CN106236041B - 一种实时且准确的测量心率及呼吸率的算法及系统 - Google Patents

一种实时且准确的测量心率及呼吸率的算法及系统 Download PDF

Info

Publication number
CN106236041B
CN106236041B CN201610711512.8A CN201610711512A CN106236041B CN 106236041 B CN106236041 B CN 106236041B CN 201610711512 A CN201610711512 A CN 201610711512A CN 106236041 B CN106236041 B CN 106236041B
Authority
CN
China
Prior art keywords
signal
heart rate
respiratory rate
rate
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610711512.8A
Other languages
English (en)
Other versions
CN106236041A (zh
Inventor
李科
张飞凡
杨家富
韩映萍
曾东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201610711512.8A priority Critical patent/CN106236041B/zh
Publication of CN106236041A publication Critical patent/CN106236041A/zh
Application granted granted Critical
Publication of CN106236041B publication Critical patent/CN106236041B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Physiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Primary Health Care (AREA)
  • Psychiatry (AREA)
  • Epidemiology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Cardiology (AREA)
  • Pulmonology (AREA)
  • Data Mining & Analysis (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Databases & Information Systems (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • General Business, Economics & Management (AREA)
  • Business, Economics & Management (AREA)

Abstract

本发明公开了一种实时且准确的测量心率及呼吸率的算法,包括在数据处理单元中,通过数字信号滤波器对包含心率信息的原始信号进行预处理,得到预处理后的信号;在动态呼吸率算法过程中,通过数字信号滤波器单元对包含呼吸率信息的原始信号进行预处理,得到预处理后的信号;在周期估计单元中采用极大概率估算算法,得到窗口内信号的周期的一个估计;在周期平滑算法单元中采用拓展平滑算法,到合理的心率及呼吸率周期。本发明可以直接估计心率和呼吸率周期的长度,既不需要一个准备阶段,也不需要任何心率和呼吸率信号的先验知识,从而加速了心率及呼吸率的提取速度,并且降低了误差。

Description

一种实时且准确的测量心率及呼吸率的算法及系统
技术领域
本发明属于新型智能传感领域,具体涉及一种实时且准确的测量心率及呼吸率的算法及系统。
背景技术
心率及呼吸率是身体健康的重要参考指标,对许多医疗应用至关重要,而且其变化率亦可用于许多疾病的预防和治疗。因此,检测并分析心率,呼吸率以及其对应的变化率具有重大的科研价值和临床意义。
在过去的几十年里,在测量心率和呼吸率的研究领域取得了很多的成果,主要可以分为两种:传统测量模式和新型测量模式。传统的测量模式的主要代表为多导心电图,其采集到的信号稳定噪声小,但是由于其价格昂贵操作复杂且对采集环境的严格要求,在临床应用以外的领域很难推广;新型测量模式主要代表为便携式和可穿戴式系统,这些系统有两大优势:不需要用户过多的交互,没有严格的测量环境要求,同时不妨碍用户的日常工作;但是由于测量环境不受控,得到的信号质量的不可靠,采集到信号的形态变化极大,且取决于用户和传感器的方向和位置以及用户的使用方式。
新型测量模式在最近几年里取得了快速的发展,现有市面上已经出现了的产品包括手表,心率仪等产品。但是其使用的心率和呼吸率的提取算法仍然是传统的基于心电数据提取心率的模型,典型的方法有:首先定位感兴趣的事件,如心电图的QRS波群,然后通过区分连续发生这些事件的时间间隔来获得心率及呼吸率。但是相应的事件检测通常是需要提前掌握一些信号基本特征的先验知识,例如:在心电图的情况下,它的一个典型的先验知识就是一次心跳由PQRST波组成,而根据不同记录方法和病人的生理这些波的具体时间、极性、振幅和形状可以不同,但基本形态总是遵循类似的模式。因此,信号描述通常始于QRS波群的出现。但是由于采集设备的原因,使用新型测量模式的设备采集得到的信号并不一定遵循与心电信号类似的模式,特别是用户在复杂的使用环境中采集到的信号差异是非常巨大的,故使用传统的算法并不能精确的提取出有效的心率和呼吸率的数据。
目前出现的一些基于新型测量模式提出的改进算法,主要代表是使用聚类的方法自动确定合适的信号模板。虽然这种方法取得一定的成果,但该方法也具有很多缺点:严重依赖培训过程,如果在无监督训练下执行者学习了错误的模式,所有后续的信号检测的尝试都会失败;当信号模块发生变化培训必然重新启动,例如由于姿势的变化而引起的变化;计算过程相对复杂,占用资源多,不适合在嵌入式等资源稀缺型系统中使用。
发明内容
为了改善上述问题,本发明提供一种实时且准确的测量心率及呼吸率的算法,实现了对心率及呼吸率的非侵入式和无约束条件的测量,和实时且准确的分析和处理。
为了实现上述目的,本发明采用的技术方案如下:
一种实时且准确的测量心率及呼吸率的算法,包括以下步骤:
在数据处理单元中,通过数字信号滤波器对包含心率信息的心跳震动信号进行预处理,具体包括:将原始信号输入通带为0.7~24Hz的带通滤波器抑噪;接着输入通带为22~24Hz的带通滤波器后平方;再次将信号输入通带为0.7~3Hz的带通滤波器,最终得到预处理后的信号;
在动态呼吸率算法过程中,通过数字信号滤波器单元对包含呼吸率信息的呼吸震动信号进行预处理,具体包括:将原始信号输入通带为0.1~0.7Hz的带通滤波器抑噪;接着输入通带为6~40Hz的带通滤波器,得到预处理后的信号;
在周期估计单元中采用极大概率估算算法,具体为:设定心率信号窗口窗宽为1秒,窗口移动距离为0.1~0.4秒;呼吸率信号窗口窗宽为10秒,窗口移动距离为1秒;根据预设的心率或呼吸率的周期范围,对窗口内的信号逐一计算其周期的融合概率,并取概率最大的结果作为该窗口内信号的周期的一个估计值;
在周期平滑算法单元中采用拓展平滑算法,具体为:对位于后半窗口的信号点中逐一计算其为一个周期的截止点的概率,并认为概率最大的点为截止点;判断其与上一个窗口信号的截止点的坐标偏移,如果偏移量小于阈值,则认为其属于同一周期;对属于同一周期的多个估计值,使用中值滤波的方法进行平滑,最终得到合理的心率及呼吸率周期。
上述算法能够处理动态数据流,并能在极短的时间内计算出实时心率及呼吸率数据,通过缩减检测的窗口大小可以提高计算结果的实时性。
上述算法能够直接对原始信号进行计算而不需要任何关于信号形态分析的先验知识,并准备地提取心率及呼吸率的实时数据。
一种实时且准确的测量心率及呼吸率的系统,包括:
集成在床垫中的高灵敏压电传感器,模拟信号处理单元,嵌入式数据处理单元,测量心率及呼吸率的算法单元,数据传输单元;
其中,嵌入式数据处理单元包括:微控制器单元、电源单元、储存单元、模拟数字信号转换单元;
模拟信号处理单元将震动信号中包含的噪声信号初步过滤,得到包含心跳和呼吸的震动的模拟信号;
模拟数字信号转换单元将包含心跳和呼吸的震动的模拟信号转换为数字信号,输入微控制器单元进行计算;
测量心率及呼吸率的算法单元,通过对包含心跳和呼吸的震动的数字信号进行分析计算,得到心率及呼吸率的实时数据。
进一步地,集成在床垫中的高灵敏压电传感器,能够非侵入式和无约束条件的测量由于心动和呼吸产生微弱的震动信号。
再进一步地,嵌入式数据处理单元将模拟信号转换为数字信号,并调用测量心率及呼吸的算法单元对数据进行处理。
更进一步地,数据传输单元通过无线通讯方式与服务器通信,发送和接受数据。
另外,测量心率及呼吸率的算法单元集成于嵌入式数据处理单元中。
此外,测量心率及呼吸率的算法单元是通过权利要求1所述的算法得到合理的心率及呼吸率周期。
本发明较现有技术相比,具有以下优点及有益效果:
本发明可以直接估计心率和呼吸率周期的长度,既不需要一个准备阶段,也不需要任何心率和呼吸率信号的先验知识,从而加速了心率及呼吸率的提取速度,并且降低了误差。本发明的算法并不使用聚类等复杂度高的算法,计算执行占用的资源有限,适合在嵌入式系统中实现;在相对低劣的测量环境和噪声感染的条件下,本发明可以通过条件覆盖范围,维持低误差水平。
附图说明
图1为本发明的算法的工作流程图。
图2为本发明的系统的工作流程图。
具体实施方式
下面结合附图与实施例对本发明作进一步说明,本发明的实施方式包括但不限于下列实施例。
实施例
如图1所示,一种实时且准确的测量心率及呼吸率的算法,包括以下步骤:
在数据处理单元中,通过数字信号滤波器对包含心率信息的心跳震动信号进行预处理,具体包括:将原始信号输入通带为0.7~24Hz的带通滤波器抑噪;接着输入通带为22~24Hz的带通滤波器后平方;再次将信号输入通带为0.7~3Hz的带通滤波器,最终得到预处理后的信号;
在动态呼吸率算法过程中,通过数字信号滤波器单元对包含呼吸率信息的呼吸震动信号进行预处理,具体包括:将原始信号输入通带为0.1~0.7Hz的带通滤波器抑噪;接着输入通带为6~40Hz的带通滤波器,得到预处理后的信号;
在周期估计单元中采用极大概率估算算法,具体为:设定心率信号窗口窗宽为1秒,窗口移动距离为0.1~0.4秒;呼吸率信号窗口窗宽为10秒,窗口移动距离为1秒;根据预设的心率或呼吸率的周期范围,对窗口内的信号逐一计算其周期的融合概率,并取概率最大的结果作为该窗口内信号的周期的一个估计值;
在周期平滑算法单元中采用拓展平滑算法,具体为:对位于后半窗口的信号点中逐一计算其为一个周期的截止点的概率,并认为概率最大的点为截止点;判断其与上一个窗口信号的截止点的坐标偏移,如果偏移量小于阈值,则认为其属于同一周期;对属于同一周期的多个估计值,使用中值滤波的方法进行平滑,最终得到合理的心率及呼吸率周期。
上述算法能够处理动态数据流,并能在极短的时间内计算出实时心率及呼吸率数据,通过缩减检测的窗口大小可以提高计算结果的实时性。
上述算法能够直接对原始信号进行计算而不需要任何关于信号形态分析的先验知识,并准备地提取心率及呼吸率的实时数据。
如图2所示,一种实时且准确的测量心率及呼吸率的系统,包括:
集成在床垫中的高灵敏压电传感器,模拟信号处理单元,嵌入式数据处理单元,测量心率及呼吸率的算法单元,数据传输单元;
其中,嵌入式数据处理单元包括:微控制器单元、电源单元、储存单元、模拟数字信号转换单元;
模拟信号处理单元将震动信号中包含的噪声信号初步过滤,得到包含心跳和呼吸的震动的模拟信号;
模拟数字信号转换单元将包含心跳和呼吸的震动的模拟信号转换为数字信号,输入微控制器单元进行计算;
测量心率及呼吸率的算法单元,通过对包含心跳和呼吸的震动的数字信号进行分析计算,得到心率及呼吸率的实时数据。
具体地,集成在床垫中的高灵敏压电传感器,能够非侵入式和无约束条件的测量由于心动和呼吸产生微弱的震动信号。
具体地,嵌入式数据处理单元将模拟信号转换为数字信号,并调用测量心率及呼吸的算法单元对数据进行处理。
具体地,数据传输单元通过无线通讯方式与服务器通信,发送和接受数据。
具体地,测量心率及呼吸率的算法单元集成于嵌入式数据处理单元中。
具体地,测量心率及呼吸率的算法单元是通过权利要求1所述的算法得到合理的心率及呼吸率周期。
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改,等同替换,改进等,均包含在本发明的保护范围内。

Claims (6)

1.一种实时且准确的测量心率及呼吸率的算法,其特征在于,包括以下步骤:
在数据处理单元中,通过数字信号滤波器对包含心率信息的心跳震动信号进行预处理,具体包括:将原始信号输入通带为0.7~24Hz的带通滤波器抑噪;接着输入通带为22~24Hz的带通滤波器后平方;再次将信号输入通带为0.7~3Hz的带通滤波器,最终得到预处理后的信号;
在动态呼吸率算法过程中,通过数字信号滤波器单元对包含呼吸率信息的呼吸震动信号进行预处理,具体包括:将原始信号输入通带为0.1~0.7Hz的带通滤波器抑噪;接着输入通带为6~40Hz的带通滤波器,得到预处理后的信号;
在周期估计单元中采用极大概率估算算法,具体为:设定心率信号窗口窗宽为1秒,窗口移动距离为0.1~0.4秒;呼吸率信号窗口窗宽为10秒,窗口移动距离为1秒;根据预设的心率或呼吸率的周期范围,对窗口内的信号逐一计算其周期的融合概率,并取概率最大的结果作为该窗口内信号的周期的一个估计值;
在周期平滑算法单元中采用拓展平滑算法,具体为:对位于后半窗口的信号点中逐一计算其为一个周期的截止点的概率,并认为概率最大的点为截止点;判断其与上一个窗口信号的截止点的坐标偏移,如果偏移量小于阈值,则认为其属于同一周期;对属于同一周期的多个估计值,使用中值滤波的方法进行平滑,最终得到合理的心率及呼吸率周期。
2.一种实时且准确的测量心率及呼吸率的系统,其特征在于,包括:
集成在床垫中的高灵敏压电传感器,模拟信号处理单元,嵌入式数据处理单元,测量心率及呼吸率的算法单元,数据传输单元;
其中,嵌入式数据处理单元包括:微控制器单元、电源单元、储存单元、模拟数字信号转换单元;
模拟信号处理单元将震动信号中包含的噪声信号初步过滤,得到包含心跳和呼吸的震动的模拟信号;
模拟数字信号转换单元将包含心跳和呼吸的震动的模拟信号转换为数字信号,输入微控制器单元进行计算;
测量心率及呼吸率的算法单元,通过对包含心跳和呼吸的震动的数字信号进行分析计算,得到心率及呼吸率的实时数据;
其中,所述测量心率及呼吸率的算法单元是通过权利要求1所述的算法得到合理的心率及呼吸率周期。
3.根据权利要求2所述的一种实时且准确的测量心率及呼吸率的系统,其特征在于,集成在床垫中的高灵敏压电传感器,能够非侵入式和无约束条件的测量由于心动和呼吸产生微弱的震动信号。
4.根据权利要求2所述的一种实时且准确的测量心率及呼吸率的系统,其特征在于,嵌入式数据处理单元将模拟信号转换为数字信号,并调用测量心率及呼吸的算法单元对数据进行处理。
5.根据权利要求2所述的一种实时且准确的测量心率及呼吸率的系统,其特征在于,数据传输单元通过无线通讯方式与服务器通信,发送和接受数据。
6.根据权利要求2所述的一种实时且准确的测量心率及呼吸率的系统,其特征在于,测量心率及呼吸率的算法单元集成于嵌入式数据处理单元中。
CN201610711512.8A 2016-08-23 2016-08-23 一种实时且准确的测量心率及呼吸率的算法及系统 Expired - Fee Related CN106236041B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610711512.8A CN106236041B (zh) 2016-08-23 2016-08-23 一种实时且准确的测量心率及呼吸率的算法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610711512.8A CN106236041B (zh) 2016-08-23 2016-08-23 一种实时且准确的测量心率及呼吸率的算法及系统

Publications (2)

Publication Number Publication Date
CN106236041A CN106236041A (zh) 2016-12-21
CN106236041B true CN106236041B (zh) 2019-06-25

Family

ID=57595979

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610711512.8A Expired - Fee Related CN106236041B (zh) 2016-08-23 2016-08-23 一种实时且准确的测量心率及呼吸率的算法及系统

Country Status (1)

Country Link
CN (1) CN106236041B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106725412A (zh) * 2017-03-21 2017-05-31 广西师范大学 心率测量方法及装置
CN108836299B (zh) * 2018-04-23 2021-05-14 深圳市友宏科技有限公司 一种bcg心率提取方法、存储介质以及装置
CN110051329A (zh) * 2019-04-26 2019-07-26 广东工业大学 一种睡眠监测方法、装置、系统及可读存储介质
CN113349752B (zh) * 2021-05-08 2022-10-14 电子科技大学 一种基于传感融合的可穿戴设备实时心率监测方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5448996A (en) * 1990-02-02 1995-09-12 Lifesigns, Inc. Patient monitor sheets
WO2007052108A2 (en) * 2005-11-01 2007-05-10 Earlysense, Ltd. Methods and systems for monitoring patients for clinical episodes
CN100518638C (zh) * 2002-03-25 2009-07-29 赫艾纳医疗公司 被动式生理监视(p2m)系统
CN101843489A (zh) * 2009-03-26 2010-09-29 深圳市理邦精密仪器有限公司 一种呼吸信号处理方法
CN202568219U (zh) * 2012-03-01 2012-12-05 北京麦邦光电仪器有限公司 睡眠心率、呼吸监测系统
CN103142219A (zh) * 2013-03-28 2013-06-12 江苏晓山信息产业股份有限公司 一种无约束式生命体征监测床垫
CN103169475A (zh) * 2011-12-20 2013-06-26 株式会社百利达 出现在床上的确定装置和睡眠测量装置
CN104545870A (zh) * 2015-01-23 2015-04-29 苏州本草芙源医疗设备有限公司 用于心率检测的床垫和心率检测方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5448996A (en) * 1990-02-02 1995-09-12 Lifesigns, Inc. Patient monitor sheets
CN100518638C (zh) * 2002-03-25 2009-07-29 赫艾纳医疗公司 被动式生理监视(p2m)系统
WO2007052108A2 (en) * 2005-11-01 2007-05-10 Earlysense, Ltd. Methods and systems for monitoring patients for clinical episodes
CN101843489A (zh) * 2009-03-26 2010-09-29 深圳市理邦精密仪器有限公司 一种呼吸信号处理方法
CN103169475A (zh) * 2011-12-20 2013-06-26 株式会社百利达 出现在床上的确定装置和睡眠测量装置
CN202568219U (zh) * 2012-03-01 2012-12-05 北京麦邦光电仪器有限公司 睡眠心率、呼吸监测系统
CN103142219A (zh) * 2013-03-28 2013-06-12 江苏晓山信息产业股份有限公司 一种无约束式生命体征监测床垫
CN104545870A (zh) * 2015-01-23 2015-04-29 苏州本草芙源医疗设备有限公司 用于心率检测的床垫和心率检测方法

Also Published As

Publication number Publication date
CN106236041A (zh) 2016-12-21

Similar Documents

Publication Publication Date Title
CN102270264B (zh) 生理信号质量评估系统及方法
CN106236041B (zh) 一种实时且准确的测量心率及呼吸率的算法及系统
CN110327036B (zh) 从穿戴式心电中提取呼吸信号和呼吸频率的方法
CN106691474A (zh) 融合脑电信号与生理信号的疲劳检测系统
AU2016201690A1 (en) Method and system for noise cleaning of photoplethysmogram signals
Nabar et al. GeM-REM: Generative model-driven resource efficient ecg monitoring in body sensor networks
CN106037743B (zh) 一种提取呼吸率的方法及设备
CN105748051A (zh) 一种血压测量方法及血压测量装置
WO2017118127A1 (zh) 一种心跳信号处理方法、装置和系统
CN105962914B (zh) 基于盲源分离的呼吸与心跳信号的分离方法及装置
Arunachalam et al. Real-time estimation of the ECG-derived respiration (EDR) signal using a new algorithm for baseline wander noise removal
CN106175754B (zh) 睡眠状态分析中清醒状态检测装置
EP3177936A1 (en) Tracking slow varying frequency in a noisy environment and applications in healthcare
CN110236511A (zh) 一种基于视频的无创心率测量方法
CA2882080A1 (en) Real-time physiological characteristic detection based on reflected components of light
CN108354597A (zh) 一种基于最优波提取的快速血压计算方法
CN104545863A (zh) 基于模糊模式识别的bcg心率提取方法及系统
EP3391340B1 (en) A method, information processing apparatus and server for determining a physiological parameter of an individual
CN110680307A (zh) 一种运动环境下基于脉搏波传导时间的动态血压监测方法
CN109743667A (zh) 耳机佩戴检测方法与耳机
Estrada et al. Respiratory signal derived from the smartphone built-in accelerometer during a Respiratory Load Protocol
CN106333676B (zh) 清醒状态下的脑电信号数据类型的标注装置
Xia et al. A practical approach to wrist pulse segmentation and single-period average waveform estimation
Wan et al. Combining parallel adaptive filtering and wavelet threshold denoising for photoplethysmography-based pulse rate monitoring during intensive physical exercise
CN116369888B (zh) 一种非接触式心率变异性数据获取方法和装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190625

Termination date: 20200823

CF01 Termination of patent right due to non-payment of annual fee