CN106262581B - 一种柑橘特征香气纳米乳及其制备方法 - Google Patents

一种柑橘特征香气纳米乳及其制备方法 Download PDF

Info

Publication number
CN106262581B
CN106262581B CN201610644287.0A CN201610644287A CN106262581B CN 106262581 B CN106262581 B CN 106262581B CN 201610644287 A CN201610644287 A CN 201610644287A CN 106262581 B CN106262581 B CN 106262581B
Authority
CN
China
Prior art keywords
citrus
tween
nanoemulsion
aroma
mixed solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610644287.0A
Other languages
English (en)
Other versions
CN106262581A (zh
Inventor
范刚
董曼
杨子玉
张璐璐
任婧楠
潘思轶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong Agricultural University
Original Assignee
Huazhong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong Agricultural University filed Critical Huazhong Agricultural University
Priority to CN201610644287.0A priority Critical patent/CN106262581B/zh
Publication of CN106262581A publication Critical patent/CN106262581A/zh
Application granted granted Critical
Publication of CN106262581B publication Critical patent/CN106262581B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Landscapes

  • Seasonings (AREA)
  • Fats And Perfumes (AREA)

Abstract

本发明公开了一种柑橘特征香气纳米乳及其制备方法,其步骤是:(1)配制11种等量的柑橘香气标准物质混合溶液;(2)加入比例为2‑7%(w/w)的橄榄油,混合后制成油相;(3)按照吐温80与油相质量比为6:4在上述油相中加入吐温80,按照吐温80与无水乙醇质量比为7:1加入无水乙醇,混合均匀,加去离子水定容至10 mL;(4)配制质量浓度为0.1%的NaCl溶液10mL,作为水相;(5)将水相缓慢加入步骤(3)制成的混合液中中,混合均匀并进行均质处理。由该方法制成的纳米乳,具有良好的稳定性,橄榄油的低溶解度能抑制奥氏熟化现象,同时提高了该纳米乳中柑橘特征香气物质在光照和高温条件下的贮藏稳定性。

