸信号,FIR滤波后信号相频特性好,易实现线性相位,但所需滤波器阶数高,运算存储单元多,信号延迟较大。IIR滤波器实现相同设计指标参数,具有滤波器阶数少,所需运算存储单元少,运算量少等特点,但滤波后的信号存在严重相位失真。
针对上述两种滤波方法的优缺点,本发明在IIR滤波方法基础上进行优化并改进后提出零相位IIR滤波器,从而达到完全消除信号相位失真。
零相位IIR滤波器的基本原理如下:首先根据呼吸和心跳信号分别设计IIR滤波器,然后使信号序列正向通过滤波器得到第一次滤波的输出,然后将第一次滤波的输出序列进行时域翻转,将时域翻转后的序列通过同样的滤波器进行二次滤波,二次滤波后的输出再次进行时域翻转,这样可以利用正向时间序列和翻转时间序列通过滤波器时的相移相互抵消,从而实现滤波结果的零相移。假设滤波函数为H(z),输入序列的z变化为X(z),那么零相位滤波过程可以表示如下:
Y1(ejω)=X(ejω)H(ejω);
Y2(ejω)=e-jω(N-1)Y1(e-jω);
Y3(ejω)=Y2(ejω)H(ejω);
Y4(ejω)=e-jω(N-1)Y3(e-jω);
有上式推导可得,最终输入输出可以表示为:
Y(ejω)=X(ejω)|H(ejω)|2
由此可以实现零相移滤波,从公式可以看出x序列是和滤波函数的平方相乘,因此滤波器的阶数会加倍,并且因为平方相乘,相比于其他滤波相比,信号的幅度会有所降低。
参见图16和16,所示为零相位滤波后呼吸信号和心跳信号时域图,图18为呼吸信号和心跳信号分离频域图,从图中可以看出,零相位滤波一方面信号幅度比原始信号有部分衰减,另一方面滤波器的阶数也会加倍,然而相对于FIR滤波计算阶数的几百阶而言,阶数还是很小的,计算量会显著减小,再者由于滤波时对信号时域截断,会导致信号边界失真,对于呼吸信号而言使用8阶滤波器后,再使用零相位滤波阶数会增加到16阶,信号两边信号失真,各损失16点数据。但总的来说幅度衰减不是很明显,两边信号边界损失对整个信号影响不是很大,对呼吸幅度频率的提取没有很大影响,能够有效的提取信号特征。
在一种优选实施方式中,数字滤波器通过所述MCU模块中的程序实现。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
在一种优选实施方式中,还包括将所获取的呼吸信号和心跳信号发送到服务器的步骤,通过无线通讯模块以无线的方式将获取人体呼吸信号和心跳信号发送到服务器。无线通讯模块与所述MCU模块相连接,用于将所述MCU模块获取人体呼吸信号和心跳信号发送到服务器,进一步的,无线通讯模块采用2.4G无线模块NRF24L01。通过服务器存储和处理患者呼吸和心跳变化的情况,借助服务器大数据处理和存储的功能提高生理信号的检测精度,并能够实时显示,以便及时监控患者的生理信号。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
Claims (5)
1.一种非接触式生理信号检测方法,其特征在于,包括以下步骤:
步骤S1:通过多普勒雷达传感器向人体胸腔发射连续波雷达信号;
步骤S2:将回波信号和发射震荡频率信号进行混频处理并检波后获取反应人体呼吸和心跳变化的低频信号;
步骤S3:对多普勒雷达传感器输出端进行阻抗匹配并滤除低频信号中的直流分量;
步骤S4:将经步骤S3处理后的信号进行信号放大;
步骤S5:通过0.1Hz-10Hz的带通滤波器对其输入信号进行滤波处理;
步骤S6:采用数字滤波技术将经步骤S5处理后的信号进行频率滤波从而获取呼吸信号和心跳信号;
其中,所述多普勒雷达传感器采用工作频段为10.525GHz的微波多普勒雷达探测器探头传感器HB100模块,用于向人体胸腔发射连续波雷达信号并接收回波信号进行处理后输出反应人体呼吸和心跳变化的低频信号,所述反应人体呼吸和心跳变化的低频信号依次经信号预处理模块、差分放大器、有源带通滤波器、呼吸和心跳信号分离模块和MCU模块信号处理后,所述MCU模块获取人体呼吸信号和心跳信号;
所述信号预处理模块包括电压跟随器和无源滤波器,所述电压跟随器用于对输入信号进行电压跟随,所述无源滤波器用于滤除输入信号中的直流分量;
所述差分放大器用于对输入信号进行放大并消除共模噪声;
所述有源带通滤波器用于对输入信号进行放大并消除差模噪声;
所述呼吸和心跳信号分离模块包括电平搬移电路、模数转换器和数字滤波器,所述电平搬移电路用于将输入信号的电平搬移到适合数模转换的电压范围;所述模数转换器用于将模拟量转换成离散的数字量;所述数字滤波器采用数字滤波技术在频域对呼吸信号和心跳信号进行分离;
所述信号预处理模块进一步包括第十三电阻R13、第三十三电容C33、第九集成运放U9、第二十六电阻R26、第二十九电容C29、第二十五电阻R25、第十九电阻R19、第三十四电解电容C34,其中, HB100模块的第三脚与第十三电阻R13的一端、第九集成运放U9的第二脚相连接,第二雷达模块P2的第二脚与第三十三电容C33的一端相连接,第二十六电阻一端与第九集成运放U9的第四脚相连接,第二十六电阻的另一端与第九集成运放U9的第一脚、第二十九电容C29的一端相连接,第二十九电容C29的另一端与第二十五电阻R25的一端、第十九电阻R19的一端、第三十四电解电容的正端相连接,第三雷达模块P3的第三脚与第三十三电容的另一端、第九集成运放U9的第二脚、第二十五电阻R25的另一端、第三十四电解电容的负端共同与模拟地相连接;
所述差分放大器进一步包括:第二十四电阻R24、第三十六电容C36、第三十九电容C39、第二十九电阻R29、第十二集成仪放U12、第三十七电容C37、第三十八电容C38、第十八电阻R18、第二十四电容C24、第二十五电容C25、第十八电阻R18、第三十八电容C38,其中,第二十四电阻R24一端与第三十一电容C31的一端、第十二集成仪放U12的第三脚、第三十六电容C36一端相连接,第三十六电容C36另一端与第十二集成仪放U12的第二脚、第三十九电容C39的一端、第二十九电阻的一端相连接,第十八电阻R18的一端与第十二集成仪放U12的第八脚相连接,第十八电阻R18的另一端与第十二集成仪放U12的第一脚相连接,第二十四电容C24一端与第二十五电容C25一端相连接、第十二集成仪放U12第七脚相连接,第三十七电容C37一端与第三十八电容C38一端、第十二集成仪放U12的第四脚相连接,第三十九电容C39另一端与第二十九电阻R29的另一端、第二十四电容C24的另一端、第二十五电容C25的另一端、第三十九电容C39的另一端、第三十八电容C38的另一端共同与模拟地相连接;
所述有源带通滤波器进一步包括:第二十电阻R20、第三十电阻R30、第九电阻R9、第二十七电阻R27、第十六电阻R16、第十七电阻R17、第七电阻R7、第二十一电阻R21、第二十二电阻R22、第八电阻R8、第二十六电容C26、第二十六电容C26、第二十七电容C27、第三十二电容C32、第二十二电容C22、第三十五电容C35、第二十三电容C23、第电容C、第八集成运放U8、第十集成运放U10、第十一集成运放U11,其中,第二十六电容C26一端与第二十七电容C27的一端、第九电阻R9的一端相连接,第二十七电容C27的另一端与第八集成运放U8的第三脚、第二十电阻R20的一端相连接,第九电阻R9的另一端与第八集成运放U8的第一脚、第二十七电阻R27一端、第十六电阻R16的一端相连接,第二十七电阻R27的另一端与第八集成运放U8的第四脚、第三十电阻R30的一端相连接,第十六电阻R16的另一端与第三十二电容C32一端、第七电阻R7的一端、第十七电阻R17一端相连接、第十七电阻R17与第十集成运放U10的第四脚、第二十二电容C22的一端相连接,第七电阻R7的另一端与第二十二电容C22的另一端、第十集成运放U10的第一脚、第二十一电阻R21一端相连接,第二十一电阻R21的另一端与第三十五电容C35一端、第二十二电阻R22一端、第八电阻R8的一端相连接、第二十二电阻R22的另一端与第十一集成运放U11的第四脚、第二十三电容C23的一端相连接,第八电阻R8的另一端与第二十三电容C23的另一端、第十一集成运放U11的第一脚相连接,第二十电阻R20另一端与第三十电阻另一端、第三十二电容C32另一端、第三十五电容C35另一端共同与模拟地相连接;
所述电平搬移电路进一步包括:第二十八电容C28、第三十电容C30、第十电阻R10、第十四电阻R14、第十二电阻R12、第二十三电阻R23、第二十八电阻R28、第十一电阻R11、第十五电阻R15、第六集成运放U6、第七集成运放U7、第三二极管D3、第四二极管D4,其中,第十电阻R10一端与第十四电阻R14的一端、第二十八电容C28的一端、第六集成运放U6的第三脚相连接,第六集成运放U6第四脚与第六集成运放U6第一脚、第十二电阻R12的一端相连接,第十二电阻R12的另一端与第十一电阻R11的一端、第七集成运放U7的第三脚相连接,第二十三电阻R23一端与第二十八电阻R28的一端、第七集成运放U7的第四脚相连接,第二十八电阻R28的另一端与第七集成运放U7的第一脚、第十五电阻R15的一端相连接,第十五电阻R15的另一端与第三十电容C30的一端、第三二极管D3的正端、第四二极管D4的负端相连接,第十四电阻R14的另一端与第二十八电容C28的另一端、第十一电阻R11的另一端、第三十电容C30的另一端、第四二极管D4的正端共同与模拟地相连接;
所述模数转换器进一步包括:第四十三电容C43、第四十二电容C42、第四十四电容C44、第四十八电容C48、第四十九电容C49、第四十电容C40、第三十五电阻R35、第三十二电阻R32、第十三AD转换芯片U13,其中,第四十三电容C43的一端与第四十二电容C42的一端、第十三AD转换芯片U13的第九脚相连接,第四十四电容C44的一端与第十三AD转换芯片U13的第十脚相连接,第四十八电容C48一端与第四十九电容C49的一端、第三十五电阻的一端、第十三AD转换芯片U13的第十三脚相连接,第四十电容C40一端与第十三AD转换芯片U13的第十六脚相连接,第三十二电阻R32的一端与第十三AD转换芯片U13的第一脚相连接,第四十三电容C43的另一端与第四十二电容C42的另一端、第四十四电容的另一端、第十三AD转换芯片U13的第十一脚、第十二脚、第四十八电容C48的另一端、第四十九电容的另一端共同与模拟地相连接;第四十电容C40的另一端与数字地相连接;
所述数字滤波器采用零相位IIR数字滤波器。
2.根据权利要求1所述非接触式生理信号检测方法,其特征在于,还包括将所获取的呼吸信号和心跳信号发送到服务器的步骤。
3.根据权利要求1所述非接触式生理信号检测方法,其特征在于,所述步骤S5中,通过四阶巴特沃斯低通滤波器和二阶巴特沃斯高通滤波器实现带通滤波器。
4.根据权利要求1所述非接触式生理信号检测方法,其特征在于,零相位IIR数字滤波器的实现步骤如下:
步骤S61:根据呼吸信号和心跳信号的特征分别设计呼吸信号IIR滤波器和心跳信号IIR滤波器;
步骤S62:将输入信号进行信号采样存储为数字信号序列;
步骤S63:将该数字信号序列分别输入到呼吸信号IIR滤波器和心跳信号IIR滤波器进行第一次滤波处理;
步骤S64:将经上述第一次滤波处理输出的信号执行第一次时域翻转;
步骤S65:将步骤S64输出信号再次输入到呼吸信号IIR滤波器和心跳信号IIR滤波器进行第二次滤波处理;
步骤S66:将经上述第二次滤波处理输出的信号执行第二次时域翻转,从而得到滤波后的呼吸信号和心跳信号;
步骤S67:对滤波后的呼吸信号和心跳信号进行FFT变换后分别求出频谱从而实现呼吸信号和心跳信号的分离。
5.根据权利要求2所述的非接触式生理信号检测方法,其特征在于,通过无线通讯模块以无线的方式将获取人体呼吸信号和心跳信号发送到服务器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610891027.3A CN106264502B (zh) | 2016-10-13 | 2016-10-13 | 一种非接触式生理信号检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610891027.3A CN106264502B (zh) | 2016-10-13 | 2016-10-13 | 一种非接触式生理信号检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106264502A CN106264502A (zh) | 2017-01-04 |
CN106264502B true CN106264502B (zh) | 2019-09-24 |
Family
ID=57718628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610891027.3A Active CN106264502B (zh) | 2016-10-13 | 2016-10-13 | 一种非接触式生理信号检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106264502B (zh) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107766845A (zh) * | 2017-11-20 | 2018-03-06 | 苏州蓝珀医疗科技股份有限公司 | 一种基于光线震动传感器的呼吸及bcg信号提取方法 |
CN107834996A (zh) * | 2017-11-30 | 2018-03-23 | 贝兹维仪器(苏州)有限公司 | 一种滤波电路 |
CN107863941A (zh) * | 2017-12-16 | 2018-03-30 | 南宁学院 | 一种基于二阶巴沃特兹低通滤波的脉搏信号检测电路 |
CN108542367B (zh) * | 2018-02-23 | 2024-05-24 | 山东沃尔德生物技术有限公司 | 一种人体行为模式检测装置、系统及方法 |
CN108392203A (zh) * | 2018-05-16 | 2018-08-14 | 山西工程职业技术学院 | 一种便携式的呼吸信号检测装置 |
CN108784669A (zh) * | 2018-06-08 | 2018-11-13 | 张洪平 | 一种非接触式心跳及呼吸紊乱监测系统及方法 |
TWI666001B (zh) * | 2018-06-11 | 2019-07-21 | 緯創資通股份有限公司 | 分析生理訊號的方法及相關分析裝置 |
CN110088643B (zh) * | 2018-08-31 | 2021-12-07 | 深圳迈睿智能科技有限公司 | 人体存在探测器及其人体存在探测方法 |
CN109620177A (zh) * | 2018-12-14 | 2019-04-16 | 昆明天博科技有限公司 | 一种非接触式生物体信息探测报警装置及方法 |
CN109407090A (zh) * | 2018-12-14 | 2019-03-01 | 昆明天博科技有限公司 | 利用生物雷达提取生物体信息对报警开关控制装置及方法 |
TWI743456B (zh) * | 2019-03-15 | 2021-10-21 | 昇雷科技股份有限公司 | 頻率調變連續波雷達之偵測方法 |
CN110398781A (zh) * | 2019-08-05 | 2019-11-01 | 深圳迈睿智能科技有限公司 | 抗干扰微波探测模块及抗干扰方法 |
CN110448303A (zh) * | 2019-08-09 | 2019-11-15 | 深圳迈睿智能科技有限公司 | 监护系统和监护方法 |
CN110579759A (zh) * | 2019-09-06 | 2019-12-17 | 深圳迈睿智能科技有限公司 | 趋于即时响应的微波探测器及探测方法 |
CN110558982B (zh) * | 2019-09-18 | 2023-04-18 | 迈德微创(天津)医疗器械有限责任公司 | 一种侵入式一次性的检测人体组织生物阻抗的装置和方法 |
CN112617773A (zh) * | 2019-09-24 | 2021-04-09 | 新加坡国立大学 | 一种用于健康监测的信号处理方法及信号处理装置 |
TWI765185B (zh) * | 2019-10-23 | 2022-05-21 | 國立中山大學 | 非接觸式生命特徵檢測方法 |
CN113468494B (zh) * | 2021-06-16 | 2024-04-12 | 南京润楠医疗电子研究院有限公司 | 一种非接触式的基于心跳的用户身份连续认证方法与系统 |
CN114280571B (zh) * | 2022-03-04 | 2022-07-19 | 北京海兰信数据科技股份有限公司 | 一种雨杂波信号的处理方法、装置及设备 |
TWI822535B (zh) * | 2022-12-28 | 2023-11-11 | 財團法人工業技術研究院 | 生理資訊感測裝置及方法 |
CN116979931B (zh) * | 2023-09-22 | 2024-01-12 | 中建八局第三建设有限公司 | 一种用于架桥机预警反馈的信号处理方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101361650A (zh) * | 2007-08-07 | 2009-02-11 | 深圳市理邦精密仪器有限公司 | Iir滤波器的零相位实现方法及零相位iir滤波装置 |
WO2010099268A1 (en) * | 2009-02-25 | 2010-09-02 | Xanthia Global Limited | Wireless physiology monitor |
CN102018503B (zh) * | 2010-10-21 | 2012-12-12 | 中国科学院深圳先进技术研究院 | 生命探测雷达中的呼吸与心跳信号的提取方法及装置 |
CN103070728A (zh) * | 2013-02-06 | 2013-05-01 | 南京理工大学 | 一种非接触式生命体征监护设备 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7753849B2 (en) * | 2008-05-09 | 2010-07-13 | Alcatel-Lucent Usa Inc. | Doppler radar cardiopulmonary sensor and signal processing system and method for use therewith |
-
2016
- 2016-10-13 CN CN201610891027.3A patent/CN106264502B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101361650A (zh) * | 2007-08-07 | 2009-02-11 | 深圳市理邦精密仪器有限公司 | Iir滤波器的零相位实现方法及零相位iir滤波装置 |
WO2010099268A1 (en) * | 2009-02-25 | 2010-09-02 | Xanthia Global Limited | Wireless physiology monitor |
CN102018503B (zh) * | 2010-10-21 | 2012-12-12 | 中国科学院深圳先进技术研究院 | 生命探测雷达中的呼吸与心跳信号的提取方法及装置 |
CN103070728A (zh) * | 2013-02-06 | 2013-05-01 | 南京理工大学 | 一种非接触式生命体征监护设备 |
Non-Patent Citations (1)
Title |
---|
连续波生物雷达体征检测装置与实验研究;胡巍 等;《中国医疗器械杂志》;20140630;第38卷(第2期);第102-106页 * |
Also Published As
Publication number | Publication date |
---|---|
CN106264502A (zh) | 2017-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106264502B (zh) | 一种非接触式生理信号检测方法 | |
CN106264501A (zh) | 一种基于连续波多普勒雷达的生理信号检测系统 | |
Nosrati et al. | High-accuracy heart rate variability monitoring using Doppler radar based on Gaussian pulse train modeling and FTPR algorithm | |
US11744520B2 (en) | Accuracy of heart rate estimation from photoplethysmographic (PPG) signals | |
CN104207752B (zh) | 一种高速扫频光学相干断层成像系统 | |
CN104382571A (zh) | 一种基于桡动脉脉搏波传导时间的测量血压方法及装置 | |
CN101919704B (zh) | 一种心音信号定位、分段方法 | |
CN103027670A (zh) | 一种微功率冲激式生物雷达前端 | |
CN108272446A (zh) | 无创连续血压测量系统及其校准方法 | |
Park et al. | Center tracking quadrature demodulation for a Doppler radar motion detector | |
CN105266786A (zh) | 一种抗运动干扰的反射式脉率检测装置 | |
CN113171064A (zh) | 一种基于雷达的生命体征检测方法 | |
CN104095640A (zh) | 血氧饱和度检测方法及装置 | |
CN101692976B (zh) | 基于微波、射频多普勒效应的血液动力学检测方法及其装置 | |
Zhao et al. | Multi-target vital signs remote monitoring using mmWave FMCW radar | |
CN113576438B (zh) | 一种非侵入式血压提取方法和系统 | |
CN108294736A (zh) | 连续血压测量系统及测量方法 | |
CN208511016U (zh) | 一种生命体征综合检测分析系统 | |
Kuwahara et al. | Non-invasive, continuous, pulse pressure monitoring method | |
LU101282B1 (en) | Dual-band vital signs detection radar system based on superheterodyne and low-intermediate frequency structure | |
Mohammad-Zadeh et al. | Contactless heart monitoring (CHM) | |
CN110151164B (zh) | 一种针对心房颤动的周长标测法 | |
Lee et al. | A 14 GHz non-contact radar system for long range heart rate detection | |
Hu et al. | An intelligent non-contact wireless monitoring system for vital signs and motion detection | |
Cho et al. | Measurement of pulse transit time using ultra-wideband radar |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20170104 Assignee: HANGZHOU KONXIN SOC Co.,Ltd. Assignor: HANGZHOU DIANZI University Contract record no.: X2021330000825 Denomination of invention: A non-contact physiological signal detection method Granted publication date: 20190924 License type: Common License Record date: 20211220 |
|
EE01 | Entry into force of recordation of patent licensing contract |