CN106253319A - 一种基于柔性直流组网技术的低压直流配电网的接地电路 - Google Patents

一种基于柔性直流组网技术的低压直流配电网的接地电路 Download PDF

Info

Publication number
CN106253319A
CN106253319A CN201610700463.8A CN201610700463A CN106253319A CN 106253319 A CN106253319 A CN 106253319A CN 201610700463 A CN201610700463 A CN 201610700463A CN 106253319 A CN106253319 A CN 106253319A
Authority
CN
China
Prior art keywords
distribution
low
power distribution
current
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610700463.8A
Other languages
English (en)
Inventor
武迪
骆健
俞拙非
朱金大
吕宏水
杨松迎
董长城
李浩杰
陈璐瑶
温传新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Nanjing NARI Group Corp
State Grid Electric Power Research Institute
Original Assignee
State Grid Corp of China SGCC
Nanjing NARI Group Corp
State Grid Electric Power Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Nanjing NARI Group Corp, State Grid Electric Power Research Institute filed Critical State Grid Corp of China SGCC
Priority to CN201610700463.8A priority Critical patent/CN106253319A/zh
Publication of CN106253319A publication Critical patent/CN106253319A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

本发明公开了一种基于柔性直流组网技术的低压直流配电网的接地电路,属于电力电子技术领域。本发明将基于柔性直流组网技术的低压直流配电网的接地电路设置为各VSC电压源变流器的交流测通过交流滤波器直接接地而其直流侧不接地。本发明对抑制基于柔性直流组网技术的低压直流配电网的零序入地电流、保持滤波器效率,提升稳态及故障暂态稳定性、改善故障恢复特性具有重要意义。

Description

一种基于柔性直流组网技术的低压直流配电网的接地电路
技术领域
本发明属于电力电子技术领域,更准确地说本发明涉及一种基于柔性直流组网技术的低压直流配电网的接地电路。
背景技术
基于柔性直流组网技术的低压直流配电网是一种基于多端直流输电(multiterminal direct current, MTDC)、柔性控制技术、配网能量管理的复合型技术,可用于支持电动汽车充电机等直流负荷。这种配电网络可实现多台区潮流功率互供,提高充电站建设的灵活性,在现有交流配电网架构和容量下可提升电动汽车负荷的接入能力。
由于电动汽车充电机等直流负荷的母线电压多为400V或690V,因此低压直流配电网的换流站不需采用H桥或MMC拓扑,仅需采用2电平或3电平电压源变流器(voltagesourse converter, VSC)拓扑即可实现由低压配电电压到直流供电电压的变换。这种基于最成熟拓扑架构的低压多端直流配电系统极大减少了阀内开关器件的数量,不仅具有单位直流母线电压的最佳经济性,还提高了阀组的运行可靠性,降低了阀站损耗。
接地电路对于基于柔性直流组网技术的低压直流配电网的暂稳态工作特性具有重要影响。如果接地系统设计不合理,不但会影响本台区换流站,还会通过直流回路传递到其他互联的换流站,影响其他站的暂稳态工作性能。
常规柔性直流输电系统的接地方式在当前工程及学术文献中大部分采用双极方式运行,即直流电容中点直接接地,以钳制直流侧中点电位和控制绝缘水平。文献1《两电平VSC-HVDC系统直流侧接地方式选择》(管敏渊、徐政,《电力系统自动化》, 2009, 33(5):55-60)提出背靠背柔性直流系统的直流侧均需接地,以限制直流侧不平衡谐波电流,但没有提出直流侧及交流侧接地方式的选择。文献2《电压源换相高压直流输电系统接地方式设计》(杨杰、郑健超、汤广福、贺之渊,《中国电机工程学报》, 2010(19):14-19)提出滤波器中点与直流电容中点连接,然后经过高阻接地。该方式可有效抑制入地零序电流,提升直流侧中性点稳定性,但换流系统中仍存在零序回路,稳态运行或不平衡故障时仍存在零序电流分量,不仅增加系统稳态损耗,还加重了暂态故障的严重程度。
发明内容
本发明的目的是:针对现有技术中基于柔性直流组网技术的低压直流配电网的接地电路存在的问题,提供一种新的基于柔性直流组网技术的低压直流配电网的接地电路。
典型的基于柔性直流组网技术的低压直流配电网一般包括交流配电台区、配电换流站和直流配电线路,交流配电台区和配电换流站均为多个,每个交流配电台区对接一个配电换流站,其中交流配电台区包括交流配电变压器,负责将交流系统的交流高压降为交流低压,配电换流站包括VSC电压源变流器,各VSC电压源变流器的交流侧与相应的交流配电台区的交流配电变压器的低压端相接,各VSC电压源变流器的直流侧通过直流配电线路相连组网。
而本发明的技术方案则是:各VSC电压源变流器的交流测通过交流滤波器直接接地,各VSC电压源变流器的直流侧不接地。
本发明的有益效果如下:由于各VSC电压源变流器的交流测通过交流滤波器直接接地,可通过交流滤波器将零序谐波电流滤除,避免零序谐波分量流经变压器回路并产生损耗,同时确保了交流滤波器的滤波效率。而各VSC电压源变流器的直流侧不接地的情况下,入地电流中零序谐波的幅值大大减少,系统损耗、网侧电压畸变率等稳态特性影响也最小。经暂态工况仿真计算也可证明,所选接地方式在交/直流发生接地故障时具有较优的暂态特性。因此,本发明对于抑制基于柔性直流组网技术的低压直流配电网的零序入地电流、保持交流滤波器效率,提升稳态及故障暂态稳定性、改善故障恢复特性具有重要意义。
附图说明
图1为基于柔性直流组网技术的低压直流配电网典型系统架构图。
图2为基于柔性直流组网技术的低压直流配电网单台区内系统接地电路图。
图3为基于配网等值系统参数的4端低压直流配电网仿真模型图。
图4为交流侧滤波器不接地时直流配网中VSC交流滤波器中点电压情况图。
图5为直流侧中性点直接接地下零序电流幅值频谱图。
图6为直流侧中性点高阻接地下零序电流幅值频谱图。
图7为直流侧中性点不接地下零序电流幅值频谱图。
具体实施方式
下面参照附图并结合实例对本发明作进一步详细描述。
实施例一:
本发明的一个实施例,为一个4配网台区的基于柔性直流组网技术的低压直流配电网系统的接地电路。
该4配网台区的基于柔性直流组网技术的低压直流配电网如图1所示,包括交流配电台区、配电换流站和直流配电线路,交流配电台区和配电换流站均为多个,每个交流配电台区对接一个配电换流站,其中交流配电台区包括交流配电变压器,负责将交流系统的交流高压降为交流低压,配电换流站包括前级AC/DC变流器(通过VSC电压源变流器实现)和后级DC/DC变换器,各前级AC/DC变流器的交流侧与相应的交流配电台区的交流配电变压器的低压端相接,各前级AC/DC变流器的直流侧通过直流配电线路相连组网。各前级AC/DC变换器输出直流低压给其后级DC/DC变换器,再由相应的后级DC/DC变换器输出充电电压用于电动汽车充电。
基于三相瞬时功率理论及优化下垂双环控制策略,可在PSCAD/EMTDC中基于电网等值系统参数建立图1配电网系统的仿真模型,如图3所示。可选取台区1为典型分析对象,换流站采用2电平VSC,换流容量为100kVA,开关频率f=1350Hz,直流电压U dc=1000V,换流电抗器为0.7mH(0.158pu.),直流侧电容值为3800uF,配电变压器为10kV/400V/100kVA,交流滤波器采用二阶高通滤波器设计。设定稳态转供功率为90kVA,无功补偿功率为40kVA,以下说明中交/直流侧发生接地故障均设定系统运行在该工况。
本实施例各VSC电压源变流器的交流侧接地电路设计为通过交流滤波器直接接地,如图2所示。以上述模型参数进行仿真分析为例。由于电网中交流配电变压器400V低压侧通常采用星型直接接地方式,若交流滤波器采用不接地方式,则滤波器的中性点电位为脉冲电平,如图4所示。相比交流滤波器直接接地方式的中性点电位恒为零,不接地情况下中性点电压的共模振荡幅值为477V,这增加了交流滤波器的绝缘电压水平及制造成本。同时,若VSC电压源变流器的直流侧按双极方式直接接地,或者不平衡接地故障发生,VSC换流系统存在零序流通回路和零序电流。如交流滤波器采用直接接地方式,则可通过交流滤波器将零序谐波电流滤除,避免零序谐波分量流经变压器回路并产生损耗,同时确保了交流滤波器的滤波效率,而交流滤波器不接地方式则无法滤除零序谐波电流。因此,针对低压直流配电网,各VSC电压源变流器的交流侧接地电路设计为通过交流滤波器直接接地为较优。
本实施例各VSC电压源变流器的直流侧设计为不接地方式,亦如图2所示。以上述模型进行仿真分析为例。系统稳态运行时,在交流侧直接接地的前提下,直流侧分别采用直接接地、高阻(50Ω)接地、不接地方式下零序入地电流的频谱分布如图5-7所示。具体而言,直接接地方式下,开关倍频27次零序电流为28.217A,高阻接地方式下,开关倍频27次零序电流为4.338A,不接地方式下,开关倍频27次零序电流为0.288A。三种接地方式下网侧线电压的总谐波失真(谐波含量)分别为1.632%、1.661%和1.589%。因此,直流侧中性点不接地,相比另外两种接地方式,不接地方式的入地电流中零序谐波的幅值大大减少,系统损耗、网侧电压畸变率等稳态特性影响也最小。由网侧线电压的总谐波失真(谐波含量)可知,交流侧滤波器接地时,无论直流侧为何种接地方式,交流侧滤波器的滤波效果也在并网允许范围内,这说明交流滤波器通过低阻抗滤波回路有效抑制了零序谐波电流。因此,针对低压直流配电网,直流侧取不接地方式为较优。
同时,如果直流侧取直接接地方式,会使VSC换流系统存在零序回路且零序阻抗较小,在AC/DC变流器交流侧发生单相接地等不平衡故障时,其零序故障电流的引入使故障工况相比直流侧不接地或高阻这两种方式的故障工况更为严重。针对交流侧直接接地、直流侧分别采用不接地、高阻接地及直接接地方式,进行在交流侧发生接地故障时的故障暂态特性仿真分析,得到的结果是,相比直流侧高阻接地和直接接地,直流侧支撑电容中性点采用不接地方式,发生单相接地故障时在故障期故障电流水平、直流极间电压降幅,以及故障恢复期直流极间电压、相电流水平、瞬时功率峰值方面,均存在暂态运行优势,因此是较佳的接地方式。
同时,针对交流侧直接接地、直流侧分别采用不接地、高阻接地及直接接地方式,进行在直流侧发生正极接地故障时的故障暂态特性仿真分析,得到的结果是,直流侧中性点采用不接地方式时,直流侧故障电流水平、直流故障恢复暂态过电压,相比高阻接地和直接接地两种方式,在暂态故障特性军存在较大优势,因此是较佳的接地方式。
虽然本发明已以较佳实施例公开如上,但实施例并不是用来限定本发明的。在不脱离本发明之精神和范围内,所做的任何等效变化或润饰,同样属于本发明之保护范围。因此本发明的保护范围应当以本申请的权利要求所界定的内容为标准。

Claims (1)

1.一种基于柔性直流组网技术的低压直流配电网的接地电路,所述基于柔性直流组网技术的低压直流配电网包括交流配电台区、配电换流站和直流配电线路,交流配电台区和配电换流站均为多个,每个交流配电台区对接一个配电换流站,其中交流配电台区包括交流配电变压器,负责将交流系统的交流高压降为交流低压,配电换流站包括VSC电压源变流器,各VSC电压源变流器的交流侧与相应的交流配电台区的交流配电变压器的低压端相接,各VSC电压源变流器的直流侧通过直流配电线路相连组网,其特征在于:各VSC电压源变流器的交流测通过交流滤波器直接接地,各VSC电压源变流器的直流侧不接地。
CN201610700463.8A 2016-08-21 2016-08-21 一种基于柔性直流组网技术的低压直流配电网的接地电路 Pending CN106253319A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610700463.8A CN106253319A (zh) 2016-08-21 2016-08-21 一种基于柔性直流组网技术的低压直流配电网的接地电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610700463.8A CN106253319A (zh) 2016-08-21 2016-08-21 一种基于柔性直流组网技术的低压直流配电网的接地电路

Publications (1)

Publication Number Publication Date
CN106253319A true CN106253319A (zh) 2016-12-21

Family

ID=57595709

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610700463.8A Pending CN106253319A (zh) 2016-08-21 2016-08-21 一种基于柔性直流组网技术的低压直流配电网的接地电路

Country Status (1)

Country Link
CN (1) CN106253319A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0868001A2 (en) * 1997-03-24 1998-09-30 Asea Brown Boveri Ab A plant for transmitting electric power
WO2010102667A1 (en) * 2009-03-11 2010-09-16 Abb Technology Ag A modular voltage source converter and an energy source unit
CN102751720A (zh) * 2012-04-11 2012-10-24 中国电力科学研究院 一种Flexible HVDC潮流计算模型及其计算方法
CN203071586U (zh) * 2012-11-22 2013-07-17 修武县电业公司 柔性直流输电系统
CN103368170A (zh) * 2013-06-26 2013-10-23 许继集团有限公司 一种多端柔性直流输电系统的换流器及其控制方法
CN103986176A (zh) * 2014-04-01 2014-08-13 南方电网科学研究院有限责任公司 一种将换流站带电接入多端柔性直流输电系统的方法
CN105119316A (zh) * 2015-08-31 2015-12-02 上海交通大学 用于海上风电场并网的vsc-mtdc直流电压控制方法
CN206023242U (zh) * 2016-08-21 2017-03-15 国家电网公司 一种基于柔性直流组网技术的低压直流配电网的接地电路

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0868001A2 (en) * 1997-03-24 1998-09-30 Asea Brown Boveri Ab A plant for transmitting electric power
WO2010102667A1 (en) * 2009-03-11 2010-09-16 Abb Technology Ag A modular voltage source converter and an energy source unit
CN102751720A (zh) * 2012-04-11 2012-10-24 中国电力科学研究院 一种Flexible HVDC潮流计算模型及其计算方法
CN203071586U (zh) * 2012-11-22 2013-07-17 修武县电业公司 柔性直流输电系统
CN103368170A (zh) * 2013-06-26 2013-10-23 许继集团有限公司 一种多端柔性直流输电系统的换流器及其控制方法
CN103986176A (zh) * 2014-04-01 2014-08-13 南方电网科学研究院有限责任公司 一种将换流站带电接入多端柔性直流输电系统的方法
CN105119316A (zh) * 2015-08-31 2015-12-02 上海交通大学 用于海上风电场并网的vsc-mtdc直流电压控制方法
CN206023242U (zh) * 2016-08-21 2017-03-15 国家电网公司 一种基于柔性直流组网技术的低压直流配电网的接地电路

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
胡竞竞: ""直流配电系统故障分析与保护技术研究"", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 *
高一波: ""直流配电系统接地故障分析与接地方式研究"", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 *

Similar Documents

Publication Publication Date Title
CN102983584B (zh) 一种用于不平衡系统的统一潮流控制器
CN101856979B (zh) 一种电气化铁路同相供电装置
CN105119262B (zh) 同时实现电能质量调节和小电流接地故障有源消弧的电路
CN110190618B (zh) 一种交流故障穿越工况下的柔性直流换流站模型等效方法
Byeon et al. A research on the characteristics of fault current of DC distribution system and AC distribution system
CN113036730B (zh) 配电网单相接地故障柔性消弧装置的控制方法
CN107342582B (zh) 一种环网状柔性直流输电系统的平波电抗器参数设计方法
CN109617118B (zh) 一种光伏电站直流升压汇集接入系统接地方式确定方法
CN208690939U (zh) 一种双极柔性直流输电系统结构
CN106160545B (zh) 一种桥臂混合式双极性模块化多电平变流器
Wang et al. Fault analysis of an active LVDC distribution network for utility applications
Bordignon et al. Modular multilevel converter in HVDC systems under fault conditions
CN102638047A (zh) 一种带旁路开关的三相统一电能质量控制装置
Liu et al. Short Circuit Ratio analysis of multi-infeed HVDC system with a VSC-HVDC link
CN111313424A (zh) 一种三相四线制通用电能质量控制器及其控制方法
CN202930956U (zh) 一种用于不平衡系统的统一潮流控制器
CN206023242U (zh) 一种基于柔性直流组网技术的低压直流配电网的接地电路
CN209627231U (zh) 一种高压变频器制动电路拓扑结构
CN207166122U (zh) 一种接地变压器的保护装置及微电网
CN110048596A (zh) 一种高压变频器制动电路拓扑结构
CN113567808B (zh) 一种统一潮流控制器接入线路故障定位方法及系统
CN107453326A (zh) 一种接地变压器的保护装置及微电网
CN106253319A (zh) 一种基于柔性直流组网技术的低压直流配电网的接地电路
CN102055189A (zh) 无隔离变压器的三相统一电能质量控制器的控制方法
Yakupoglu et al. Technical and economic comparison of HVDC converter technologies

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161221

RJ01 Rejection of invention patent application after publication