Description

一种柑橘特征香气纳米乳及其制备方法
技术领域
本发明属于食品加工技术领域,具体涉及一种加入橄榄油的柑橘特征香气纳米乳,还涉及该纳米乳的的制备方法,应用于缓释香精制备方面。
背景技术
柑橘(Citrus Reticulata Blanco)属于芸香科(Rutaceae)下属植物中的柑橘果树类植物(citrus fruit trees group),性喜温暖湿润,是热带、亚热带除枳以外的常绿果树。柑橘在中国拥有四千多年的栽培历史,种类繁多,数量庞大。柑橘位居百果之首,我国柑橘种植面积和产量均位居世界第一。柑橘果实色泽鲜艳,香味清新,味道爽口,既可以直接食用也能加工成各种产品。柑橘外果皮中含有大量色素和芳香油、中果皮中有多糖、半纤维、维生素等,内果皮含有纤维素等,因此可以将皮渣加工成精油、橙皮苷、精油等产品,具有广阔的市场前景。柑橘特征香气物质广泛应用于食品生产(例如饮料和饼干中的香气、矫味剂),生活用品(例如花露水、香水、牙膏和香皂),医药工业(祛痰、抑菌、镇痛、消炎)。
纳米乳液(nanoemulsion)是一类粒径大小为10~100nm的胶体分散系统,主要由油、水、表面活性剂和助表面活性剂四种成分组成,具有大小均匀的透明或半透明、热压灭菌或高速离心稳定的性质,是动力学稳定体系。1943年英国化学家Schulman和Hoar等人首次提出纳米乳液nanoemulsion这一概念。
与传统乳液相比,纳米乳液细小的粒径帮其克服贮藏过程中产生的沉降、絮凝和聚结等问题,近几年来,在生活用品、食品领域、化妆品行业、医药领域等方面的应用越来越广泛。由于柑橘特征香气物质在光照和高温条件下不稳定,容易挥发及氧化,影响其在食品中的应用。目前,主要通过低温和去除氧气的方式来提高其稳定性,但这种方式在实际生产中受到很大限制;也有采用制作微胶囊的方式缓解香气的释放,这种方法存在壁材选择困难、壁材本身不稳定、成本高等缺点。本发明的目的是在于提供一种柑橘特征香气的纳米乳及其制备方法,以解决纳米乳液中柑橘特征香气物质容易挥发及氧化问题,提高其在食品加工中的稳定性。
发明内容
本发明的目的是在于提供一种柑橘特征香气纳米乳,该纳米乳中添加的柑橘特征香气物质在光照和高温条件下可以稳定保存,不易挥发及氧化,柑橘香气的可长时间缓慢释放,生产成本低。
本发明的另一个目的是在于提供一种柑橘特征香气纳米乳制备方法,方法易行,操作简便,在含有柑橘特征香气物质的纳米乳液中添加特定浓度的橄榄油,橄榄油作为特征香气物质的载体,将香气物质包裹起来,延长其释放时间,同时橄榄油的低溶解度能抑制奥氏熟化现象,延长柑橘特征香气的纳米乳液的货架时间。
为了实现上述的目的,本发明采用以下技术方案:
柑橘特征香气纳米乳的制备方法,其步骤是:
(1)配制11种等量的柑橘香气标准物质混合溶液,所述的香气标准物质分别为乙酸乙酯、α-蒎烯、β-月桂烯、D-柠檬烯、苯甲醇、1-辛醇、壬醛、α-松油醇、癸醛、丁香酚、β-紫罗兰酮,每种物质分别取31.25mg,获得混合液;
(2)在上述混合液中加入质量比(w/w)为2-7%的橄榄油,混合均匀后制成油相;
(3)按照乳化剂与上述油相质量比为6:4加入乳化剂吐温80,按照吐温80与无水乙醇质量比为7:1加入无水乙醇,混合均匀,添加去离子水定容至10mL;
(4)配制质量浓度为0.1%的NaCl溶液10mL,作为水相;
(5)将水相缓慢加入步骤(3)制成的混合液中,混合均匀,并用均质器进行均质处理,条件为20000rpm,8-11min,按此处理后,即得柑橘特征香气的纳米乳。
作为优选,橄榄油的添加比例(w/w)为5%。
本发明与现有技术相比,具有以下优点和效果:
1、本发明采用吐温80作为乳化剂,价格优惠。乳化剂为吐温80制成的纳米乳液,其香气物质的释放量随吐温80浓度变化波动幅度较小,因此选择吐温80为乳化剂剂可以排除乳化剂对香气释放的影响。
2、本发明所述的柑橘特征香气纳米乳,具有良好的稳定性,添加橄榄油的纳米乳液与未加橄榄油的柑橘特征香气物质纳米乳液相比,未加橄榄油的纳米乳液不稳定,粒径随着时间变化快速增加。添加适量橄榄油能抑制奥氏熟化作用,解决了普通纳米乳液奥氏熟化现象。
3、本发明中,加入橄榄油后的纳米乳液香气物质释放受到抑制,有效延长了香气物质的释放时间。
附图说明
图1-4为吐温80对柑橘香气标准品释放的影响图。
其中图1为吐温80对柑橘香气标准品中乙酸乙酯释放的影响图;图2为吐温80对β-月桂烯、丁香酚释放的影响图;图3为吐温80对ɑ-松油醇、苯甲醇、1-辛醇释放的影响图;图4为吐温80对α-蒎烯、D-柠檬烯、壬醛、癸醛、β-紫罗兰酮释放的影响图。
图5-8为大豆卵磷脂对柑橘香气标准品释放的影响图。
其中图5为大豆卵磷脂对柑橘香气标准品中乙酸乙酯释放的影响图;图6为大豆卵磷脂对β-月桂烯、丁香酚释放的影响图;图7为大豆卵磷脂对ɑ-松油醇、苯甲醇、1-辛醇释放的影响图;图8为大豆卵磷脂对α-蒎烯、D-柠檬烯、壬醛、癸醛、β-紫罗兰酮释放的影响图。
图9-12为蔗糖脂肪酸酯对柑橘香气标准品释放的影响图。
其中图9为蔗糖脂肪酸酯对柑橘香气标准品中乙酸乙酯释放的影响图;图10为蔗糖脂肪酸酯对β-月桂烯、丁香酚释放的影响图;图11为蔗糖脂肪酸酯对ɑ-松油醇、苯甲醇、1-辛醇释放的影响图;图12为蔗糖脂肪酸酯对α-蒎烯、D-柠檬烯、壬醛、癸醛、β-紫罗兰酮释放的影响图。
图13为吐温80、大豆卵磷脂、蔗糖脂肪酸酯对柑橘总香气释放的影响图。
图14为不同浓度的吐温80对柑橘特征香气物质的粒径的影响图。
图15为在不同吐温80浓度下柑橘特征香气纳米乳液的伪三元相图。
在伪三元相图中,可以通过比较纳米乳区面积大小判断纳米乳体系的相对稳定程度。由图15可知,随着Km值升高,纳米乳区面积先增大后减小,当Km值为7:1时,所形成的纳米乳区面积最大,说明此时助表面活性剂完全嵌入到表面活性剂中,此时含有最大油承载量,能被水无限稀释。
图16为纳米乳粒径立方在不同浓度橄榄油中的变化趋势图。
具体实施方式
以下结合具体实施例对本发明作进一步的详细描述。
实施例1:
筛选柑橘特征香气纳米乳中的最佳乳化剂,乳化剂种类、乳化剂的浓度等都会影响香气的释放量,为研究最佳乳化剂,本试验对比同种乳化剂的不同浓度、不同乳化剂对香气缓释的影响,以香气物质峰面积为指标研究最佳乳化剂。选用乳化剂:吐温80、大豆卵磷脂、蔗糖脂肪酸酯,分别由国药集团化学试剂有限公司、BIOSHARP公司、杭州瑞霖化工有限公司提供。具体步骤如下:
(1)选取乙酸乙酯、α-蒎烯、β-月桂烯、D-柠檬烯、苯甲醇、1-辛醇、壬醛、α-松油醇、癸醛、丁香酚、β-紫罗兰酮这11种香气标准物质,每种物质称取31.25mg,分别溶解于5mL无水乙醇中,得到柑橘香气标准品母液;
(2)分别制备浓度(w/w)为0.1%、0.2%、0.3%、0.4%、0.5%的蔗糖脂肪酸酯、大豆卵磷脂和吐温80溶液,以去离子水为溶剂,分别加入10mL到柑橘香气标准品母液中进行GC-MS分析;
香气物质的提取方法:分别准确量取5mL样品于20mL钳口顶空瓶中,用聚四氟乙烯隔垫密封,将SPME萃取头通过隔垫插入顶空瓶,于磁力搅拌器上在37℃加热平衡10min;平衡后,推出纤维头,使纤维头置于钳口瓶顶空吸附30min,随后将萃取头插入GC-MS进样口2cm,并推出纤维头,解析5min,进行GC-MS分析;
GC-MS分析条件:
Agilent 6890N型气相色谱仪,气相色谱条件:毛细管柱为HP-5(30m×320μm×0.25μm),程序升温,起始温度40℃,保持1min,以6℃/min升至220℃,保持1min,再以30℃/min升至250℃,进样口温度250℃;
Agilent 5975B型气相色谱质谱仪,质谱条件:离子源温度230℃,四极杆温度150℃,离子化方式EI,电子能量70eV,质量范围为45~550AMU/sec;
(3)数据统计分析:采用外标法进行香气物质的定量分析,根据标品标准曲线和样品的峰面积,计算得到每种香气物质的含量;由三次平行实验测定和外标法计算得到的各实验平均值及标准偏差采用Microsoft Office Excel 2010进行计算,不同组别间的显著性采用SPSS Statistics 19.0软件进行one-way ANOVA分析;
根据上述不同乳化剂(蔗糖脂肪酸酯、大豆卵磷脂和吐温80)下的香气缓释情况比较(见图1-13),发现乳化剂吐温80制成的单一样品在浓度范围0.1%~0.5%内,其香气物质的释放量有着小幅度的波动,然而乳化剂大豆卵磷脂、蔗糖脂肪酸酯样品的香气物质释放量则有较大波动,因此本发明选择吐温80作乳化剂。
实施例2:
确定柑橘特征香气纳米乳中吐温80的浓度及Km值,其步骤是:
(1)向5mL柑橘特征香气标准品母液中加入5%(w/w)的玉米油混匀,并按乳化剂与油相比(SOR比)为(即吐温80与玉米油的质量比)9:1、8:2、7:3、6:4、5:5、4:6、3:7、2:8、1:9加入吐温80,助表面活性剂无水乙醇按乳化剂与助乳化剂比(Km,即吐温80与无水乙醇的质量比)为7:1、9:1、5:1量取,在烧杯中将无水乙醇与去离子水混合均匀,定容至10mL;然后用玻棒逆时针均速缓慢搅拌,并以1mL/min的速度向小烧杯中加入去离子水10mL;最后放入搅拌转子,置于磁力搅拌器上,转速1500rpm,搅拌6h。
(2)利用马尔文激光粒径仪Nano-ZS90在25℃下测量柑橘精油纳米乳液粒径。样品用去离子水稀释1000倍,以防止多次散射效应;在塑料比色皿中加入柑橘特征香气物质纳米乳液1mL,插入样品槽中,盖上仓盖,设定测量波长658nm,散射角173°,平衡时间为60s,间隔时间为10s,软件自动记录粒径分组数据,每个样扫描三次,得平均值。根据粒径和数目,绘制其分布图。
(3)由三次平行实验测定的各实验平均值及标准偏差采用Microsoft OfficeExcel 2010进行计算,不同组别间的显著性采用SPSS Statistics 19.0软件进行one-wayANOVA分析。
结果表明(见图14、15),随吐温80浓度增大,平均粒径先急剧下降然后平缓。乳化剂量少乳化不彻底,量多增加成本且有苦味,因此选择乳化剂吐温80的浓度(w/w)为5.16%,即SOR比(乳化剂与油相质量比)为6:4。当Km值(乳化剂与助乳化剂质量比)为7:1时,所形成的纳米乳区面积最大,故选择Km为7:1最合适。
实施例3:
橄榄油浓度对柑橘特征香气纳米乳奥氏熟化的影响,其步骤是:
(1)分别制备浓度(w/w)为0%、1%、3%、5%、10%、15%的橄榄油-纳米乳液,以混合香气标准溶液(按表1所示体积添加)和橄榄油为油相,按SOR比(乳化剂与油相质量比)为6:4添加吐温80为乳化剂,按Km值(乳化剂与助乳化剂质量比)7:1添加无水乙醇为助表面活性剂,以去离子水为水相定容至10mL,采用相转变法制备柑橘特征香气纳米乳。
表1香气标准品溶液的制作
(2)利用马尔文激光粒径仪Nano-ZS90在25℃下测量柑橘特征香气纳米乳粒径,样品用去离子水稀释1000倍,以防止多次散射效应,每隔12h测定一次;在塑料比色皿中加入柑橘特征香气物质纳米乳液1mL,插入样品槽中,盖上仓盖;设定测量波长658nm,散射角173°,平衡时间为60s,间隔时间为10s,软件自动记录粒径分组数据;根据粒径和数目,绘制其分布图;每个样扫描三次,得平均值。
由图16可知,在28℃条件下保存,添加1%、3%、5%、10%和15%(w/w)橄榄油的纳米乳液与未加橄榄油柑橘特征香气纳米乳液相比,未加橄榄油的纳米乳液非常不稳定,粒径随着时间变化快速增加。橄榄油浓度在1%~5%之间时,随着浓度增高,纳米乳粒径增长速度变缓慢,但不足以抑制粒径的增长。当橄榄油浓度达到10%和15%时,粒径能维持一定大小,但此时纳米乳粒径较大。因此,添加5%橄榄油的纳米乳液贮藏稳定性最好。
实施例4:
橄榄油浓度对柑橘特征香气纳米乳的香气缓释的影响,其步骤是:
(1)将11种香气标准品按照表1中所示的量溶解于乙醇中,定容至25mL,得到每一种标品浓度为1250μg/mL的混合标品,11种香气标准品在体系中的比例为1:1。
香气物质标准曲线的绘制:以表1混合标样中各香气物质的浓度为标准含量n,按照表2中制作七个浓度梯度的香气标品;用移液枪准确移取200μL混合标品于装有5mL蒸馏水的顶空瓶中,用聚四氟乙烯隔垫密封,将SPME萃取头通过隔垫插入顶空瓶,于磁力搅拌器上在37℃加热平衡10min;平衡后,推出纤维头,使纤维头置于钳口瓶顶空吸附30min,随后将萃取头插入GC-MS进样口2cm,并推出纤维头,解析5min,利用GC-MS进行定量分析;得出在相应浓度下各香气成分的峰面积,然后对不同的香气成分制作浓度-峰面积的标准曲线图。
表2标准曲线的制作
香气物质的提取方法:分别准确量取5mL样品于20mL钳口顶空瓶中,用聚四氟乙烯隔垫密封,将SPME萃取头通过隔垫插入顶空瓶,于磁力搅拌器上在37℃加热平衡10min。平衡后,推出纤维头,使纤维头置于钳口瓶顶空吸附30min,随后将萃取头插入GC-MS进样口2cm,并推出纤维头,解析5min,进行GC-MS分析。
GC-MS分析条件:
Agilent 6890N型气相色谱仪,气相色谱条件:毛细管柱为HP-5(30m×320μm×0.25μm),程序升温,起始温度40℃,保持1min,以6℃/min升至220℃,保持1min,再以30℃/min升至250℃,进样口温度250℃。
Agilent 5975B型气相色谱质谱仪,质谱条件:离子源温度230℃,四极杆温度150℃,离子化方式EI,电子能量70eV,质量范围为45~550AMU/sec。
(2)分别配制添加0%、1%、3%、5%、10%(w/w)橄榄油的纳米乳液,以混合香气标准溶液(按表1所示体积添加)和橄榄油为油相,吐温80为乳化剂,按SOR比为6:4添加,无水乙醇为助表面活性剂,按Km7:1添加,以去离子水为水相定容至10mL,采用相转变法制备柑橘特征香气纳米乳。
(3)分别准确量取5mL上述柑橘特征香气纳米乳的样品于20mL钳口顶空瓶中,用聚四氟乙烯隔垫密封,将SPME萃取头通过隔垫插入顶空瓶,于磁力搅拌器上在37℃加热平衡10min。平衡后,推出纤维头,使纤维头置于钳口瓶顶空吸附30min,随后将萃取头插入GC-MS进样口2cm,并推出纤维头,解析5min,进行GC-MS分析。
根据本实验中香气从柑橘特征香气纳米乳体系中释放结果来看(表3),大部分的香气物质释放都会在橄榄油浓度增加的过程中受到一定的抑制。橄榄油浓度越高,疏水作用越强烈,释放出来的香气浓度越小。
表3不同浓度橄榄油对柑橘特征香气纳米乳香气释放的影响
综上所述,橄榄油加入到柑橘特征香气纳米乳中既能抑制奥氏熟化现象,又能缓解香气释放速度,是该技术提高产品香气稳定性和延迟释放的重要方面。试验结果表明,乳化剂为吐温80,浓度(w/w)为5.16%,Km值(乳化剂与助乳化剂质量比)为7:1,植物油为5%(w/w)橄榄油时,可制取澄清透明、性质稳定的柑橘特征香气纳米乳。
实施例5:
柑橘特征香气纳米乳的制备方法,其步骤是:
(1)配制11种等量的柑橘香气标准物质混合溶液,香气标准物质分别为乙酸乙酯、α-蒎烯、β-月桂烯、D-柠檬烯、苯甲醇、1-辛醇、壬醛、α-松油醇、癸醛、丁香酚、β-紫罗兰酮,获得混合液;
(2)加入质量比为2%或4%或6%或7%的橄榄油,混合后制成油相;
(3)按照吐温80与上述的油相质量比为6:4,在上述油相中加入乳化剂吐温80,按照吐温80与无水乙醇质量比为7:1加入无水乙醇,混合均匀,加去离子水定容至10mL;
(4)配制质量浓度为0.1%的NaCl溶液10mL,作为水相;
(5)将水相缓缓加入步骤(3)制成的混合液中,用玻璃棒搅拌使其混合均匀,用Poly Tron均质器进行均质处理,条件为20000rpm,8或10或11min,按此处理后,即得柑橘特征香气纳米乳。

Claims (1)

1.一种柑橘特征香气纳米乳,其特征在于,由下述方法制备而成:
(1)配制11种等量的柑橘香气标准物质混合溶液,所述的香气标准物质为乙酸乙酯、α-蒎烯、β-月桂烯、D-柠檬烯、苯甲醇、1-辛醇、壬醛、α-松油醇、癸醛、丁香酚、β-紫罗兰酮,每种物质分别取31.25mg,获得混合液;
(2)在上述混合液加入质量比为5%的橄榄油,混合后制成油相;
(3)在上述油相中,按照吐温80与油相质量比为6:4加入吐温80,按照吐温80与无水乙醇质量比为7:1加入无水乙醇,混合均匀,加去离子水定容至10mL;
(4)配制质量浓度为0.1%的NaCl溶液10mL,作为水相;
(5)将水相缓慢加入步骤(3)制成的混合液中,混合均匀,并用均质器进行均质处理。
CN201610644287.0A 2016-08-08 2016-08-08 一种柑橘特征香气纳米乳及其制备方法 Active CN106262581B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610644287.0A CN106262581B (zh) 2016-08-08 2016-08-08 一种柑橘特征香气纳米乳及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610644287.0A CN106262581B (zh) 2016-08-08 2016-08-08 一种柑橘特征香气纳米乳及其制备方法

Publications (2)

Publication Number Publication Date
CN106262581A CN106262581A (zh) 2017-01-04
CN106262581B true CN106262581B (zh) 2019-12-13

Family

ID=57666413

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610644287.0A Active CN106262581B (zh) 2016-08-08 2016-08-08 一种柑橘特征香气纳米乳及其制备方法

Country Status (1)

Country Link
CN (1) CN106262581B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109380700A (zh) * 2018-11-08 2019-02-26 天津科技大学 一种大蒜精油微胶囊及其制备方法
CN114214117B (zh) * 2021-12-13 2023-09-15 云南中烟工业有限责任公司 一种提高佛手柑油香精中柠檬烯释放均衡性的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104490661A (zh) * 2014-12-04 2015-04-08 上海应用技术学院 一种含柠檬精油的o/w型纳米乳液及其制备方法
CN105748408A (zh) * 2014-12-17 2016-07-13 北京盈科瑞药物研究院有限公司 微乳、微乳制剂及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104490661A (zh) * 2014-12-04 2015-04-08 上海应用技术学院 一种含柠檬精油的o/w型纳米乳液及其制备方法
CN105748408A (zh) * 2014-12-17 2016-07-13 北京盈科瑞药物研究院有限公司 微乳、微乳制剂及其制备方法

Also Published As

Publication number Publication date
CN106262581A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
Coimbra et al. Characterization of the pulp and kernel oils from Syagrus oleracea, Syagrus romanzoffiana, and Acrocomia aculeata
Lukić et al. Pre-fermentative cold maceration, saignée, and various thermal treatments as options for modulating volatile aroma and phenol profiles of red wine
Khoddami et al. Physico‐chemical properties and fatty acid profile of seed oils from pomegranate (Punica granatum L.) extracted by cold pressing
Salinas et al. Stir bar sorptive extraction applied to volatile constituents evolution during Vitis vinifera ripening
Tao et al. Volatile compounds of young Cabernet Sauvignon red wine from Changli County (China)
Krichene et al. Stability of virgin olive oil phenolic compounds during long-term storage (18 months) at temperatures of 5–50 C
KR102586207B1 (ko) 활성 성분을 갖는 건조 플레이크
An et al. Study on the key volatile compounds and aroma quality of jasmine tea with different scenting technology
Juan et al. The profile in polyphenols and volatile compounds in alcoholic beverages from different cultivars of mulberry
Wu et al. Preparation of Pickering emulsions based on soy protein isolate-tannic acid for protecting aroma compounds and their application in beverages
Lorenzo et al. Effect of red grapes co-winemaking in polyphenols and color of wines
Karimali et al. Varietal classification of red wine samples from four native Greek grape varieties based on volatile compound analysis, color parameters and phenolic composition
Zhao et al. Variations in main flavor compounds of freshly distilled brandy during the second distillation
Xu et al. Microencapsulation of sea buckthorn (Hippophae rhamnoides L.) pulp oil by spray drying
CN106262581B (zh) 一种柑橘特征香气纳米乳及其制备方法
Song et al. Aroma characterization of Chinese Hutai-8 wines: comparing with Merlot and Cabernet Sauvignon wines
CN102796617A (zh) 一种食用菊花香精及其制备方法
Loizzo et al. Phenolics, aroma profile, and in vitro antioxidant activity of Italian dessert passito wine from Saracena (Italy)
Özdemir et al. Bioactive compounds and volatile aroma compounds in rose (Rosa damascena Mill.) vinegar during the aging period
Wei et al. Identification of characteristic volatile compounds and prediction of fermentation degree of pomelo wine using partial least squares regression
Zhang et al. Comparison of sugars, organic acids and aroma components of five table grapes in Xinjiang
Lopez-Nicolas et al. Effects of addition of α-cyclodextrin on the sensory quality, volatile compounds, and color parameters of fresh pear juice
Xu et al. Preparation of scented teas by sustained-release of aroma from essential oils–casein nanocomposites
Lu et al. Analysis on volatile components of co-fermented fruit wines by Lycium ruthenicum murray and wine grapes
Jiang et al. Phenolic compounds, total antioxidant capacity and volatile components of Cabernet Sauvignon red wines from five different wine-producing regions in China

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant