CN106244205A - 一种中低温煤焦油加氢精制工艺 - Google Patents

一种中低温煤焦油加氢精制工艺 Download PDF

Info

Publication number
CN106244205A
CN106244205A CN201610653614.9A CN201610653614A CN106244205A CN 106244205 A CN106244205 A CN 106244205A CN 201610653614 A CN201610653614 A CN 201610653614A CN 106244205 A CN106244205 A CN 106244205A
Authority
CN
China
Prior art keywords
sapo
fixed bed
bed reactors
hydrogen
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610653614.9A
Other languages
English (en)
Inventor
朱忠良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xishan Lvchun Plastic Products Factory
Original Assignee
Xishan Lvchun Plastic Products Factory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xishan Lvchun Plastic Products Factory filed Critical Xishan Lvchun Plastic Products Factory
Priority to CN201610653614.9A priority Critical patent/CN106244205A/zh
Publication of CN106244205A publication Critical patent/CN106244205A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/12Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/14Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including at least two different refining steps in the absence of hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/183After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself in framework positions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种中低温煤焦油加氢精制工艺,所述工艺采用固定床反应器,固定床反应器中装填有加氢脱硫脱氮催化剂,所述催化剂包括载体和活性组分;所述载体为合成骨架结构中掺入杂原子Cu2+的SAPO‑5;所述活性组分为氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的混合物;所述固定床反应器的反应条件为:反应温度为300‑420℃,氢分压为13‑15MPa,氢油体积比800‑1200,体积空速0.3‑0.8h‑1。该工艺可以将中低温煤焦油中的总硫含量降低到5ppm以下,并减少芳烃的裂化。

Description

一种中低温煤焦油加氢精制工艺
技术领域
本发明涉及一种中低温煤焦油加氢脱硫精制工艺,具体涉及一种采用特定催化剂进行的一种中低温煤焦油加氢脱硫精制工艺。
背景技术
煤焦油是炼焦工业煤热解生成的粗煤气中的产物之一,其产量约占装炉煤的3%~4%在常温常压下其产品呈黑色粘稠液状。煤焦油是煤化学工业的主要原料,其成分达上万种,主要含有苯、甲苯、二甲苯、萘、蒽等芳烃,以及芳香族含氧化合物(如苯酚等酚类化合物),含氮、含硫的杂环化合物等多种有机物,可采用分馏的方法把煤焦油分割成不同沸点范围的馏分。根据煤热加工过程的不同,所得到的煤焦油通常被分为高温焦油(900℃~1000℃)、中温焦油(650℃~900℃)和低温焦油(450℃~650℃)。
我国是产煤大国,有着丰富的煤焦油资源,煤焦油作为生产兰炭、焦炭和煤气化的副产品,目前年产约1500万吨,除部分高温煤焦油用于提取化工产品外,多数煤焦油没有得到合理的利用,大部分中低温煤焦油和少量高温煤焦油被作为燃料进行粗放燃烧。因煤焦油中含有大量的芳香族等环状结构化合物,较难充分燃烧,同时煤焦油含碳量高,含氢量低,燃烧时更容易生成炭黑,致使燃烧不完全并产生大量的烟尘。另外,由于煤焦油中硫和氮的含量较高,燃烧前又没有进行脱硫脱氮处理,所以在燃烧时排放出大量的SOx和NOx,造成严重的环境污染,与当前全球大力提倡的绿色环保能源的潮流背道而驰。如果将这部分煤焦油通过催化加氢制成高清洁的燃料油(汽油和柴油),不仅能够提高煤焦油的利用价值,大大减少环境污染,还可以每年为国家新增国民生产总值300多亿元。
中低温煤焦油的组成和性质不同于高温煤焦油,中低温煤焦油中含有较多的含氧化合物及链状烃,其中酚及其衍生物质量含量可达10%~30%,烷状烃大约20%,同时重油(焦油沥青)的含量相对较少,比较适合采用加氢技术生产清洁燃料油。中低温煤焦油(以下“煤焦油”即“中低温煤焦油”)从外观上看,是黑色黏稠液体,密度略小于1000kg/m3,黏度大,具有特殊的气味,其主要组成是芳香族化合物,且大多数是两环以上的稠环芳香族化合物。
进入21世纪,我国焦化工业迅速发展,产生大量的高温煤焦油和生产兰炭所产生的大量中低温煤焦油。一些研究单位开始研究通过催化加氢把煤焦油做成清洁的燃料油(如汽油和柴油)。煤炭科学研究总院和中国石油化工股份有限公司齐鲁分公司曾将煤气化焦油及高温煤焦油经过脱除水分、机械杂质和沥青预处理,再进行深度的加氢精制和重质油馏分的加氢裂化小试实验。
而对于中低温煤焦油催化加氢制备清洁燃料油的研究报道较少,国外对煤焦油的催化加氢的研究多是以煤焦油中的某一个或一类化合物的加氢反应为模型,研究其加氢过程中所包含的复杂化学反应,包括对萘、蒽油和菲等的加氢裂化反应都有研究。
然而现有的煤焦油加氢过程包括脱除焦油中含有的硫、氮、氧等杂原子,使不饱和化合物通过加氢反应增强稳定性以及重质组分加氢裂化生成轻芳烃的过程。该工艺过程会使大量的高经济价值的芳烃裂化,影响产品收益。
因此如何提供中低温煤焦油精制工艺,能有效将中低温煤焦油中的硫含量控制在5ppm以下,并减少芳烃的裂化,是本领域面临的一个难题。
发明内容
本发明的目的在于提出一种中低温煤焦油加氢脱硫精制工艺,该工艺可以将中低温煤焦油中的总硫含量降低到5ppm以下,并减少芳烃的裂化,以满足后续加工标准。
为达此目的,本发明采用以下技术方案:
一种中低温煤焦油加氢精制工艺,所述工艺采用固定床反应器,固定床反应器中装填有加氢催化剂,所述催化剂包括载体和活性组分。
所述载体为合成骨架结构中掺入杂原子Cu2+的SAPO-5。
所述活性组分为氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的混合物。
所述固定床反应器的反应条件为:反应温度为300-420℃,氢分压为13-15MPa,氢油体积比800-1200,体积空速0.3-0.8h-1
SAPO-5分子筛是磷酸硅铝(SAPO)系列分子筛中的一种,它的孔道系统是由六方对称性的四元环与六元环构成的十二元环构成的,具有大孔径结构,其孔径为0.8nm。SAPO-5分子筛酸性温和,并且具有微弱的可调节性,还具有阳离子交换能力。某种程度上,其物化性质不仅具有铝磷酸盐分子筛的特性,并且还类似于硅铝沸石的特性。由于其具有新型的晶体结构、良好的热稳定性和水热稳定性,在间二甲苯异构化和正己烷催化裂解等反应中具有广泛应用。但其用于加氢精制而不是加氢裂解领域,鲜见文献报道。
本发明经过在众多磷酸硅铝分子筛中,比如SAPO-11、SAPO-17、SAPO-20、SAPO-31、SAPO-34、SAPO-44、SAPO-46、SAPO-47等,逐一进行对比试验选择,发现只有SAPO-5能够达到本发明的发明目的,其他介孔材料都有这样那样的缺陷,在应用到本发明中时存在难以克服的技术困难,因此本发明选择将用于加氢裂化的SAPO-5改性转做用于加氢精制的载体基础。
发明人经过研究发现,对于影响磷酸硅铝分子筛性能的硅铝比、磷铝比,在本发明中,经改性之后,硅铝比和磷铝比的变化对加氢精制效果影响较小,因此本发明不再对硅铝比和磷铝比进行限定。为便于说明本发明,一般将其限定为摩尔比均小于1。
由于现有的SAPO-5分子筛催化温度高,且易导致原料加氢裂解,因此,本发明对其进行改性,以增加其催化活性,降低催化温度并使其适用于催化精制,减少加氢裂化。本发明对SAPO-5介孔分子筛改性的途径是:向成品的全硅SAPO-5介孔分子筛孔道内表面引入Cu2+,这种途径可以通过离子交换将Cu2+负载在SAPO-5的内表面,从而在整体上改善了SAPO-5介孔分子筛的催化活性、吸附以及热力学稳定性能等。
尽管对SAPO-5介孔分子筛进行改性的方法或途径很多,发明人发现,本发明的催化剂只能采用掺杂Cu2+的SAPO-5作为载体才能实现硫含量控制与辛烷值损失的平衡,发明人尝试了在SAPO-5中掺杂:Ca2+、Fe3+、Zn2+、Ti2+、Ga3+以及碱金属等产生阴离子表面中心的离子,发现都不能实现所述效果。尽管所述机理目前并不清楚,但这并不影响本发明的实施,发明人根据已知理论与实验证实,其与本发明的活性成分之间存在协同效应。
所述Cu2+在SAPO-5中的掺杂量必须控制在特定的含量范围之内,其掺杂量以重量计,为SAPO-5重量的0.56%-0.75%,例如0.57%、0.58%、0.59%、0.6%、0.61%、0.62%、0.63%、0.64%、0.65%、0.66%、0.67%、0.68%、0.69%、0.7%、0.71%、0.72%、0.73%、0.74等。
发明人发现,在该范围之外,会导致中低温煤焦油脱硫效果的急剧降低。更令人欣喜的是,当Cu2+在SAPO-5中的掺杂量控制在0.63%-0.72%范围内时,其脱硫能力最强,当绘制以Cu2+掺杂量为横轴,以目标脱硫效果为纵轴的曲线图时,该含量范围内硫含量能控制在极低的范围之内,其产生的脱硫效果远远超出预期,属于预料不到的技术效果。
所述活性组分的总含量为载体SAPO-5重量的1%-15%,优选3-12%,进一步优选5-10%。例如,所述含量可以为2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、10.5%、11%、11.5%、12%、12.5%、13%、13.5%、14%、14.5%等。
本发明中,特别限定活性组分为氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的混合比例,发明人发现,不同的混合比例达到的效果完全不同。发明人发现,氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的混合比例(摩尔比)为1:(0.4-0.6):(0.28-0.45):(0.8-1.2),只有控制氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的摩尔比在该范围内,才能够实现中低温煤焦油中含硫量控制在10ppm以下且脱氮能力显著。也就是说,本发明的四种活性组分只有在摩尔比为1:(0.4-0.6):(0.28-0.45):(0.8-1.2)时,才具备协同效应。除开该摩尔比范围之外,或者省略或者替换任意一种组分,都不能实现协同效应。
优选的,氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的摩尔比为1:(0.45-0.5):(0.35-0.45):(0.8-1.0),进一步优选为1:(0.45-0.48):(0.4-0.45):(0.9-1.0),最优选1:0.48:0.42:0.95。
所述催化剂的制备方法可以采取常规的浸渍法以及其他替代方法,本领域技术人员可以根据其掌握的现有技术自由选择,本发明不再赘述。
优选的,所述固定床反应器的反应条件为:反应温度为350-370℃,氢分压为13.0-15.0MPa,氢油体积比800-1000,体积空速0.4-0.6h-1
优选的,所述工艺流程包括,装置主要包括原料预分馏部分(脱水和切尾)、反应部分和分馏部分。
1、原料预分馏部分
从罐区来的原料油经原料油过滤器除去大于25μm的固体颗粒,与预分馏塔顶汽换热升温后,与预分馏塔中段回流液换热升温,然后与预分馏塔底重油换热升温,最后经预分馏塔进料加热炉加热至180℃进入原料油预分馏塔(脱水),塔顶汽经冷凝后进入预分馏塔顶回流罐并分离为汽油和含油污水,一部分汽油作塔顶回流使用,一部分汽油作加氢单元原料使用;预分馏塔(脱水)的拔头油由塔底排出,再经过换热和加热炉加热达到360℃后进入预分馏塔(切尾),预分馏塔(切尾)底重油,作为沥青出装置,而其他馏出馏分混合后作加氢单元原料使用。
2、反应部分
经过预处理后的煤焦油进入加氢原料油缓冲罐,原料油缓冲罐用燃料气气封。自原料油缓冲罐来的原料油经加氢进料泵增压后,在流量控制下与混合氢混合,经反应流出物/反应进料换热器换热后,然后经反应进料加热炉加热至反应所需温度,进入加氢改质反应器,反应器间设有注急冷氢设施。
自反应器出来的反应流出物经反应流出物/反应进料换热器、反应流出物/低分油换热器、反应流出物/反应进料换热器依次与反应进料、低分油、反应进料换热,然后经反应流出物空冷器及水冷器冷却至45℃,进入高压分离器。为了防止反应流出物中的铵盐在低温部位析出,通过注水泵将冲洗水注到反应流出物空冷器上游侧的管道中。
冷却后的反应流出物在高压分离器中进行油、气、水三相分离。高分气(循环氢)经循环氢压缩机入口分液罐分液后,进入循环氢压缩机升压,然后分两路:一路作为急冷氢进反应器;一路与来自新氢压缩机的新氢混合,混合氢与原料油混合作为反应进料。含硫、含氨污水自高压分离器底部排出至酸性水汽提装置处理。高分油相在液位控制下经减压调节阀进入低压分离器,其闪蒸气体排至工厂燃料气管网。
低分油经精制柴油/低分油换热器和反应流出物/低分油换热器分别与精制柴油、反应流出物换热后进入分馏塔。入塔温度用反应流出物/低分油换热器旁路调节控制。
新氢经新氢压缩机入口分液罐经分液后进入新氢压缩机,经两级升压后与循环氢混合。
3、分馏部分
从反应部分来的低分油经精制柴油/低分油换热器、反应流出物/低分油换热器换热至275℃左右进入分馏塔。塔底设重沸炉,塔顶油气经塔顶空冷器和水冷器冷凝冷却至40℃,进入分馏塔顶回流罐进行气、油、水三相分离。闪蒸出的气体排至燃料气管网。含硫含氨污水与高分污水一起送出装置。油相经分馏塔顶回流泵升压后一部分作为塔顶回流,一部分作为粗汽油去稳定塔。
从分馏塔顶回流罐来的粗汽油经稳定汽油(精制石脑油)/粗汽油换热后进入汽油稳定塔。稳定塔底用精制柴油作稳定重沸器热源,稳定塔塔顶油气经稳定塔顶水冷器冷凝冷却至40℃,进入稳定塔顶回流罐进行气、油、水三相分离。闪蒸出的气体排至燃料气管网。含硫含氨污水与高分污水一起送出装置。油相经稳定塔顶回流泵升压后大部分作为塔顶回流,小部分作为轻油排入不合格油中出装置。塔底稳定汽油作为石脑油去罐区。
为了抑制硫化氢对塔顶管道和冷换设备的腐蚀,在分馏塔和稳定塔塔顶管道采用注入缓蚀剂措施。缓蚀剂自缓蚀剂罐经缓蚀剂泵注入塔顶管道。
分馏塔塔底精制柴油经精制柴油泵增压后与低分油换热至100℃左右,然后进入柴油空冷器冷却至50℃后出装置作为优质燃料油去罐区。
优选的,所述固定床反应器包括1-5个催化剂床层,进一步优选2-3个催化剂床层。
本发明的加氢精制工艺通过选取特定的催化剂,所述催化剂通过掺入杂原子Cu2+的SAPO-5作为载体,以及选取特定比例的氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC作为活性成分,使得该催化剂产生协同效应,对中低温煤焦油的加氢脱硫能控制在总硫含量低于5ppm,同时对中低温煤焦油中的芳烃不会产生裂解。
具体实施方式
本发明通过下述实施例对本发明的加氢精制工艺进行说明。
实施例1
通过浸渍法制备得到催化剂,载体为掺杂Cu2+的SAPO-5,Cu2+在SAPO-5中的掺杂量控制在载体质量的0.65%。所述活性组分氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的总含量为载体质量的10%,其摩尔比为1:0.4:0.3:0.8。
将所述催化剂装填入固定床反应器,所述反应器的反应管由内径50mm的不锈钢制成,催化剂床层设置为3层,催化剂床层温度用UGU808型温控表测量,原材料中低温煤焦油由北京卫星制造厂制造的双柱塞微量泵连续输送,氢气由高压气瓶供给并用北京七星华创D07-11A/ZM气体质量流量计控制流速,催化剂装填量为2kg。反应后的产物经水浴室温冷却后进行气液分离。
所用原料为哈萨克斯坦中低温煤焦油,其含硫量高达2400ppm。
控制反应条件为:温度360℃,氢分压14.0MPa,氢油体积比900,体积空速0.5h-1
测试最终的产品,总硫含量降低到3ppm,芳烃损失率低于2%。
实施例2
通过浸渍法制备得到催化剂,载体为掺杂Cu2+的SAPO-5,Cu2+在SAPO-5中的掺杂量控制在载体质量的0.7%。所述活性组分氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的总含量为载体质量的10%,其摩尔比为1:0.6:0.45):1.2。
其余条件与实施例1相同。
测试最终的产品,总硫含量降低到4ppm,芳烃损失率低于2%。
对比例1
将实施例1的载体替换为γ-Al2O3,其余条件不变。
测试最终的产品,总硫含量降低到37ppm,芳烃损失率大于5%。
对比例2
将实施例1的载体替换为未掺杂的SAPO-5,其余条件不变。
测试最终的产品,总硫含量降低到31ppm,芳烃损失率大于5%。
对比例3
将实施例1的Cu2+替换为Zn2+,其余条件不变。
测试最终的产品,总硫含量降低到30ppm,芳烃损失率大于5%。
对比例4
将实施例1中的Cu2+在SAPO-5中的掺杂量控制在载体质量的0.5%,其余条件不变。
测试最终的产品,总硫含量降低到28ppm,芳烃损失率大于5%。
对比例5
将实施例1中的Cu2+在SAPO-5中的掺杂量控制在载体质量的0.8%,其余条件不变。
测试最终的产品,总硫含量降低到29ppm,芳烃损失率大于5%。
实施例1与对比例1-5表明,本申请采用的特定含量范围和特定负载金属离子的SAPO-5载体,当替换为本领域的其他已知载体时,或者载体相同但Cu2+掺杂量不同时,均达不到本发明的技术效果,因此本发明的特定含量范围的Cu2+掺杂SAPO-5载体与催化剂其他组分之间具备协同效应,所述加氢精制工艺产生了预料不到的技术效果。
对比例6
省略实施例1中的MO2N,其余条件不变。
测试最终的产品,总硫含量降低到41ppm,芳烃损失率大于5%。
对比例7
省略实施例1中的WC,其余条件不变。
测试最终的产品,总硫含量降低到43ppm,芳烃损失率大于5%。
上述实施例及对比例6-7说明,本发明的加氢精制工艺的催化剂几种活性组分之间存在特定的联系,省略或替换其中一种或几种,都不能达到本申请的特定效果,证明其产生了协同效应。
申请人声明,本发明通过上述实施例来说明本发明的工艺,但本发明并不局限于上述工艺,即不意味着本发明必须依赖上述详细催化剂才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (6)

1.一种中低温煤焦油加氢精制工艺,所述工艺采用固定床反应器,固定床反应器中装填有加氢催化剂,所述催化剂包括载体和活性组分,其特征在于,
所述载体为合成骨架结构中掺入杂原子Cu2+的SAPO-5,
所述活性组分为氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的混合物,
所述固定床反应器的反应条件为:反应温度为300-420℃,氢分压为13-15MPa,氢油体积比800-1200,体积空速0.3-0.8h-1
2.如权利要求1所述的加氢精制工艺,其特征在于,杂原子Cu2+的掺杂量为SAPO-5重量的0.63%-0.72%。
3.如权利要求1所述的加氢精制工艺,其特征在于,所述活性组分的总含量为载体SAPO-5重量的3-12%,优选5-10%。
4.如权利要求1所述的加氢精制工艺,其特征在于,氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的摩尔比为1:(0.45-0.5):(0.35-0.45):(0.8-1.0),进一步优选为1:(0.45-0.48):(0.4-0.45):(0.9-1.0),最优选1:0.48:0.42:0.95。
5.如权利要求1所述的加氢精制工艺,其特征在于,所述固定床反应器的反应条件为:反应温度为350-370℃,氢分压为13.0-15.0MPa,氢油体积比800-1000,体积空速0.4-0.6h-1
6.如权利要求1所述的加氢精制工艺,其特征在于,所述固定床反应器包括1-5个催化剂床层,优选包括2-3个催化剂床层。
CN201610653614.9A 2016-08-10 2016-08-10 一种中低温煤焦油加氢精制工艺 Pending CN106244205A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610653614.9A CN106244205A (zh) 2016-08-10 2016-08-10 一种中低温煤焦油加氢精制工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610653614.9A CN106244205A (zh) 2016-08-10 2016-08-10 一种中低温煤焦油加氢精制工艺

Publications (1)

Publication Number Publication Date
CN106244205A true CN106244205A (zh) 2016-12-21

Family

ID=58078321

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610653614.9A Pending CN106244205A (zh) 2016-08-10 2016-08-10 一种中低温煤焦油加氢精制工艺

Country Status (1)

Country Link
CN (1) CN106244205A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1262969A (zh) * 2000-03-02 2000-08-16 南开大学 TiO2为载体负载金属氮化物Mo2N的催化剂
CN1470327A (zh) * 2002-07-24 2004-01-28 北京石油化工学院 一种金属氮化物催化剂制备方法及催化剂
CN1895777A (zh) * 2005-07-14 2007-01-17 北京化工大学 一种组装碳化物的介孔分子筛催化剂及其制备方法
WO2013149014A1 (en) * 2012-03-29 2013-10-03 Wayne State University Bimetal catalysts
CN105251527A (zh) * 2015-11-11 2016-01-20 中国石油大学(北京) 一种复合分子筛以及由其作为载体制成的加氢脱硫催化剂

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1262969A (zh) * 2000-03-02 2000-08-16 南开大学 TiO2为载体负载金属氮化物Mo2N的催化剂
CN1470327A (zh) * 2002-07-24 2004-01-28 北京石油化工学院 一种金属氮化物催化剂制备方法及催化剂
CN1895777A (zh) * 2005-07-14 2007-01-17 北京化工大学 一种组装碳化物的介孔分子筛催化剂及其制备方法
WO2013149014A1 (en) * 2012-03-29 2013-10-03 Wayne State University Bimetal catalysts
CN105251527A (zh) * 2015-11-11 2016-01-20 中国石油大学(北京) 一种复合分子筛以及由其作为载体制成的加氢脱硫催化剂

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
F·维拉尼: "《稀土技术及其应用》", 31 July 1986, 烃加工出版社 *
中国石油化工集团公司人事部,等: "《加氢裂化装置操作工》", 30 September 2008, 中国石化出版社 *
何鸣元,等: "《石油炼制和基本有机化学品合成的绿色化学》", 31 January 2006, 中国石化出版社 *
姜琳琳: "全馏分FCC汽油加氢改质中改性MCM-41催化性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *
崔克清,等: "《化工工艺及安全》", 31 May 2004, 化学工业出版社 *
张文成: "改性MCM-41 分子筛的制备及加氢催化性能研究", 《第十一届全国青年催化学术会议论文集(下)》 *
李静海,等: "《展望21世纪的化学工程》", 31 October 2004, 化学工业出版社 *
林世雄: "《石油炼制工程(第三版)》", 31 July 2000, 化学工业出版社 *
王基铭: "《石油炼制辞典》", 30 September 2013, 中国石化出版社 *
王海彦,等: "《石油加工工艺学》", 31 January 2014, 中国石化出版社 *
王福安,等: "《绿色过程工程引论》", 31 October 2002, 化学工业出版社 *
王雷,等: "《炼油工艺学》", 31 August 2011, 中国石化出版社 *
邝生鲁: "《现代精细化工高新技术与产品合成工艺》", 31 December 1997, 科学技术文献出版社 *
阎子峰: "《纳米催化技术》", 31 May 2003, 化学工业出版社 *

Similar Documents

Publication Publication Date Title
CN102433156B (zh) 一种不同沸程高芳烃高密度烃油加氢转化组合方法
CN106244205A (zh) 一种中低温煤焦油加氢精制工艺
CN106118727A (zh) 一种中低温煤焦油加氢精制工艺
CN106221758A (zh) 一种中低温煤焦油加氢精制工艺
CN106398758A (zh) 一种中低温煤焦油加氢精制工艺
CN106244208A (zh) 一种中低温煤焦油加氢精制工艺
CN106190268A (zh) 一种中低温煤焦油加氢精制工艺
CN106281417A (zh) 一种中低温煤焦油加氢精制工艺
CN106244221A (zh) 一种中低温煤焦油加氢精制工艺
CN106244195A (zh) 一种中低温煤焦油加氢精制工艺
CN106336897A (zh) 一种中低温煤焦油加氢精制工艺
CN106047400A (zh) 一种中低温煤焦油加氢精制工艺
CN106047401A (zh) 一种中低温煤焦油加氢精制工艺
CN106190259A (zh) 一种中低温煤焦油加氢精制工艺
CN106085497A (zh) 一种中低温煤焦油加氢精制工艺
CN106118729A (zh) 一种中低温煤焦油加氢精制工艺
CN106047402A (zh) 一种中低温煤焦油加氢精制工艺
CN106118723A (zh) 一种中低温煤焦油加氢精制工艺
CN106318447A (zh) 一种中低温煤焦油加氢精制工艺
CN106244199A (zh) 一种中低温煤焦油加氢精制工艺
CN106221742A (zh) 一种中低温煤焦油加氢精制工艺
CN106047399A (zh) 一种中低温煤焦油加氢精制工艺
CN106221765A (zh) 一种焦化柴油加氢精制工艺
CN105647576A (zh) 一种高芳烃高压气提分离后组合加氢改质方法
CN106281413A (zh) 一种焦化汽油加氢精制工艺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161221