CN106238101A - 一种制备纳米颗粒@光敏多孔配位聚合物复合材料光催化剂的方法 - Google Patents

一种制备纳米颗粒@光敏多孔配位聚合物复合材料光催化剂的方法 Download PDF

Info

Publication number
CN106238101A
CN106238101A CN201610612902.XA CN201610612902A CN106238101A CN 106238101 A CN106238101 A CN 106238101A CN 201610612902 A CN201610612902 A CN 201610612902A CN 106238101 A CN106238101 A CN 106238101A
Authority
CN
China
Prior art keywords
particle
nano
porous coordination
coordination polymer
photosensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610612902.XA
Other languages
English (en)
Inventor
殷成蓉
霍峰蔚
张美萱
张伟娜
徐亚超
黄维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201610612902.XA priority Critical patent/CN106238101A/zh
Publication of CN106238101A publication Critical patent/CN106238101A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/827Iridium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种制备纳米颗粒@光敏多孔配位聚合物复合材料光催化剂的方法,其特征在于选择表面活性剂聚乙烯基吡咯烷酮(PVP)对纳米颗粒进行修饰,削弱纳米颗粒和光敏多孔配位聚合物两者晶格参数差别的影响,通过原位自组装的方式将PVP修饰的纳米颗粒封装于光敏多孔配位聚合物结构之内,成功制备新型纳米颗粒@光敏多孔配位聚合物复合材料光催化剂应用于可见光催化产氢体系中。该制备方法具有一定的普适性,可以将一些特殊结构的纳米颗粒封装于光敏多孔配位聚合物中,拓展了光敏多孔配位聚合物的应用,同时避免纳米颗粒的聚集,控制纳米颗粒@光敏多孔配位聚合物复合材料的大小和形貌的均一性,保持催化活性。

Description

一种制备纳米颗粒@光敏多孔配位聚合物复合材料光催化剂 的方法
技术领域
本发明属于光敏化多孔配合物材料领域,涉及一种制备纳米颗粒@光敏多孔配位聚合物复合材料光催化剂的方法。
背景技术
多孔配位聚合物(Porous Coordination Polymers,PCPs),也经常称之为金属有机框架(MOFs),是一类由金属/金属簇和特定结构的有机配体单元共同构筑的杂化材料。因其种类多样性、孔道可调性、结构易功能化和比表面积大等优势,PCPs已经在气体存储,化学物种分离、催化、传感器等领域展现出了广阔的应用前景。根据PCPs的有机配体结构的可调节性质,通过引入不同有机或金属有机发光配体单元,PCPs可用来作为发展可见光光敏化PCPs的理想平台。可见光光敏化PCPs不仅可以作为研究光捕获和能量转移过程和机制的模型,也可以作为太阳能转化、有机反应的光催化剂和光动力治疗的有效光敏剂。
为了进一步拓展光敏化PCPs的应用,将纳米颗粒负载到光敏PCPs的孔道中,可以赋予光敏PCPs新的功能,为构筑纳米颗粒@光敏PCPs复合材料光催化剂应用于可见光产氢体系提供了新的有效策略。Lin等率先利用后合成引入的方法,将Pt纳米颗粒负载于Ir(ppy)2(bpy)]+衍生的光敏化UIO67的孔道中,成功构筑了Pt@IrUIO67复合材料,通过光注入电子从Ir(ppy)2(bpy)]+到Pt纳米颗粒的传递,实现了有效光催化产氢。Lin和Li还先后通过自组装的方式将预先合成好的具有阴离子型多金属氧酸盐纳米颗粒封装到阳离子型的光敏化UIO67中,进一步构筑了新结构的复合材料应用于产氢体系。由此可见,纳米颗粒@光敏PCPs复合材料的成功构筑对于可见光产氢体系的重要性。然而,上面报道的制备纳米颗粒@光敏PCPs复合材料的方法仍然存在其局限性,例如纳米颗粒的聚集、纳米颗粒种类组分的限制、纳米颗粒和复合材料大小和形貌的不可控性。此外,关于纳米颗粒@光敏化PCPs复合材料光催化剂用于可见光产氢体系的种类仍然比较少。因此,有必要进一步探索,简单、普适的新方法来构筑新结构的纳米颗粒@光敏化PCPs复合材料光催化剂。
本文针对此研究现状,发明了一种简单、普适的新方法来构筑新结构的纳米颗粒@光敏化PCPs复合材料光催化剂应用于可见光催化产氢体系。
发明内容
本发明的目的是提供了一种制备纳米颗粒@光敏多孔配位聚合物复合材料光催化剂的方法。
本发明的目的是通过以下技术方案实现的:
一种制备纳米颗粒@光敏多孔配位聚合物复合材料光催化剂的方法,其特征在于将四氯化锆、联苯二羧酸、含金属有机配合物光敏单元的二羧酸混合溶解于二甲基甲酰胺溶剂中,随后加入表面活性剂修饰的纳米颗粒的二甲基甲酰胺溶液和醋酸调节剂,混合均匀后,静置,100℃下进行水热反应,反应时间为24小时。反应结束后,离心收集沉淀,用二甲基甲酰胺和甲醇作为溶剂分别洗涤三次后,真空干燥,制得纳米颗粒@光敏多孔配位聚合物复合材料。
优选地,所述含金属有机配合物光敏单元的二羧酸是含钌的联吡啶类(Ru(bpy)3]2+)或铱的吡啶类配合物([Ir(ppy)2(bpy)]+)光敏剂单元的二羧酸。
优选地,所述纳米颗粒的为铂Pt、钯Pd、硫磷化钯Pd3P2S8、二硫化钼MoS2、三硫化钼MoS3等纳米颗粒中的至少一种,这些纳米颗粒可作为可见光产氢体系中的共催化剂。
优选地,所述修饰纳米颗粒的表面活性剂为聚乙烯基吡咯烷酮(PVP)。
所述制备得到的纳米颗粒@光敏多孔配位聚合物复合材料可以作为催化剂应用于可见光催化产氢反应体系。
与现有的合成技术相比本发明的有益效果:
1、本发明的优点在于首次利用原位封装的方法将表面活性剂修饰的纳米颗粒封装于光敏多孔配位聚合物结构之内,成功制备新型纳米颗粒@光敏多孔配位聚合物复合材料光催化剂。
2、本发明的优点在于所提出的制备方法具有一定的普适性,可以将一些特殊结构的纳米颗粒(现有的合成技术没法实现的)封装于光敏多孔配位聚合物中,拓展了光敏多孔配位聚合物的应用。
3、本发明的优点在于所提出的制备方法,可以有效避免纳米颗粒的聚集在光敏多孔配位聚合物中的聚集,可以得到大小均一、形貌规整的纳米颗粒@光敏多孔配位聚合物复合材料,保持催化活性。
附图说明
图1为实施例1中,所得到复合材料Pt@RuUIO67-1的透射电子显微镜(TEM)(a)和高角环形暗场像-扫描透射电子像(HAADF-STEM)和相应的元素面扫描分析(EDX-mapping)(b)图。
图2为实施例1和2中,所得复合材料Pt@RuUIO67-1(a)和Pt@RuUIO67-2(b)的扫描电子显微镜(SEM)图。
图3为实施例3中,所得复合材料Pd3P2S8@RuUIO67-1的TEM(a)、HAADF-STEM和EDX-mapping图(b)。
图4为实施例3和4中,所得复合材料Pd3P2S8@RuUIO67-1(a)和Pd3P2S8@RuUIO67-2(b)的SEM图。
图5为实施例1、2、3和4中,所得复合材料Pt@RuUIO67-1、Pt@RuUIO67-2Pd3P2S8@RuUIO67-1和Pd3P2S8@RuUIO67-2的X-射线衍射图(XRD)图。
图6为实施例5中,Pt@RuUIO67-1、Pt@RuUIO67-2 Pd3P2S8@RuUIO67-1和Pd3P2S8@RuUIO67-2复合材料作为光催化剂进行光可见光催化反应12h后产氢总量图。
具体实施方式
下面结合附图和具体实例对本发明进行详细说明。
实例1:
将四氯化锆(20mg)、联苯二羧酸(16.1mg)、含[Ru(bpy)3]2+二羧酸(10mg)溶解于二甲基甲酰胺溶剂(3ml)中,随后加入PVP修饰的Pt纳米颗粒的二甲基甲酰胺溶液(120μl)和醋酸调节剂(165μl),混合均匀后,静置,100℃下进行水热反应,反应时间为24小时。反应结束后,离心收集沉淀,用二甲基甲酰胺和甲醇作为溶剂分别洗涤三次后,真空干燥,制得复合材料Pt@RuUIO67-1。图1、图2a和图5的TEM、HAADF-STEM、EDX-mapping、SEM和XRD图表明,PVP修饰的Pt纳米颗粒通过原位封装的方式,可以均匀地、无聚集地成功封装于光敏化PCPs(RuUIO67)之内。
实例2:
将四氯化锆(20mg)、联苯二羧酸(14.6mg)、含[Ru(bpy)3]2+二羧酸(14mg)溶解于二甲基甲酰胺溶剂(3ml)中,随后加入PVP修饰Pt纳米颗粒的二甲基甲酰胺溶液(120μl)和醋酸调节剂(165μl),混合均匀后,静置,100℃下进行水热反应,反应时间为24小时。反应结束后,离心收集沉淀,用二甲基甲酰胺和甲醇作为溶剂分别洗涤三次后,真空干燥,制得复合材料Pt@RuUIO67-2。图2的SEM和图5的XRD图表明,通过提高光敏化金属有机配体单元的比例,仍然可以得到结构均一的Pt@RuUIO67复合材料。
实例3:
将四氯化锆(20mg)、联苯二羧酸(16.1mg)、含[Ru(bpy)3]2+二羧酸(10mg)溶解于二甲基甲酰胺溶剂(3ml)中,随后加入PVP修饰的Pd3P2S8纳米颗粒的二甲基甲酰胺溶液(300μl)和醋酸调节剂(165μl),混合均匀后,静置,100℃下进行水热反应,反应时间为24小时。反应结束后,离心收集沉淀,用二甲基甲酰胺和甲醇作为溶剂分别洗涤三次后,真空干燥,制得复合材料Pd3P2S8@RuUIO67-1。图3、图4a和图5的XRD图的TEM、HAADF-STEM、EDX-mapping、SEM和XRD,除了Pt纳米颗粒之外,PVP修饰的Pd3P2S8纳米颗粒也可以作为共催化剂通过本发明提出的方法,均匀地、无聚集地成功封装于RuUIO67之内,这个是目前报道的技术所无法实现的,可见本发明的方法具有一定的普适性。
实例4:
将四氯化锆(20mg)、联苯二羧酸(14.6mg)、含[Ru(bpy)3]2+二羧酸(14mg)溶解于二甲基甲酰胺溶剂(3ml)中,随后加入PVP修饰的Pd3P2S8纳米颗粒的二甲基甲酰胺溶液(300μl)和醋酸调节剂(165μl),混合均匀后,静置,100℃下进行水热反应,反应时间为24小时。反应结束后,离心收集沉淀,用二甲基甲酰胺和甲醇作为溶剂分别洗涤三次后,真空干燥,制得复合材料Pd3P2S8@RuUIO67-2。图4的SEM和图5的XRD图表明,通过提高光敏化金属有机配体单元的比例,仍然可以得到结构均一的Pd3P2S8@RuUIO67复合材料。
实例5:
以实例1、2、3和4所得到的复合材料(Pt@RuUIO67-1、Pt@RuUIO67-2、Pd3P2S8@RuUIO67-1和Pd3P2S8@RuUIO67-2)作为产氢体系的催化剂。将复合材料催化剂(10mg)、乙腈溶剂(10ml)、三乙醇胺牺牲剂(0.02M)、去离子水(200μl)混合于一玻璃管中,氮气除氧0.5h。300瓦的氙灯配置的紫外滤光片(λ>420nm)作为产氢光源照射12h后,通过气相色谱仪检测氢气的含量。图6显示,Pt@RuUIO67-1、Pt@RuUIO67-2、Pd3P2S8@RuUIO67-1和Pd3P2S8@RuUIO67-2分别作为可见光产氢体系催化剂的产氢总量为49.8、37.9、24.2和17.3μmol。与现有的制备技术所得到的纳米颗粒@光敏多孔配位聚合物复合材料在可见光产氢体系的应用相比,本发明制备技术所制备的纳米颗粒@光敏多孔配位聚合物复合材料的产氢效率有其优越性。

Claims (5)

1.一种制备纳米颗粒@光敏多孔配位聚合物复合材料光催化剂的方法,其特征在于将四氯化锆、联苯二羧酸、含金属有机配合物光敏单元的二羧酸混合溶解于二甲基甲酰胺溶剂中,随后加入表面活性剂修饰的纳米颗粒的二甲基甲酰胺溶液和醋酸调节剂,混合均匀后,静置,100℃下进行水热反应,反应时间为24小时。反应结束后,离心收集沉淀,用二甲基甲酰胺和甲醇作为溶剂分别洗涤三次后,真空干燥,制得纳米颗粒@光敏多孔配位聚合物复合材料。
2.根据权利要求1所述的方法,其特征在于所述含金属有机配合物光敏单元的二羧酸是含钌的联吡啶类(Ru(bpy)3]2+)或铱的吡啶类配合物([Ir(ppy)2(bpy)]+)光敏剂单元的二羧酸。
3.根据权利1所述的方法,其特征在于所述纳米颗粒的为铂Pt、钯Pd、硫磷化钯Pd3P2S8、二硫化钼MoS2、三硫化钼MoS3等纳米颗粒中的至少一种,这些纳米颗粒可作为可见光产氢体系中的共催化剂。
4.根据权利1所述的方法,其特征在于所述修饰纳米颗粒的表面活性剂为聚乙烯基吡咯烷酮(PVP)。
5.根据权利1、2、3、4所述的方法,其特征在于制备得到的纳米颗粒@光敏多孔配位聚合物复合材料可以作为催化剂应用于可见光催化产氢反应体系。
CN201610612902.XA 2016-07-25 2016-07-25 一种制备纳米颗粒@光敏多孔配位聚合物复合材料光催化剂的方法 Pending CN106238101A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610612902.XA CN106238101A (zh) 2016-07-25 2016-07-25 一种制备纳米颗粒@光敏多孔配位聚合物复合材料光催化剂的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610612902.XA CN106238101A (zh) 2016-07-25 2016-07-25 一种制备纳米颗粒@光敏多孔配位聚合物复合材料光催化剂的方法

Publications (1)

Publication Number Publication Date
CN106238101A true CN106238101A (zh) 2016-12-21

Family

ID=57606013

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610612902.XA Pending CN106238101A (zh) 2016-07-25 2016-07-25 一种制备纳米颗粒@光敏多孔配位聚合物复合材料光催化剂的方法

Country Status (1)

Country Link
CN (1) CN106238101A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109331844A (zh) * 2018-10-25 2019-02-15 哈尔滨工业大学 一种MoS2微球/PtCo合金纳米颗粒复合材料及其制备方法
CN109374703A (zh) * 2018-09-29 2019-02-22 西南大学 一种联吡啶钌与共价有机框架材料的复合材料及其制备方法与应用
CN113181969A (zh) * 2021-05-12 2021-07-30 中山大学 一种高加氢选择性Ir@MIL-101(Fe)催化剂的制备方法及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130259792A1 (en) * 2012-03-30 2013-10-03 Exxonmobil Research & Engineering Company EMM19star NOVEL ZEOLITIC IMIDAZOLATE FRAMEWORK MATERIAL, METHODS FOR MAKING SAME, AND USES THEREOF
CN104084238A (zh) * 2014-07-08 2014-10-08 大连理工大学 一种ZIF-8膜包覆Pd/ZnO核壳催化剂及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130259792A1 (en) * 2012-03-30 2013-10-03 Exxonmobil Research & Engineering Company EMM19star NOVEL ZEOLITIC IMIDAZOLATE FRAMEWORK MATERIAL, METHODS FOR MAKING SAME, AND USES THEREOF
CN104084238A (zh) * 2014-07-08 2014-10-08 大连理工大学 一种ZIF-8膜包覆Pd/ZnO核壳催化剂及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHENG WANG ET AL.: ""Pt Nanoparticles@Photoactive Metal−Organic Frameworks: Efficient Hydrogen Evolution via Synergistic Photoexcitation and Electron Injection"", 《JOURNAL OF THE AMERICAN CHEMICAL SOCIETY》 *
GUANG LU ET AL.: ""Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation"", 《NATURE CHEMISTRY》 *
SUJOY SARKAR ET AL.: ""Equiatomic ternary chalcogenide: PdPS and its reduced graphene oxide composite for efficient electrocatalytic hydrogen evolution"", 《CHEMICAL COMMUNICATIONS》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109374703A (zh) * 2018-09-29 2019-02-22 西南大学 一种联吡啶钌与共价有机框架材料的复合材料及其制备方法与应用
CN109331844A (zh) * 2018-10-25 2019-02-15 哈尔滨工业大学 一种MoS2微球/PtCo合金纳米颗粒复合材料及其制备方法
CN109331844B (zh) * 2018-10-25 2020-06-30 哈尔滨工业大学 一种MoS2微球/PtCo合金纳米颗粒复合材料及其制备方法
CN113181969A (zh) * 2021-05-12 2021-07-30 中山大学 一种高加氢选择性Ir@MIL-101(Fe)催化剂的制备方法及应用

Similar Documents

Publication Publication Date Title
Meng et al. TiO2/polydopamine S-scheme heterojunction photocatalyst with enhanced CO2-reduction selectivity
Dong et al. Embedding CsPbBr3 perovskite quantum dots into mesoporous TiO2 beads as an S-scheme heterojunction for CO2 photoreduction
Liu et al. Photosensitizing single-site metal− organic framework enabling visible-light-driven CO2 reduction for syngas production
Wen et al. Design and architecture of metal organic frameworks for visible light enhanced hydrogen production
Shi et al. Implantation of Iron (III) in porphyrinic metal organic frameworks for highly improved photocatalytic performance
Tu et al. Designing bipyridine-functionalized zirconium metal–organic frameworks as a platform for clean energy and other emerging applications
Xiao et al. Metal–Organic Framework‐Based Photocatalysis for Solar Fuel Production
Ba et al. Simultaneous formation of mesopores and homojunctions in graphite carbon nitride with enhanced optical absorption, charge separation and photocatalytic hydrogen evolution
Xie et al. Self-reconstruction of paddle-wheel copper-node to facilitate the photocatalytic CO2 reduction to ethane
Xu et al. Photocatalytic CO2 reduction catalyzed by metalloporphyrin: Understanding of cobalt and nickel sites in activity and adsorption
Dou et al. Suppressing hydrogen evolution for high selective CO2 reduction through surface-reconstructed heterojunction photocatalyst
Wang et al. Coupled visible-light driven photocatalytic reactions over porphyrin-based MOF materials
Yang et al. Preparation of surface modifications of mesoporous titania with monosubstituted Keggin units and their catalytic performance for organochlorine pesticide and dyes under UV irradiation
Zhong et al. One-dimensional nanocrystals of cobalt perylene diimide polymer with in-situ generated FeOOH for efficient photocatalytic water oxidation
CN108993604B (zh) 高可见光活性AgIn5S8/UIO-66-NH2复合材料及其制备方法和应用
CN106238100A (zh) 二氧化钛纳米片负载MIL‑100(Fe)复合光催化材料的制备及应用方法
CN106238101A (zh) 一种制备纳米颗粒@光敏多孔配位聚合物复合材料光催化剂的方法
CN106939083B (zh) 一种用于可见光光解水制氢的多金属氧酸盐复合金属-有机框架材料及其制备方法
Wu et al. Application of a novel biomimetic double-ligand zirconium-based metal organic framework in environmental restoration and energy conversion
Wang et al. Enhanced photocatalytic hydrogen production from an MCM-41-immobilized photosensitizer—[Fe-Fe] hydrogenase mimic dyad
Qiu et al. Inlaying metal-organic framework derived pancake-like TiO2 into three-dimensional BiOI for visible-light-driven generation of vanillin from sodium lignosulfonate
Ma et al. Benzimidazole-based covalent organic framework embedding single-atom Pt sites for visible-light-driven photocatalytic hydrogen evolution
Ma et al. Visible-light-driven CO2 reduction with g-C3N4-based composite: Enhancing the activity of manganese catalysts
CN108080036B (zh) 一种基于光敏性金属-有机配位纳米笼与二氧化钛的杂化材料及其制备方法和应用
Fang et al. Functionalized MOF‐Based Photocatalysts for CO2 Reduction

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161221