CN106250589B - 一种基于Labview模块化的CAN总线控制仿真系统设计方法 - Google Patents

一种基于Labview模块化的CAN总线控制仿真系统设计方法 Download PDF

Info

Publication number
CN106250589B
CN106250589B CN201610575946.XA CN201610575946A CN106250589B CN 106250589 B CN106250589 B CN 106250589B CN 201610575946 A CN201610575946 A CN 201610575946A CN 106250589 B CN106250589 B CN 106250589B
Authority
CN
China
Prior art keywords
labview
simulation
control
single machine
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610575946.XA
Other languages
English (en)
Other versions
CN106250589A (zh
Inventor
刘显勤
许进亮
张向文
李向阳
张帆
谢静
刘杰
李志超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Launch Vehicle Technology CALT
Beijing Institute of Space Launch Technology
Original Assignee
China Academy of Launch Vehicle Technology CALT
Beijing Institute of Space Launch Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Launch Vehicle Technology CALT, Beijing Institute of Space Launch Technology filed Critical China Academy of Launch Vehicle Technology CALT
Priority to CN201610575946.XA priority Critical patent/CN106250589B/zh
Publication of CN106250589A publication Critical patent/CN106250589A/zh
Application granted granted Critical
Publication of CN106250589B publication Critical patent/CN106250589B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/18Network design, e.g. design based on topological or interconnect aspects of utility systems, piping, heating ventilation air conditioning [HVAC] or cabling

Abstract

一种基于Labview模块化的CAN总线控制仿真系统设计方法,解决仿真系统不能灵活适应CAN总线控制的实施需求快速实现系统架构的技术问题。包括:通过Labview建立通信接口层,形成物理通信接口的数据连接,为主控单机提供与控制单机的数据接收、发送通道;通过Labview建立单机层,形成独立的控制单机,控制单机解析控制指令形成控制器件的状态参数上传,接收仿真模拟结果参数,形成相应传感器状态下传;通过Labview建立系统层,接收控制器件的状态参数完成相应系统机构的仿真模拟计算,形成计算结果的相应状态参数。

Description

一种基于Labview模块化的CAN总线控制仿真系统设计方法
技术领域
本发明涉及一种数据处理过程的构建方法,特别是涉及针对CAN总线控制形成的数据处理过程的构建方法。
背景技术
如图1所示,是现有CAN总线的通用控制系统结构,主控主机通过CAN总线与个控制单机通信完成各控制单机的动作控制器件控制,传感器采集相应动作控制器件控制结果状态,反馈至主控主机。通过随着发射车调平起竖控制技术的发展,随着对系统认识的深入,提出了控制过程中的故障诊断要求,同时流程控制要求也越来越复杂,因此实现控制要求、故障诊断等的软件流程复杂度越来越大。以往一般采用半实物仿真或者采用实车进行软件实现正确性的调试和验证,存在系统复杂、成本高,以及一些危险故障状态无法模拟的问题。
后续,针对发射车CAN总线分布控制系统特点,提出了采用纯软件进行系统仿真的方式,以期降低软件实现的验证成本,缩短时间,但目前缺乏有效的仿真结构设计方法,无法在仿真过程中实现可靠的调试和模拟。
发明内容
本发明的目的是提供一种于Labview模块化的CAN总线控制仿真系统设计方法,解决仿真系统不能灵活适应CAN总线控制的实施需求快速实现系统架构的技术问题。
本发明的基于Labview模块化的CAN总线控制仿真系统设计方法,包括:
通过Labview建立通信接口层,形成物理通信接口的数据连接,为主控单机提供与控制单机的数据接收、发送通道;
通过Labview建立单机层,形成独立的控制单机,控制单机解析控制指令形成控制器件的状态参数上传,接收仿真模拟结果参数,形成相应传感器状态下传;
通过Labview建立系统层,接收控制器件的状态参数完成相应系统机构的仿真模拟计算,形成计算结果的相应状态参数。
所述通信接口层的仿真步骤包括:
通过通信端口或总线节点与主控单机形成数据连接;
在数据连接中,通过Labview的通知器方式建立面向单机层的数据发送通道,通过Labview的队列方式建立面向主控单机的数据发送通道。
所述单机层的仿真步骤包括:
通过Labview的队列方式建立面向通信接口层的主控数据接收队列;
各控制单机从主控数据接收队列中识别相应的指令数据;
通过Labview的队列方式建立面向系统层的器件状态发送队列,控制单机解析动作控制器件指令,将动作控制器件状态数据传入器件状态发送队列;
通过Labview的队列方式建立面向系统层的传感器状态接收队列,接收模拟结果的相应状态参数;
通过Labview的队列方式建立面向通信接口层的传感器数据发送队列,将相应状态参数封装为相应控制单机的动作控制器件的传感器采集数据,传入传感器数据发送队列。
所述系统层的仿真步骤包括:
通过读取器件状态发送队列中的动作控制器件状态数据,设置仿真模拟中的相应器件状态;
完成相应系统机构的仿真模拟计算;
根据计算结果设置对应传感器状态,模拟系统传感器采集,形成相应状态参数;
通过Labview的通知器方式建立面向单机层的状态发送通道,将传感器状态发送给单机层。
所述通信端口或总线节点包括CAN总线端口、以太网口、串形端口中的一种或几种。
所述仿真步骤中指令数据包括:动作控制器件指令,单机自检指令,故障诊断指令中的一种或几种。
所述仿真步骤中还包括模拟单机故障模拟,包括接收指令后的回复信息信息错误或不回复。
所述动作控制器件状态数据包括液压油缸的伸出或电机的转动速度的系统机构动作。
所述仿真步骤中还包括故障模拟。
所述故障模拟包括系统的动作控制器件状态、传感器状态和动作计算参数。
本发明的基于Labview模块化的CAN总线控制仿真系统设计方法实现了仿真过程的逻辑分层,确定了每一层的功能描述和功能架构,利用Labview将仿真模拟各阶段的控制、反馈、处理、故障状态有效模块化,实现调平起竖控制系统除主控单元外的系统仿真,完成主控单元的调平起竖控制软件的调试,系统故障模拟,调试和验证流程控制算和故障诊断算法软件实现的正确性。
附图说明
图1为现有的CAN总线的通用控制系统结构示意图;
图2为本发明基于Labview模块化的CAN总线控制仿真系统设计方法实施例形成的仿真结构示意图;
图3为本发明基于Labview模块化的CAN总线控制仿真系统设计方法实施例的流程图;
图4为本发明基于Labview模块化的CAN总线控制仿真系统设计方法实施例的通信接口层的数据处理流程图;
图5为本发明基于Labview模块化的CAN总线控制仿真系统设计方法实施例的单机层的数据处理流程图;
图6为本发明基于Labview模块化的CAN总线控制仿真系统设计方法实施例的系统层的数据处理流程图。
具体实施方式
下面结合附图对本发明的具体实施方式进行详细说明。
如图2所示,本发明基于Labview模块化的CAN总线控制仿真系统设计方法的基本仿真思路是,将主控主机面对的仿真过程抽象为通信接口层、单机层和系统层,通信接口层的数据发送与接收过程通过Labview分别模块化,实现通过CAN接口、以太网、串口等收发数据,采用Labview的队列、通知器等方式与单机层进行数据通信。
单机层的单机控制过程通过Labview分别模块化,实现对系统使用的带控制器单机的模拟,单机层接收控制指令控制系统层的动作控制器件(如电磁阀、电机等)的状态。
将系统层的仿真模拟过程通过Labview分别模块化,根据动作控制器件的状态,计算模拟结构的变化,得到系统传感器的状态,向单机层发送传感器状态。
如图3所示,本实施例的基于Labview模块化的CAN总线控制仿真系统设计方法包括:
步骤01:通过Labview建立通信接口层,形成物理通信接口的数据连接,为主控单机提供与控制单机的数据接收、发送通道;
步骤02:通过Labview建立单机层,形成独立的控制单机,控制单机解析控制指令形成控制器件的状态参数上传,接收仿真模拟结果参数,形成相应传感器状态下传;
步骤03:通过Labview建立系统层,接收控制器件的状态参数完成相应系统机构的仿真模拟计算,形成计算结果的相应状态参数。
本实施例的基于Labview模块化的CAN总线控制仿真系统设计方法可以形成应用于主控主机的调平起竖控制系统除主控单元外的系统仿真,用于主控单元的调平起竖控制软件的调试,系统故障模拟,调试和验证流程控制算和故障诊断算法软件实现的正确性。将各种仿真模拟过程在各层形成模块化的仿真过程,针对物理环境的软件仿真使得动作器、传感器、通信结构和执行结构软件化提供主控主机测试和优化,可以完成对相应部件和结构的极值测量,避免半实物模拟风险。
本实施例的仿真系统设计方法实现了仿真模拟的逻辑功能隔离。
如图4所示,本实施例的基于Labview模块化的CAN总线控制仿真系统设计方法步骤01中的仿真步骤包括:
步骤11:通过CAN总线端口、以太网口、串形端口中的一种或几种与主控单机形成数据连接;
步骤12:在数据连接中,通过Labview的通知器方式建立面向单机层的数据发送通道,通过Labview的队列方式建立面向主控单机的数据发送通道。
本实施例的基于Labview模块化的CAN总线控制仿真系统设计方法兼顾了周期数据和实施突发数据的仿真要求。
如图5所示,本实施例的基于Labview模块化的CAN总线控制仿真系统设计方法步骤02中仿真步骤包括:
步骤21:通过Labview的队列方式建立面向通信接口层的主控数据接收队列;
步骤22:各控制单机从主控数据接收队列中识别相应的指令数据,动作控制器件指令,单机自检指令,故障诊断指令等指令;
步骤23:通过Labview的队列方式建立面向系统层的器件状态发送队列,控制单机解析动作控制器件指令,将动作控制器件状态数据传入器件状态发送队列;
步骤24:通过Labview的队列方式建立面向系统层的传感器状态接收队列,接收模拟结果的相应状态参数;
步骤25:通过Labview的队列方式建立面向通信接口层的传感器数据发送队列,将相应状态参数封装为相应控制单机的动作控制器件的传感器采集数据,传入传感器数据发送队列。
本实施例的基于Labview模块化的CAN总线控制仿真系统设计方法将单机控制的高级控制过程与主体的仿真模拟计算分离,形成的模块化有利于高级控制过程灵活配合主体的仿真模拟计算策略的修改。
如图6所示,本实施例的基于Labview模块化的CAN总线控制仿真系统设计方法步骤03中包括:
步骤31:通过读取器件状态发送队列中的动作控制器件状态数据,设置仿真模拟中的相应器件状态;
步骤32:完成相应系统机构的仿真模拟计算;
步骤33:根据计算结果设置对应传感器状态,模拟系统传感器采集,形成相应状态参数;
步骤34:通过Labview的通知器方式建立面向单机层的状态发送通道,将传感器状态发送给单机层。
本实施例的基于Labview模块化的CAN总线控制仿真系统设计方法将主体的仿真模拟计算过程标准化,通过模块化的器件状态仿真、反馈状态仿真配合主体的系统机构的仿真模拟计算,使得算法更新更灵活,与执行状态和反馈状态的数据传递更高效。
实际应用中,通信接口层主要实现数据的收发,数据接口后通过Labview的通知器方式向控制单机发送;数据发送采用“队列-阻塞”的方式进行,发送队列有数则执行数据发送,没有数据则等待,保证数据发送的实时性。
单机层识别数据接收队列中与本单机相关的数据,包括:动作控制器件的控制指令,单机自检指令,故障诊断指令的模拟等;动作控制器件的控制指令解析后入动作控制器件状态队列。还包括接收指令后的回复信息的模拟,串入数据发送队列。还包括采用“队列-阻塞”的方式,模拟读取传感器队列中与本单机相关的传感器信息,进行封装,如数据发送队列。还包括模拟单机故障模拟,如接收指令后的回复信息信息错误或不回复等。
系统层通过读取动作控制器件状态队列的数据,模拟设置对应控制器件的状态。动作控制器件状态控制系统机构动作模拟,如液压油缸的伸出、电机的转动速度等根据系统机构动作模拟计算结果设置对应传感器状态,将传感器状态采用Labview通知器的方式发送给单机层,模拟系统传感器采集。实现故障模拟,系统的动作控制器件、传感器和动作计算参数等均可设置故障状态,模拟系统故障,用以验证故障诊断算法和算法实现的正确性。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (8)

1.一种基于Labview模块化的CAN总线控制仿真系统设计方法,包括:
通过Labview建立通信接口层,形成物理通信接口的数据连接,为主控单机提供与控制单机的数据接收、发送通道;
通过Labview建立单机层,形成独立的控制单机,控制单机解析控制指令形成控制器件的状态参数上传,接收仿真模拟结果参数,形成相应传感器状态下传;
通过Labview建立系统层,接收控制器件的状态参数完成相应系统机构的仿真模拟计算,形成计算结果的相应状态参数;
所述单机层的仿真步骤包括:
通过Labview的队列方式建立面向通信接口层的主控数据接收队列;
各控制单机从主控数据接收队列中识别相应的指令数据,指令数据包括:动作控制器件指令,单机自检指令,故障诊断指令中的一种或几种;
通过Labview的队列方式建立面向系统层的器件状态发送队列,控制单机解析动作控制器件指令,将动作控制器件状态数据传入器件状态发送队列;
通过Labview的队列方式建立面向系统层的传感器状态接收队列,接收模拟结果的相应状态参数;
通过Labview的队列方式建立面向通信接口层的传感器数据发送队列,将相应状态参数封装为相应控制单机的动作控制器件的传感器采集数据,传入传感器数据发送队列。
2.如权利要求1所述的基于Labview模块化的CAN总线控制仿真系统设计方法,所述通信接口层的仿真步骤包括:
通过通信端口或总线节点与主控单机形成数据连接;
在数据连接中,通过Labview的通知器方式建立面向单机层的数据发送通道,通过Labview的队列方式建立面向主控单机的数据发送通道。
3.如权利要求1所述的基于Labview模块化的CAN总线控制仿真系统设计方法,所述系统层的仿真步骤包括:
通过读取器件状态发送队列中的动作控制器件状态数据,设置仿真模拟中的相应器件状态;
完成相应系统机构的仿真模拟计算;
根据计算结果设置对应传感器状态,模拟系统传感器采集,形成相应状态参数;
通过Labview的通知器方式建立面向单机层的状态发送通道,将传感器状态发送给单机层。
4.如权利要求2所述的基于Labview模块化的CAN总线控制仿真系统设计方法,所述通信端口或总线节点包括CAN总线端口、以太网口、串形端口中的一种或几种。
5.如权利要求1所述的基于Labview模块化的CAN总线控制仿真系统设计方法,所述仿真步骤中还包括模拟单机故障模拟,包括接收指令后的回复信息信息错误或不回复。
6.如权利要求3所述的基于Labview模块化的CAN总线控制仿真系统设计方法,所述动作控制器件状态数据包括液压油缸的伸出或电机的转动速度的系统机构动作。
7.如权利要求2或3所述的基于Labview模块化的CAN总线控制仿真系统设计方法,所述仿真步骤中还包括故障模拟。
8.如权利要求7所述的基于Labview模块化的CAN总线控制仿真系统设计方法,所述故障模拟包括系统的动作控制器件状态、传感器状态和动作计算参数。
CN201610575946.XA 2016-07-20 2016-07-20 一种基于Labview模块化的CAN总线控制仿真系统设计方法 Active CN106250589B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610575946.XA CN106250589B (zh) 2016-07-20 2016-07-20 一种基于Labview模块化的CAN总线控制仿真系统设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610575946.XA CN106250589B (zh) 2016-07-20 2016-07-20 一种基于Labview模块化的CAN总线控制仿真系统设计方法

Publications (2)

Publication Number Publication Date
CN106250589A CN106250589A (zh) 2016-12-21
CN106250589B true CN106250589B (zh) 2019-12-17

Family

ID=57613537

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610575946.XA Active CN106250589B (zh) 2016-07-20 2016-07-20 一种基于Labview模块化的CAN总线控制仿真系统设计方法

Country Status (1)

Country Link
CN (1) CN106250589B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107450345A (zh) * 2017-04-20 2017-12-08 广西师范大学 Can总线工作模式的在线仿真系统
CN109656186A (zh) * 2018-12-04 2019-04-19 洛阳轴承研究所有限公司 一种基于LabVIEW的轴承寿命试验测控软件系统
CN110838961B (zh) * 2019-10-12 2021-12-03 沈阳航空航天大学 一种通用航空总线消息调度系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103234572A (zh) * 2013-05-11 2013-08-07 安徽工程大学 基于LabVIEW的汽车仪表检验系统
CN104007724A (zh) * 2014-05-15 2014-08-27 华侨大学 一种基于LabVIEW的挖掘机远程故障诊断系统及方法
CN104266671A (zh) * 2014-09-05 2015-01-07 延锋伟世通电子科技(上海)有限公司 基于can总线和视觉检测的汽车仪表驾驶信息自动化测试系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103234572A (zh) * 2013-05-11 2013-08-07 安徽工程大学 基于LabVIEW的汽车仪表检验系统
CN104007724A (zh) * 2014-05-15 2014-08-27 华侨大学 一种基于LabVIEW的挖掘机远程故障诊断系统及方法
CN104266671A (zh) * 2014-09-05 2015-01-07 延锋伟世通电子科技(上海)有限公司 基于can总线和视觉检测的汽车仪表驾驶信息自动化测试系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
基于CAN现场总线的远程控制系统设计;汪杰君 等;《仪表技术与传感器》;20091231;第2009年卷(第2期);58-60 *
基于LabVIEW的混合动力汽车模拟器的设计与开发;王红磊;《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》;20121215;第2012年卷(第12期);正文第1.2节、第2.2.1节、第3.1-3.3节、第5.1.2节 *
基于LabVIEW的虚拟车身CAN总线节点设计;屈敏 等;《计算机测量与控制》;20121231;第20卷(第12期);3338-3340 *

Also Published As

Publication number Publication date
CN106250589A (zh) 2016-12-21

Similar Documents

Publication Publication Date Title
CN112487668B (zh) 一种基于数字孪生的近物理仿真集成调试方法及其系统
CN107784152B (zh) 包括多个模拟器的模拟
US9436172B2 (en) Test installation for testing control programs for a robot installation
US10025883B2 (en) Method for generating a configuration for a control unit test system
US11022967B2 (en) Method for generating a technical system model, executable on a test unit, and the test unit
CN106250589B (zh) 一种基于Labview模块化的CAN总线控制仿真系统设计方法
KR101136408B1 (ko) 신뢰성 있는 cps 개발을 위한 cps 시뮬레이터, 이를 이용한 cps 시뮬레이션 시스템 및 방법
KR20120117333A (ko) 힐스용 차량 모델의 시뮬레이션 시스템
CN103543999A (zh) 用于创建和测试控制器程序的方法和装置
US11366945B2 (en) Soft-real-time hub providing data transport for processor-in-the-loop (PIL) simulations
US20170045865A1 (en) Method for connecting an input/output interface of a tester equipped for control unit development
CN104461854A (zh) 一种舰船装备软件通用仿真测试平台及其构建方法
JP4681513B2 (ja) リアルタイム並列分散シミュレーションシステム
WO2013099438A1 (ja) 協調シミュレーション用計算機システム、組込みシステムの検証方法及びプログラム
CN107943008A (zh) 基于vt系统的自动化诊断测试方法
Haberl et al. Model-level debugging of embedded real-time systems
CN105988465A (zh) 可编程致动器模拟卡
EP2469416A1 (en) Test bed for an AUTOSAR software component and method for checking an AUTOSAR software component
US11801823B2 (en) Computer-based system for testing a server-based vehicle function
CN103543739B (zh) 一种用于验证发动机怠速启停控制的仿真系统和方法
Kim et al. Human-interactive hardware-in-the-loop simulation framework for cyber-physical systems
US10488835B2 (en) Method for configuring a tester equipped for testing an electronic control unit
KR20160065641A (ko) Hsil 기반 가상 엔진 검증 장치 및 방법
Balashov et al. A hardware-in-the-loop simulation environment for real-time systems development and architecture evaluation
Patil et al. Review on Hardware-in-Loop simulation used to advance design efficiency and test competency

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant