CN106254291A - 采样频率偏移计算 - Google Patents

采样频率偏移计算 Download PDF

Info

Publication number
CN106254291A
CN106254291A CN201610384166.7A CN201610384166A CN106254291A CN 106254291 A CN106254291 A CN 106254291A CN 201610384166 A CN201610384166 A CN 201610384166A CN 106254291 A CN106254291 A CN 106254291A
Authority
CN
China
Prior art keywords
sample
value
group
received signal
symbol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610384166.7A
Other languages
English (en)
Other versions
CN106254291B (zh
Inventor
保罗·默林
巴斯蒂安·毕沃斯
尼特赞·兹弗罗尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imagination Technologies Ltd
Original Assignee
Imagination Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imagination Technologies Ltd filed Critical Imagination Technologies Ltd
Publication of CN106254291A publication Critical patent/CN106254291A/zh
Application granted granted Critical
Publication of CN106254291B publication Critical patent/CN106254291B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • H04L27/2659Coarse or integer frequency offset determination and synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2656Frame synchronisation, e.g. packet synchronisation, time division duplex [TDD] switching point detection or subframe synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2666Acquisition of further OFDM parameters, e.g. bandwidth, subcarrier spacing, or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2669Details of algorithms characterised by the domain of operation
    • H04L27/2671Time domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2676Blind, i.e. without using known symbols
    • H04L27/2678Blind, i.e. without using known symbols using cyclostationarities, e.g. cyclic prefix or postfix
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2681Details of algorithms characterised by constraints
    • H04L27/2686Range of frequencies or delays tested
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/22Parsing or analysis of headers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0024Carrier regulation at the receiver end
    • H04L2027/0026Correction of carrier offset
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Circuits Of Receivers In General (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了采样频率偏移计算。在本文描述了计算SFO的估计的非数据辅助方法。该方法涉及执行在所接收的信号内的两个相同尺寸的样本组之间的多个关联,其中组的间距对于每个关联而改变。在各个例子中,在组中的样本的数量也改变。对于较大的符号,样本的组可包括与在符号中的保护间隔大约相同数量的样本,且对于较小的符号,样本的组可包括与整个符号大约相同数量的样本。通过识别从所执行的所有关联得到的最大关联结果来确定SFO的估计。最大关联结果指示最大关联。

Description

采样频率偏移计算
背景
在OFDM系统中,诸如数字地面电视(DTT)系统,在发射机和接收机处使用的采样频率之间的失配可导致性能的严重降级。在采样频率中的偏移或采样频率偏移(SFO)引起在载波之间的正交性的损失和因而引起的载波间干扰(ICI)。
以下描述的实施方式不限于解决计算SFO的已知方法的任何或所有缺点的实现。
概述
本概述被提供为以简化形式介绍一系列概念,其在下面在详细描述中将进行进一步描述。本概述并不打算识别所要求保护的主题的关键特征或必要特征,也不打算用作帮助确定所要求保护的主题的范围。
在本文中描述了计算SFO的估计的非数据辅助方法。该方法涉及执行在所接收的信号内的两个相同尺寸的样本组之间的多个关联,其中组的间距对于每个关联改变。在各个例子中,在组中的样本的数量也改变。对于较大的符号,样本的组可包括与在OFDM符号中的保护间隔大约相同数量的样本,且对于较小的符号,样本的组可包括与整个符号大约相同数量的样本。通过识别从所执行的所有关联得到的最大关联结果来确定SFO的估计。最大关联结果指示最大关联。
第一方面提供了计算在无线接收机中的采样频率偏移的估计的方法,该方法包括:对于来自i的候选值的集合的整数变量i的每个值,执行在所接收的信号中的第一组样本和在所接收的信号中的随后一组样本之间的关联并存储关联结果,其中在随后一组中的样本与在第一组中的相应样本间隔开N+i个样本的间距,其中N是整数;以及基于相应于最大关联结果的i的值来确定采样频率偏移估计。
第二方面提供了包括处理器的数字接收机,处理器配置成:对于来自i的候选值的集合的整数变量i的每个值,执行在所接收的信号中的第一组样本和在所接收的信号中的随后一组的样本之间的关联并存储关联结果,其中在随后一组中的样本与在第一组中的相应样本间隔开N+i个样本的间距,其中N是整数;以及至少部分地基于相应于最大关联结果的i的值来确定采样频率偏移估计。
其他方面提供了具有在其上编码的定义第二方面的接收机的处理器的计算机可读程序代码的计算机可读存储介质,以及具有在其上编码的定义配置成执行第一方面的方法的处理器的计算机可读程序代码的计算机可读存储介质。
优选特征可酌情组合,如将对技术人员明显的,并可与本发明的任何方面组合。
附图的简要说明
将参考附图通过示例的方式描述本发明的实施方式,其中:
图1是示例DVB-T2帧的示意图;
图2示出计算SFO的估计的第一示例方法的流程图;
图3示出计算SFO的估计的第一示例方法的图形表示;
图4示出来自计算SFO的估计的第一方法的示例结果的图形表示;
图5示出计算SFO的估计的第二示例方法的流程图;
图6示出计算SFO的估计的第三示例方法的图形表示;
图7示出计算SFO的估计的第三示例方法的流程图;以及
图8示出在数字接收机中的示例获取阶段的流程图。
在全部附图中使用共同的参考数字来指示类似的特征。
详细描述
下面仅通过示例的方式描述本发明的实施方式。这些例子代表实施本发明的、申请人当前已知的最佳方式,但它们并不是可实现这个的唯一方式。该描述阐述例子的功能和用于构造和操作例子的步骤的顺序。然而,相同或等效的功能和顺序可由不同的例子实现。
已经发展了使用参考符号的、计算SFO的方法。在这些方法中,所接收的符号对照参考符号被关联,且由此可以用多种不同的方式计算SFO。
不使用参考符号的SFO计算的方法在本文被描述并可因此被描述为SFO计算的非数据辅助方法。该方法可例如用于在已知方法中使用的数据是可得到的之前估计SFO。本文所述的SFO计算的方法使用帧结构,其是一系列的帧结构之一,其中结构是事前已知的,但数据不是。虽然从DVB-T2(数字视频广播-地面版本2)信号方面描述了这些方法,但方法也可适用于具有符号的适当模式的其它标准和信号。例如,方法可适用于其它OFDM信号(例如,具有规则导频的任何OFDM信号)且也适用于一些非OFDM信号(例如,应用于在CDMA中的具有256芯片模式的导频信道)。
下面的描述描述了计算SFO的估计的各种方法(且因此可以可选地被描述为估计SFO的方法),其中的一些方法更适用于较长的符号(例如,8K、16K和32K的FFT尺寸)和/或其中在每个帧中只有一个特定的符号,以及其它方法更适用于较短的符号(例如,1K、2K和4K的FFT尺寸)和/或其中在每个帧中有多于一个特定的符号。在DVB-T2的情况中,方法在帧的开始处使用P2符号。对于其它信号,可使用不同的符号。所描述的所有方法都依赖于具有关联并在时间上分开(即,在结构之间有时间偏移)的第一结构和第二结构的信号。所实现的结果的敏感度(即,所计算的SFO的敏感度)随着更长的时间偏移和/或要关联的更多样本而增加。
图1是包括P1符号102、一个或多个P2符号104和一个或多个数据符号106的示例DVB-T2帧100的示意图。P1符号102是也标记帧的开始的第一前同步码符号。P2符号104位于P1符号之后并具有与数据符号106相同的FFT尺寸和保护间隔。P2符号104的数量取决于如在下面的表中详述的FFT尺寸:
FFT尺寸 P2符号的数量
1K 16
2K 8
4K 4
8K 2
16K 1
32K 1
图1还示出如所传输的(例如,如所广播的)P2符号104的展开图。P2符号104包括在符号的开始处的保护间隔110和在符号的末尾处的保护间隔的副本(或保护副本)112。保护间隔的长度(例如,在保护间隔和因而还有的保护副本内的样本的数量Ng)可以是固定的或可变的,且在它是可变的情况下,可能的长度可取决于FFT尺寸(例如,如在DVB-T2标准内规定的)。在DVB-T2中,目前有被使用的7个不同的保护间隔分数(1/32,1/16,1/8,1/4,1/128,19/128,19/256),但不是所有的保护间隔分数都必须被DVB-T2标准允许与所有FFT尺寸一起使用(例如,如在欧洲标准ETSI EN 302 755v1.3.1(2012-04)的表67中陈述的)。
图1此外示出如所接收的P2符号114的展开图。作为在接收机处使用的采样频率中的偏移(或误差)的结果,在所接收的符号114中的样本的数量不是恰好匹配所传输的符号104,例如保护间隔可包括Ng+k个样本,其中k可以是正的或负的,且在SFO存在时是非零的。
图2示出计算SFO的估计的示例方法的流程图,该方法使用在保护间隔110和在同一P2符号104内的保护副本112之间的关联。在这个例子中,假设保护长度Ng是已知的;然而如下面关于图5所述的,该方法也可在保护长度是未知的情况下被使用。
回来参考图1,如果保护间隔110包括样本0,…,Ng-1,则保护副本也包括样本0,…,Ng-1。在非SFO环境(例如,其中样本都恰好位于标称时间点处)中,在保护间隔中的特定样本(例如,样本0)和在保护副本中的相应样本(例如,样本零)之间的标称距离将是信号的有用周期(例如,Nu个样本)。然而在存在SFO时,在保护间隔中的样本的数量可以比Ng更大或更小,且在保护间隔和保护副本的样本之间的距离将不等于信号的有用周期,且相反将稍微不同(例如,Nu+i个样本,其中i可以是正或负的,且在SFO存在时是非零的)。用于i的候选(或可能)值的范围将取决于FFT尺寸(例如,对于较大的FFT尺寸,漂移将更大,且所以i的值的范围将更大)。例如,对于可漂移例如±200ppm且FFT尺寸是32K的典型本地振荡器,一个样本(i=1)的偏移相应于大约31ppm,且7个样本(i=7)的偏移相应于大约217ppm。因此,i的值可能在-7到+7的范围内。在这样的系统中,i的候选值因此是-7,-6,…,+6,+7。
图2所示的方法涉及从候选值的预定范围内找到偏移的近似值(在块210中),即,作为整数的i的值(例如,i=[-7,+7])。通过对于不同的周期执行在保护间隔110和随后接收的样本(Nu+i个样本,对于i的所有候选值)之间的多个关联(在块204中)并接着分析结果来确定偏移的近似(整数)值。
在图2所示的例子中,最初将i的值设置到最小值(块202),并在保护间隔的Ng个样本和与保护间隔隔开有用周期(Nu)和i的当前值(i最小)的和(即,Nu+i最小个样本)的一组Ng个样本之间执行关联(在块204的第一迭代中)。这在图3中用图形示出,第一迭代302执行样本0,…,Ng-1(保护间隔300)和样本Nu+i最小,…,Nu+i最小+Ng-1的关联。如果SFO等于i最小,则与保护间隔关联的第二组Ng个样本可相应于保护副本,但否则将不确切地相应于保护副本(例如,它们将与实际保护副本稍微偏移)。在这个第一迭代中的关联的结果被存储(例如,作为在关联矢量中的第一元素)。
然后对i的所有其它候选值(即,对在范围i最小到i最大(例如,-7到+7)的中的所有i)重复关联。在图2所示的例子中,如果i的当前值不等于i最大(在块206中的“否”),则i的值增加一(块208),且下一关联被执行(在块204中)。这个第二迭代执行在保护间隔中的Ng个样本以及与保护间隔隔开有用周期(Nu)和i的当前值(i最小+1)的和(即,Nu+i最小+1个样本)的Ng个样本的第二集合之间的关联。这在图3中用图形示出,第二迭代304执行样本0,…,Ng-1(保护间隔300)和样本Nu+i最小+1,…,Nu+i最小+Ng的关联。在这个第二迭代中的关联的结果被存储(例如,作为在关联矢量中的第二元素)。
图3还示出第三迭代306,其中i=i最小+2,且在保护间隔中的Ng个样本(样本0,…,Ng-1)以及与保护间隔隔开有用周期(Nu)和i的当前值(i最小+2)的和(即,Nu+i最小+2个样本)的Ng个样本的第二集合(样本Nu+i最小+2,…,Nu+i最小+Ng+1)之间执行关联。在这个第三迭代中的关联的结果被存储(例如,作为在关联矢量中的第三元素)。
当对所有的i=[i最小,i最大]已经得到关联结果时,关联矢量被完全填充且在图2中所示的迭代循环停止。虽然图2示出i的值在每次迭代中增加一,但将认识到,i的候选整数值的整个范围可以按不同的顺序(例如,在i最大处开始并在每次迭代时递减i的值或以任何其它顺序)被探究,或可部分地或实质上并行地被探究(例如,多于一个迭代可同时被执行)。
如上所述,在被执行的多个关联中使用的i的值的范围是预先定义(即,在循环开始迭代之前被定义),并可被称为i的候选值的集合。可基于FFT尺寸和在接收机中使用的本地振荡器的典型漂移来确定i的候选值的集合。在很多例子中,候选值都是整数。
在生成了所有的关联结果(在块204的各种迭代中)后,通过识别给出最大关联值(即,给出最大关联结果)的i的值来得到采样频率偏移的估计(块210)。图4示出两个示例关联矢量401、402的图形表示。箭头表示对于i=[-7,+7]的i的每个值的关联结果的幅值。在第一例子401中,对i=-2的值得到最大关联,且所以SFO的估计相应于-2样本的偏移,其对于32K的FFT尺寸相应于大约62ppm。在关联结果中的两个确切地相同的不可能的情况下,如在第二例子402中示出的,SFO的估计被认为在两个峰值之间的中间(例如,在所示例子中的i=+2.5),其对于32K的FFT尺寸相应于大约78ppm。
在使用i的整数值的情况下,由图2的方法提供的这个估计的准确度是±i/2(或对于32K的FFT尺寸是±15.5ppm)。在一些应用中,这个准确度可能是足够的;然而,在其它应用中,可能需要更大的准确度。为了实现在SFO估计中的更大准确度并提供离在第一阶段中(在块210中)确定的i的原始值的偏移o,在关联矢量中的最大值(或占优势的峰值)之间执行内插。然而,所使用的内插的方法将根据信道特性而改变。可选地,i的非整数值可连同分数偏移重新采样器一起被使用(例如,通过使用非整数因子对原始输入重新采样并接着使用重新采样器输出作为对关联器的输入,其中关联器使用i的整数值;然而,作为重新采样的结果,这些整数值相应于在重新采样器之前的i的非整数值);然而,这可能导致比使用内插更高的计算成本。在依赖于上面所述的技术识别出可随后被校正的粗略采样速率误差之后,也可能使用数据或导频辅助技术来得到分数采样速率误差的高精度估计。例如两步骤方法可能是适当的,该方法使用上面所述的技术来识别粗略误差,除去它并接着依赖于导频或数据辅助技术,其对于所存在的粗略采样速率误差将不是可能的。
上面关于图2所述的方法假设Ng的值(即,在保护间隔中的样本的数量)是已知的。也可在Ng的值不是已知的但存在Ng的小数量的可能或候选值的情况下应用相同的原理。例如,在DVB-T2中,有被使用的当前的7个不同的保护间隔分数,但是根据所使用的FFT尺寸,不是所有7个选项都被允许。因此对于DVB-T2,Ng的候选值的数量当前不大于7。
图5示出计算SFO的估计的另一个示例方法的流程图,其使用在保护间隔110以及在同一P2符号104内的保护副本112之间的关联且可被考虑为在图2中所示且在上面所述的方法的变形。可使用该方法,其中保护间隔的长度(即,Ng的值)不是已知的,但其中Ng的候选值的范围是已知的,例如,Ng=[Ng1,Ng2,…Ngn],其中n是小的自然数,例如6或7。虽然该方法仍然可用于n的较大值(例如,n>10,n>20),但计算的量将随着n线性地增加。该方法可用于生成两个输出:采样频率偏移和保护间隔的长度的估计(根据多个样本)。
如可从图5看到的,该方法涉及两个迭代循环:一个在Ng的候选值上而另一个在i的候选值上。如在图5中示出的,该方法通过将Ng的值设置到例如Ng1的第一值(块502)开始。在设置了Ng的值之后,该方法在i的所有候选值上迭代(以与图2的方法类似的方式)并计算对于i的每个值的关联结果。如在图5中示出的,将i的值设置到例如i1的第一值(块504),并例如以如上所述的与图2中的块204相似的方式在保护间隔中的样本(样本0,…,Ng-1)和间隔开Nu+i个样本的相同数量的样本(样本Nu+i,…,Nu+i+Ng-1)之间执行关联(块505)。关联的结果被存储且接着对于(块505的)下一个迭代将i的值设置到例如i2的下一值(块508)。当对i的所有候选值已经计算并存储关联值(在块505中)(在块506中的“是”)时,这个特定的循环结束且Ng的值被设置到下一值,例如Ng2(块512)。
该方法然后继续进行以执行多个关联(在块505中),对于Ng的新值,i的每个可能的值有一个关联。然后这被进一步重复,直到对于i和Ng的候选值的所有可能的组合,关联值被计算并存储(在块505中)为止(在块510中的“是”)。可在表或矩阵中表示(在块505的各种迭代中)已经得到的关联结果,诸如
Ng1 Ng2 Ng3 Ngn
imin
imin+1
X
imax-1
imax Y
由于Ng的值在每列中是不同的且因此在每个关联中所使用的样本的数量对于不同的列是不同的,因此结果在它们被使用之前(例如,在比较来自不同列的结果之前)被标准化(块513)。这个标准化包括使每个关联结果除以当执行关联时使用的Ng的值。例如,由在上面的表中的X指示的结果除以值Ng3,且由在上面的表中的Y指示的结果除以值Ng1
Ng的值和偏移估计(其为整数值)二者都可接着通过识别在结果的表/矩阵/集合中的最大值而从标准化结果中确定(块514)。例如,如果标准化结果如下:
Ng1 Ng2 Ng3 Ng4 Ng5 Ng6 Ng7
-7 1 1 1 2 1 1 1
-6 3 1 1 1 1 1 1
-5 1 1 1 1 1 2 1
-4 1 1 2 1 1 1 1
-3 1 2 1 2 1 1 1
-2 2 1 1 1 2 1 1
-1 1 1 2 2 1 2 1
0 1 1 1 1 2 1 2
+1 2 2 1 1 1 1 2
+2 1 4 3 3 1 1 1
+3 4 8 10 8 5 2 1
+4 6 7 9 7 6 2 1
+5 2 1 2 1 1 1 1
+6 1 1 1 2 1 1 2
+7 1 2 1 1 1 2 1
可看到,当i=+3且Ng=Ng3时得到峰值(或最大)的标准化关联值。因此可推断出,保护间隔包括Ng3个样本且偏移估计是+3样本。如上所述,对于32K的FFT尺寸,这相应于大约93ppm的偏移,准确度为大约±15.5ppm。
在图2和图5中所示且如上所述的方法最适合于用在较长的符号上,例如8K、16K和32K的FFT尺寸。虽然这些方法可用在较短的符号上,但保护间隔和在单个P2符号内的保护副本的时间间隔较短,且因此在时间间隔中出现的定时移位的量(作为SFO的结果)也较小并因此较难检测。
对于较短的符号,例如1K、2K和4K的FFT尺寸,可在第一P2符号(包括其保护间隔)和另一P2符号(例如,最后一个P2符号)之间执行关联。因此这增加了在其上执行关联的样本的时间间隔并提高了SFO计算的准确度。通过使用第一和最后一个P2符号,得到最大的时间间隔。虽然在每个符号上携带的数据不同,但导频模式非常相似且因此在不同的P2符号之间有足够的交叉关联以确定SFO。在第一P2符号和另一P2符号之间的关联也可用于较长的符号,其中那些符号包括多于一个P2符号。
如上所述,对于2K的FFT尺寸,有8个P2符号(如在DVB-T2标准中规定的),且可在第一P2符号和具有与第一P2符号且假设是最后一个P2符号相同的长度的一组样本之间执行关联。这在图6中用图形示出。在缺乏任何SFO的情况下,在(所接收的信号中的)第一P2符号602中的第一样本和在最后一个(即,第八个)P2符号604中的第一样本之间的间距由7(Nu+Ng)个样本或更一般地由(Nu+Ng)(NP2-1)个样本给出,其中NP2是P2符号的数量(在图6所示的例子中NP2=8)。在存在SFO的情况下,最后一个P2符号(当被接收到时)的位置不确切地如所预期的,且以与早些时候描述的方法类似的方式,可通过执行与不同的偏移值i(其中,对于没有SFO的情况,i=0)的一系列的关联来找到最后一个P2符号的近似位置。
图7示出计算SFO的估计的示例方法的流程图,其使用在第一P2符号602和随后的(或最后的)P2符号604之间的关联。该方法非常类似于上面在图5中示出的方法,不同之处在于在其上执行关联的样本是不同的(在块702中)且作为结果,结果的标准化(在块513中)稍微不同地被执行。可例如通过在(Nu+Ng)个样本上取平均来执行关联结果的标准化(在块513中)。
如在上面所述且在图6中所示,在其上执行关联的样本是在第一P2符号中的样本(例如,样本0,…,Ng+Nu-1)和分开(Nu+Ng)(NP2-1)+i个样本的样本的集合,例如样本(Nu+Ng)(NP2-1)+i,…,Ng+Nu-1+(Nu+Ng)(NP2-1)+i。如上所述,可基于FFT尺寸和本地振荡器的典型漂移来确定在该方法中使用的i的候选值的范围。对于较小的符号(例如,1K、2K、4K、8K的FFT尺寸),候选值的示例范围可以是i=[-4,+4]以覆盖至少+/-200ppm误差的范围。
在该方法中,关联不仅仅在保护间隔之间,而是在包括其保护间隔(且在一些例子还有保护副本)的整个P2符号上。虽然在两个P2符号中携带的数据不同,但在符号内的导频是相同的,且在关联可被检测的导频内有足够的功率。例如,在对于16K和之下的FFT尺寸的DVB-T2中,每隔三个子载波携带具有恒定振幅和相位的连续导频,并且正是这些导频提供可被检测的关联。
虽然图7示出在其中确定Ng和i二者的方法,但在其它例子中,Ng可以是固定的或否则是已知的。在这样的情况下,图7的方法可被简化,因为关于“Ng”循环不需要迭代。最初,Ng的值被设置到固定/已知值(在块502中),且然后将i的所有候选值从头到尾迭代之后,该方法继续以基于所得到的关联结果来确定i(在块510中的“是”)。可省略标准化结果的步骤(在块513中),由于所有结果利用Ng的相同值被得到(以与图2所示的方法类似的方式)。
可在数字接收机(例如,DVB-T2接收机)中实现本文所述的方法。在各种例子中,可在软件中实现方法,软件的至少部分在数字接收机内的DSP上运行。在“获取阶段”中实现方法,例如,它们在锁定到信号时运行而不是在解调期间连续地运行。获取阶段在图8中用图形示出并以P1符号的检测开始(块802)。SFO估计(块806)然后被执行,以及其中保护间隔的长度也被估计(块804),这在SFO估计(在块806中)之前被执行,例如,如上所述。在SFO估计(在块806中)之后,获取阶段包括符号/帧时间偏移估计(块808),后面是载波频率偏移估计(块810)和信道估计(块812)。在获取阶段之后,数据解调可开始。
虽然上面参考DVB-T2信号描述了方法,但方法也可用于其它信号,其包括符号的类似模式,例如在同一符号中稍后重复的较长符号的一部分或导频的有规律模式。在DVB-T标准中,12个子载波是连续导频,且导频模式每4个符号重复,且因此本文所述的方法可与4符号跨距(例如,关联符号0和符号4)一起使用。在CDMA中,可使用导频信道。
上面所述的方法使采样频率偏移的估计能够被计算而不使用参考符号或任何其它数据辅助机制。这意味着该方法可在这样的数据是可得到的之前被执行。在计算了SFO估计之后,接收机可补偿SFO的效果(例如,以恢复在OFDM信号的载波之间的正交性),且这提高了所接收的数据的质量。
在一些例子中(例如,对于一些无线标准,例如Wi-FiTM),上面所述的方法可用于估计与用于得到采样时钟的晶体的标称频率的偏移。在这样的例子中,RF混合器和采样频率偏移从同一晶体得到,且因此估计SFO允许也估计载波频率偏移(例如,使得来自图8中的块806的结果可在块810中被使用)。
术语“处理器”和“计算机”在本文用于指具有处理能力的任何设备或其部分,使得它可执行指令。术语“处理器”可例如包括中央处理单元(CPU)、图形处理单元(GPU或VPU)、物理处理单元(PPU)、无线电处理单元(RPU)、数字信号处理器(DSP)、通用处理器(例如通用GPU)、微处理器、设计成加速在CPU外部的任务的任何处理单元等。本领域中的技术人员将认识到,这样的处理能力合并到很多不同的设备内,且因此术语“计算机”包括机顶盒、媒体播放器、数字无线电装置、PC、服务器、移动电话、个人数字助理和很多其它设备。
本领域中的技术人员将认识到,用于存储程序指令的存储设备可分布在网络当中。例如,远程计算机可存储被描述为软件的过程的例子。本地或终端计算机可访问远程计算机并下载软件的一部分或全部以运行程序。可选地,本地计算机可按需要下载软件的片段或在本地终端处执行一些软件指令且在远程计算机(或计算机网络)处执行一些指令。本领域中的技术人员也将认识到,通过利用本领域中的技术人员已知的常规技术,软件指令的全部或一部分可由专用电路实现,例如DSP、可编程逻辑阵列等。
本文所述的方法可由配置有软件的计算机执行,软件是以存储在有形存储介质上的机器可读形式、例如以包括用于配置计算机来执行所述方法的组成部分的计算机可读程序代码的计算机程序的形式或以包括适合于当程序在计算机上运行时执行本文所述的任何方法的所有步骤的计算机程序代码装置的计算机程序的形式,且其中计算机程序可体现在计算机可读存储介质上。有形(或非临时)存储介质的例子包括磁盘、拇指驱动器、存储卡等,且并不包括传播信号。软件可适合于在并行处理器或串行处理器上执行,使得方法步骤可以按任何适当的顺序或同时被执行。
本文描述的硬件部件可由非临时计算机可读存储介质生成,非临时计算机可读存储介质具有在其上编码的计算机可读程序代码。
还意图涵盖“描述”或定义实现上面所述的模块、功能、部件或逻辑的硬件的配置的软件,例如HDL(硬件描述语言)软件,如对设计集成电路或对配置可编程芯片使用的,以实现期望功能。也就是说,可提供计算机可读存储介质,其具有在其上编码的用于生成配置成执行本文所述的任何方法的处理单元或用于生成包括本文所述的任何装置的处理单元的计算机可读程序代码。也就是说,计算机系统可配置成从电路元件的定义和定义用于组合那些电路元件的规则的数据生成数字电路的表示,其中非临时计算机可读存储介质可具有存储在其上的处理器可执行指令,其当在这样的计算机系统处被执行时使计算机系统生成如本文所述的处理单元。例如,非临时计算机可读存储介质可具有存储在其上的计算机可读指令,其当在用于生成集成电路的表现形式的计算机系统处被执行时使计算机系统生成如在本文的例子中所述的接收机的处理器的表现形式或生成配置成执行如在本文的例子中所述的方法的处理器的表现形式。处理器的表现形式可以是处理器本身或处理器的表示(例如,掩模),其可用于生成处理器。
存储在实现所公开的方面中使用的机器可执行数据的存储器可以是非临时介质。非临时介质可以是易失性的或非易失性的。易失性非临时介质的例子包括基于半导体的存储器,例如SRAM或DRAM。可用于实现非易失性存储器的技术的例子包括光学和磁性存储器技术、闪存存储器、相变存储器、持久性RAM。
对“逻辑”的特定引用指执行一种或多种功能的结构。逻辑的例子包括布置成执行那些功能的电路。例如,这样的电路可包括晶体管和/或在制造工艺中可用的其它硬件元件。作为例子,这样的晶体管和/或其它元件可用于形成实现和/或包含存储器(例如寄存器)、触发电路或锁存器、逻辑运算符(例如布尔运算)、数学运算符(例如加法器、乘法器或移位器)和互连的电路或结构。这样的元件可被提供作为定制电路或标准单元库、宏或在其它抽象级处。可在特定的布置中使这样的元件互连。逻辑可包括固定功能的电路,且电路可被编程以执行一种或多种功能;这样的编程可从固件或软件更新或控制机制提供。被识别为执行一种功能的逻辑也可包括实现子过程或组成功能的逻辑。在例子中,硬件逻辑具有实现固定功能操作或多个操作、状态机或过程的电路。
本文给出的任何范围或设备值可被扩展或改变而不失去所寻求的效果,如对技术人员将明显的。
将理解的是,上面描述的益处和优点可涉及一个实施方式或可涉及几个实施方式。实施方式不限于解决任何或所有的所陈述的问题的那些实施方式或具有任何或全部的所陈述的益处和优点的那些实施方式。
对“一个”项目的任何引用指那些项目中的一个或多个。术语“包括”在本文中用于意指包括所识别的方法块或元件,但这样的块或元件并不包括排他列表,且装置可包含额外的块或元件,以及方法可包含额外的操作或元件。此外,块、元件和操作本身并不隐含地是封闭的。
本文描述的方法的步骤可在适当的时候以任何适当的顺序或同时被执行。在附图中的方框之间的箭头示出方法步骤的一个示例顺序,但并不旨在排除其它顺序或并行的多个步骤的执行。此外,单独的块可从任何方法中删除而不偏离本文描述的主题的精神和范围。上面描述的任何例子的方面可与所描述的其它例子中的任一个的方面组合以形成另外的例子,而不失去所寻求的效果。在附图的元件被示为由箭头连接的情况下,将认识到,这些箭头示出在元件之间的通信(包括数据和控制消息)的仅仅一个示例流。在元件之间的流可以在任一方向上或在两个方向上。
将理解,优选实施方式的上述描述仅作为例子被给出,以及各种修改可由本领域中的技术人员做出。虽然上面以某个详细程度或参考一个或多个单独的实施方式描述了各种实施方式,但本领域中的技术人员可对所公开的实施方式进行很多改变而不偏离本发明的精神或范围。

Claims (15)

1.一种计算在无线接收机中的采样频率偏移的估计的方法,所述方法包括:
对于来自i的候选值的集合的整数变量i的每个值,执行在所接收的信号中的第一组的样本和在所接收的信号中的随后一组的样本之间的关联并存储关联结果(204,505,702),其中在所述随后一组中的样本与在所述第一组中的相应样本间隔开N+i个样本的间距,其中N是整数;以及
基于相应于最大关联结果的i的值来确定采样频率偏移估计(210,514)。
2.如权利要求1所述的方法,其中,在所接收的信号中的所述第一组的样本包括固定数量的样本。
3.如权利要求2所述的方法,其中,所述第一组的样本包括符号的保护间隔部分或整个符号。
4.如权利要求1所述的方法,其中,每组的样本包括Ng个样本,以及其中所述方法还包括:
重复在所接收的信号中的第一组的样本和在所接收的信号中的随后一组的样本之间的关联的执行并存储关联结果(204,505,702),其中在所述随后一组中的样本与在所述第一组中的相应样本间隔开N+i个样本的间距,直到对来自i的候选值的集合的整数变量i的值与来自Ng的候选值的集合的Ng的值的每个组合存储了关联结果为止;以及
通过使每个关联结果除以在生成那个特定的关联结果时使用的Ng的值来标准化所存储的关联结果,
以及其中至少部分地基于相应于最大关联结果的i的值来确定采样频率偏移估计包括:
至少部分地基于相应于最大标准化关联结果的i和Ng的值来确定采样频率偏移估计和最佳组尺寸,
其中Ng的候选值的所述集合包括在所接收的信号中的符号的保护间隔中的样本的候选数量的集合,其中所述符号包括Ng+Nu个样本,且N=Nu,以及其中所述最佳组尺寸提供在所述保护间隔中的样本的数量的估计。
5.如权利要求1所述的方法,其中,每组样本包括Nu+Ng个样本,所述第一组的样本包括来自第一符号的样本,且所述随后一组的样本包括来自第n个符号的样本,且N=(Nu+Ng)(n-1),所述方法还包括:
重复在所接收的信号中的第一组的样本和在所接收的信号中的随后一组的样本之间的关联的执行并存储关联结果(204,505,702),其中在所述随后一组中的样本与在所述第一组中的相应样本间隔开N+i个样本的间距,直到对来自i的候选值的所述集合的所述整数变量i的每个值存储了关联结果为止。
6.如权利要求5所述的方法,还包括:
重复在所接收的信号中的第一组的样本和在所接收的信号中的随后一组的样本之间的关联的执行并存储关联结果(204,505,702),其中在所述随后一组中的样本与在所述第一组中的相应样本间隔开N+i个样本的间距,直到对来自i的候选值的所述集合的所述整数变量i的值与来自Ng的候选值的集合的Ng的值的每个组合存储了关联结果为止,
其中至少部分地基于相应于最大关联结果的i的值来确定采样频率偏移估计包括:
至少部分地基于相应于最大关联结果的i和Ng的值来确定采样频率偏移估计和最佳组尺寸。
7.如权利要求6所述的方法,还包括:
通过使每个关联结果除以在生成那个特定的关联结果时使用的Nu+Ng的值来标准化所存储的关联结果;
其中至少部分地基于相应于最大关联结果的i的值来确定采样频率偏移估计包括:
至少部分地基于相应于最大标准化关联结果的i和Ng的值来确定采样频率偏移估计和最佳组尺寸。
8.如权利要求7所述的方法,其中,Ng的候选值的所述集合包括在所接收的信号中的符号的保护间隔中的样本的候选数量的集合,其中所述符号包括Ng+Nu个样本,且N=Nu,以及其中所述最佳组尺寸提供在所述保护间隔中的样本的数量的估计。
9.如前述权利要求中的任一项所述的方法,包括在执行在所接收的信号中的第一组的样本和在所接收的信号中的随后一组的样本之间的所述关联之前:
使用非整数因子对所接收的信号重新采样以生成重新采样的所接收的信号,
以及随后当执行所述关联时使用所述重新采样的所接收的信号来代替所接收的信号。
10.一种数字接收机,所述数字接收机包括处理器,所述处理器被配置成:
对于来自i的候选值的集合的整数变量i的每个值,执行在所接收的信号中的第一组的样本和在所接收的信号中的随后一组的样本之间的关联并存储关联结果,其中在所述随后一组中的样本与在所述第一组中的相应样本间隔开N+i个样本的间距,其中N是整数;以及
至少部分地基于相应于最大关联结果的i的值来确定采样频率偏移估计。
11.如权利要求10所述的数字接收机,其中,每组样本包括Ng个样本,以及其中所述处理器还配置成:
重复在所接收的信号中的第一组的样本和在所接收的信号中的随后一组的样本之间的关联的执行并存储关联结果(204,505,702),其中在所述随后一组中的样本与在所述第一组中的相应样本间隔开N+i个样本的间距,直到对来自i的候选值的所述集合的所述整数变量i的值与来自Ng的候选值的集合的Ng的值的每个组合存储了关联结果为止;以及
通过使每个关联结果除以在生成那个特定的关联结果时使用的Ng的值来标准化所存储的关联结果,
以及其中所述处理器配置成通过下列操作至少部分地基于相应于最大关联结果的i的值来确定采样频率偏移估计:
至少部分地基于相应于最大标准化关联结果的i和Ng的值来确定采样频率偏移估计和最佳组尺寸,
其中Ng的候选值的所述集合包括在所接收的信号中的符号的保护间隔中的样本的候选数量的集合,其中所述符号包括Ng+Nu个样本,且N=Nu,以及其中所述最佳组尺寸提供在所述保护间隔中的样本的数量的估计。
12.如权利要求10所述的数字接收机,其中,每组样本包括Nu+Ng个样本,所述第一组的样本包括来自第一符号的样本,且所述随后一组的样本包括来自第n个符号的样本,且N=(Nu+Ng)(n-1),其中所述处理器还配置成:
重复在所接收的信号中的第一组的样本和在所接收的信号中的随后一组的样本之间的关联的执行并存储关联结果(204,505,702),其中在所述随后一组中的样本与在所述第一组中的相应样本间隔开N+i个样本的间距,直到对来自i的候选值的所述集合的所述整数变量i的每个值存储了关联结果为止。
13.如权利要求12所述的数字接收机,其中,所述处理器还配置成:
重复在所接收的信号中的第一组的样本和在所接收的信号中的随后一组的样本之间的关联的执行并存储关联结果(204,505,702),其中在所述随后一组中的样本与在所述第一组中的相应样本间隔开N+i个样本的间距,直到对来自i的候选值的所述集合的所述整数变量i的值与来自Ng的候选值的集合的Ng的值的每个组合存储了关联结果为止,
其中所述处理器配置成通过下列操作至少部分地基于相应于最大关联结果的i的值来确定采样频率偏移估计:
至少部分地基于相应于最大关联结果的i和Ng的值来确定采样频率偏移估计和最佳组尺寸。
14.如权利要求13所述的数字接收机,其中,所述处理器还配置成:
通过使每个关联结果除以在生成那个特定的关联结果时使用的Nu+Ng的值来标准化所存储的关联结果,
其中所述处理器配置成通过下列操作至少部分地基于相应于最大关联结果的i的值来确定采样频率偏移估计:
至少部分地基于相应于最大标准化关联结果的i和Ng的值来确定采样频率偏移估计和最佳组尺寸。
15.如权利要求14所述的数字接收机,其中,Ng的候选值的所述集合包括在所接收的信号中的符号的保护间隔中的样本的候选数量的集合,其中所述符号包括Ng+Nu个样本,且N=Nu,以及其中所述最佳组尺寸提供在所述保护间隔中的样本的数量的估计。
CN201610384166.7A 2015-06-03 2016-06-01 计算采样频率偏移的估计的方法、数字接收机和存储介质 Active CN106254291B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1509659.7A GB2539018B (en) 2015-06-03 2015-06-03 Sampling frequency offset calculation
GB1509659.7 2015-06-03

Publications (2)

Publication Number Publication Date
CN106254291A true CN106254291A (zh) 2016-12-21
CN106254291B CN106254291B (zh) 2021-07-20

Family

ID=53677739

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610384166.7A Active CN106254291B (zh) 2015-06-03 2016-06-01 计算采样频率偏移的估计的方法、数字接收机和存储介质

Country Status (4)

Country Link
US (1) US9831975B2 (zh)
EP (2) EP3745663B1 (zh)
CN (1) CN106254291B (zh)
GB (1) GB2539018B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109104390B (zh) * 2018-09-12 2021-01-12 北京睿信丰科技有限公司 一种高速信号的捕获和跟踪方法及装置
US20220240201A1 (en) * 2021-01-28 2022-07-28 Qualcomm Incorporated Time gaps in synchronization signal blocks

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1139624A2 (en) * 2000-02-16 2001-10-04 Thomson Licensing S.A. Sampling offset correction in an orthogonal frequency division multiplexing system
CN1881823A (zh) * 2005-06-17 2006-12-20 美国博通公司 校正通信系统中数据流的数据包的采样频率偏移的方法
CN101917377A (zh) * 2001-10-17 2010-12-15 北方电讯网络有限公司 多载波码分多址系统中的同步
CN101945076A (zh) * 2009-06-03 2011-01-12 索尼公司 数据处理装置和方法
EP2566123A2 (en) * 2011-08-29 2013-03-06 MediaTek, Inc Compensating devices and methods for detecting and compensating for sampling clock offset

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101087096B1 (ko) * 2004-08-18 2011-11-25 엘지전자 주식회사 디지털 수신기의 sfo 추정 방법 및 추정된sfo이용한 샘플링 주파수 보정 장치
US20060140109A1 (en) * 2004-12-28 2006-06-29 Mediatek Incorporation Method and system for joint mode and guard interval detection
US7570666B2 (en) * 2005-02-01 2009-08-04 Industrial Technology Research Institute Method and apparatus for guard interval detection in multi-carrier receiver
KR100699490B1 (ko) * 2005-08-22 2007-03-26 삼성전자주식회사 샘플링 주파수 오프셋 추정방법 및 이 방법이 적용되는ofdm 시스템
JP4419969B2 (ja) * 2006-02-09 2010-02-24 ソニー株式会社 Ofdm復調装置及び方法
US7903750B2 (en) * 2007-09-11 2011-03-08 Zoran Corporation System and method for determining transmission parameters in an orthogonal frequency-division multiplexed data stream

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1139624A2 (en) * 2000-02-16 2001-10-04 Thomson Licensing S.A. Sampling offset correction in an orthogonal frequency division multiplexing system
CN101917377A (zh) * 2001-10-17 2010-12-15 北方电讯网络有限公司 多载波码分多址系统中的同步
CN1881823A (zh) * 2005-06-17 2006-12-20 美国博通公司 校正通信系统中数据流的数据包的采样频率偏移的方法
CN101945076A (zh) * 2009-06-03 2011-01-12 索尼公司 数据处理装置和方法
EP2566123A2 (en) * 2011-08-29 2013-03-06 MediaTek, Inc Compensating devices and methods for detecting and compensating for sampling clock offset

Also Published As

Publication number Publication date
US9831975B2 (en) 2017-11-28
EP3745663B1 (en) 2022-08-03
GB201509659D0 (en) 2015-07-15
EP3745663A1 (en) 2020-12-02
EP3101860A1 (en) 2016-12-07
US20160359579A1 (en) 2016-12-08
CN106254291B (zh) 2021-07-20
GB2539018A (en) 2016-12-07
EP3101860B1 (en) 2020-07-15
GB2539018B (en) 2019-11-06

Similar Documents

Publication Publication Date Title
CN104185974B (zh) 用于宽带rf接收器的实时i/q不平衡校正的装置和方法
Belaïd et al. Improved side-channel analysis of finite-field multiplication
CN107306242B (zh) 载波相位恢复方法及装置
US10034191B2 (en) Ambiguity resolution in positioning measurements
Lim et al. Gaussian particle filtering approach for carrier frequency offset estimation in OFDM systems
CN106254291A (zh) 采样频率偏移计算
Zhang et al. Skywave delay estimation in enhanced Loran based on extended invariance principle weighted fourier transform and relaxation algorithm
Soverini et al. Frequency domain EIV identification combining the Frisch scheme and Yule-Walker equations
Diversi Bias‐eliminating least‐squares identification of errors‐in‐variables models with mutually correlated noises
Soverini et al. Frequency domain maximum likelihood identification of noisy input–output models
Azouaoui et al. Key Enumeration from the Adversarial Viewpoint: When to Stop Measuring and Start Enumerating?
Singh et al. Investigations of Power and EM Attacks on AES Implemented in FPGA
Cai et al. Single channel steepest descent algorithm for the correction of cycle frequency error
Dulek et al. Modulation discovery over arbitrary additive noise channels based on the Richardson-Lucy algorithm
EP3110093A1 (en) Devices and methods for processing one or more received radio signals
Chen et al. Low‐complexity carrier frequency offset estimation for UFMC systems
US9100230B2 (en) Efficient calculation of initial equaliser coefficients
Jaoua et al. Joint estimation of state and noise parameters in a linear dynamic system with impulsive measurement noise: Application to OFDM systems
Shrivastav et al. Cyclic gradient descent optimisation for joint MAP estimation of channel and phase noise in orthogonal frequency division multiplexing
WO2017045687A1 (en) A method for improving computational efficiency of estimation of the fundamental frequency of periodic signals
TW201725886A (zh) 載波頻偏估測裝置與載波頻偏估測方法
Safapourhajari et al. On the Low Complexity Implementation of the DFT-Based BFSK Demodulator for Ultra-Narrowband Communications
Lee et al. Joint activity detection and channel estimation via Bayesian orthogonal matching pursuit
Indyk et al. Sparse Fourier transform in any constant dimension with nearly-optimal sample complexity in sublinear time
Zhu et al. A Novel Parameter Estimation Method of FHSS Signal with Low SNR

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant