CN106231636B - 基于概率邻域覆盖集的三维UASNs的移动数据收集方法 - Google Patents

基于概率邻域覆盖集的三维UASNs的移动数据收集方法 Download PDF

Info

Publication number
CN106231636B
CN106231636B CN201610580906.4A CN201610580906A CN106231636B CN 106231636 B CN106231636 B CN 106231636B CN 201610580906 A CN201610580906 A CN 201610580906A CN 106231636 B CN106231636 B CN 106231636B
Authority
CN
China
Prior art keywords
probability
collection
neighborhood
data
probability neighborhood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610580906.4A
Other languages
English (en)
Other versions
CN106231636A (zh
Inventor
韩光洁
李珊珊
刘立
江金芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Campus of Hohai University
Original Assignee
Changzhou Campus of Hohai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Campus of Hohai University filed Critical Changzhou Campus of Hohai University
Priority to CN201610580906.4A priority Critical patent/CN106231636B/zh
Publication of CN106231636A publication Critical patent/CN106231636A/zh
Application granted granted Critical
Publication of CN106231636B publication Critical patent/CN106231636B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/02Transmission systems in which the medium consists of the earth or a large mass of water thereon, e.g. earth telegraphy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明公开了一种基于概率邻域覆盖集的三维UASNs的移动数据收集方法,包括如下步骤:构建3D水声传感网概率性通信模型;基于构建的3D水声传感网概率性通信模型建立概率邻域覆盖集作为AUV的停驻点;基于概率邻域覆盖集规划AUV的数据收集路径,进行全网的数据收集。本发明采用概率性水声通信模型,数据收集距离可根据概率需求灵活调整;利用AUV进行数据收集,有效减少了传感器节点进行数据传输的能耗,延长了网络寿命;通过构建概率邻域覆盖集,AUV无需遍历所有传感器节点,有效缩短了数据收集完成时间,从而减少了数据延迟;通过改变数据传输成功概率p的值和数据传输轮数,提供了一种有效的均衡信息增益和数据延迟的解决方案。

Description

基于概率邻域覆盖集的三维UASNs的移动数据收集方法
技术领域
本发明属于水声传感器网络领域,具体涉及一种基于概率邻域覆盖集的三维UASNs的移动数据收集方法。
背景技术
水下数据收集对水声传感器网络(underwater acoustic sensor networks,UASNs)的应用具有至关重要的意义,无论是水下环境的监测和管理还是水下灾害监测预警,人们都需要利用UASNs收集获取到感知监测区域的兴趣消息,然后对信息进行分析处理和存储挖掘等操作,最终才能做出合理有效的决策。在UASNs的很多应用中,数据收集需要传输大量的感知数据,而大量感知数据在网络中传输,会产生大量通信开销。此外,由于节点能量是有限的电量的电池供应的而不是持续供给的,为了能够在检测区域获得更多的检测数据,保证网络的有效性,延长网络寿命就是首要的任务。因此,如何在保证信息增益的情况下,尽可能地延长网络寿命并,是一个极具挑战性的问题。
目前,对水声传感器网络数据收集方法的相关研究文献如下:
1、Wang等人在2008年的《International Conference on DistributedComputing Systems Workshops》上发表的文章“Data Collection with Multiple MobileActors in Underwater Sensor Networks”提出了一个采用多个mobile actors以获取高时间精度数据的水下数据收集方案。该方案主要包含三个算法:区域划分及actors分散算法、子区域优化算法,以及虚拟簇生成算法。该方案首先根据边界节点位置将网络划分成4n个区域,再根据节点个数估计每个子区域的收集时延,并对子区域进行优化,然后将按照一定的位置策略将actors部署到每一个子区域,建立虚拟簇进行数据收集。
2、Domingo等人在2011年的《Wireless Personal Communications》上发表的文章“A Distributed Energy-Aware Routing Protocol for Underwater Wireless SensorNetworks”提出了一种能量高效的分布式聚簇方案DUCS,该方案通过分簇和数据聚合数据来消除冗余信息,以此达到减少网络能耗的目的。尽管分簇是优化大型网络总能耗的一种有效方法,但是这种方法会造成簇头节点能耗不均的问题。
3、Hollinger等人在2012年的《IEEE Journal on Selected Areas inCommunications》上发表的文章“Underwater Data Collection using Robotic SensorNetworks”提出了一个采用AUV进行水声传感器网络数据收集的方案。该方案将规划AUV路径进行水下数据收集、在最小化路径消耗的同时最大花数据收集的问题定义为通信约束下的数据收集问题(CC-DCP),并将CC-DCP问题公式化,提出了一个启发式近似算法,最终提出三种适用于不同场景的2D启发式路径规划方案。
4、Ilyas等人在2015年的《Procedia Computer Science》上发表的文章“AEDG:AUV-aided Efficient Data Gathering Routing Protocol for Underwater WirelessSensor Networks”提出了AUV辅助的数据收集方法AEDG,其目的在于实现UASNs中的可靠数据收集。在AEDG中,网关采用最短路径树算法收集节点数据,之后AUV沿预设的椭圆形轨迹从网关收集数据。该方法可以有效地平衡能量消耗,延长网络的生命周期,然而AEDG是基于确定性通信模型的,而在UASNs的实际应用中,数据传输成功率是随距离降低的。
5、Khan等人在2015年的《Sensors》上发表的文章“A Distributed Data-Gathering Protocol Using AUV in Underwater Sensor Networks”提出了一个分布式数据收集方案AUV-PN。在该方案中,AUV执行两个阶段:网络划分之旅(NPT)和数据收集之旅(DGT)。在NPT阶段,AUV首先将整个网络分成多个簇,每个簇根据LEACH协议选择一个簇头节点CH;然后,CH进一步将簇分为多个子簇,并为每一个子簇指定一个path-node(PN)来收集子簇内成员节点MN的当地数据。划分完网络后,AUV开始执行DGT。在该方案中,AUV只需访问CH和PN,就可采集全网数据,有效地缩短了数据收集时间。然而,在该方案中,PN需要收集子簇内的所有数据,而PN的选取只考虑了子簇中数据上传的总能耗开销,未考虑剩余能量问题,额外的通信开销会导致PN过早死亡,影响整个网络的生命周期。
6、Jalaja等人在2015年的《Lecture Notes in Computer Science》上发表的文章“Adaptive data collection in sparse underwater sensor networks using mobile elements”提出了移动辅助的自适应数据收集方法,该方法通过采用移动元素来降低网络能耗,通过一种轮询机制减少数据延迟。然而,由于该方法中移动元素需要移动到所有节点进行数据收集,因此尽管采用了轮询机制,数据延迟依然很大。
综上所述,目前水声传感器网络中基于移动元素进行数据采集时普遍存在的问题是:
1)大多数水声传感器网络数据收集方案的设计都是基于理想的确定性水声通信模型,而在实际应用中,水声信道的数据传输成功率是随距离衰减的,当数据传输失败时,数据收集将无法完成;
2)基于聚簇的数据收集方法会使得簇头节点的能耗增加,最终导致网络能耗不均,降低网络寿命;
3)大多数基于移动辅助的数据收集方法都是假设传感器节点部署于同一个平面,不能有效地应用于3D水环境。
发明内容
为了解决现有的水声传感器网络数据收集技术中存在的诸多问题和不足,本发明提出了一种基于概率邻域覆盖集的3D水声传感器网络移动数据收集方法,主要通过构建节点概率邻域,选取合适的概率邻域覆盖集节点作为访问点,由AUV到达这些访问点处来收集各概率邻域中节点采集到的数据,以有效平衡网络负载,降低节点能耗,延长网络生命。
实现上述技术目的,达到上述技术效果,本发明通过以下技术方案实现:
一种基于概率邻域覆盖集的三维UASNs的移动数据收集方法,包含如下步骤:
(1)网络概率性通信模型构建:根据三维UASNs的特性,综合考虑声波衰落、洋流表面活动、湍流噪声、风、热噪声等因素,构建三维UASNs的概率性通信模型;
(2)概率邻域覆盖集建立:基于构建的概率性通信模型建立概率邻域覆盖集作为AUV的停驻点;
(3)数据收集路径规划:基于已经建立的概率邻域覆盖集,采用贪婪启发式策略规划AUV的路径,缩短路径长度,以减少数据时延;
(4)数据收集:AUV沿规划好的路径开始数据收集过程,当AUV靠近选定的停驻点时,采用调度协议收集当前概率邻域内节点的数据。
在本发明所述的基于概率邻域覆盖集的三维UASNs的移动数据收集方法中,节点的部署信息是已知的。
在步骤(1)所述的水声传感器网络概率性通信模型中,数据传输成功率随传输距离的增加而衰减。
所述的基于概率邻域覆盖集的三维UASNs的移动数据收集方法中,概率邻域的定义为:概率邻域Ψn为三维UASNs中到位置xn的数据传输成功率P(xv,xn)≥p的所有位置xv的集合。
所述步骤(2)中,概率邻域覆盖集建立的具体步骤为:
(2-1)根据三维UASNs的概率性通信模型,综合考虑声波衰落、洋流表面活动、湍流噪声、风、热噪声等因素,计算数据传输成功概率p与传输距离d_p的关系;
(2-2)根据需要的数据传输成功概率p的值构建所有节点的概率邻域作为概率邻域候选集;
(2-3)贪婪地选择概率邻域候选集中权重值最大的概率邻域加入概率邻域覆盖集,并从概率邻域候选集中移除入选的概率邻域及该概率邻域覆盖到的节点的概率邻域;
(2-4)判断概率邻域候选集是否为空,若为空,则概率邻域覆盖集建立完成;否则重新计算概率邻域候选集中概率邻域的权重,转入步骤(2-3)。
其中,步骤(2-3)中所述的概率邻域权重值为概率邻域覆盖到的包含于概率邻域候选集的概率邻域节点的数目。
基于已构建的概率邻域覆盖集,需要规划AUV的移动路径,使其遍历概率邻域覆盖集节点进行全网的数据收集。
规划AUV路径的具体步骤为:
(3-1)将所有概率邻域覆盖集节点的初始访问状态置为0;
(3-2)选择距离AUV初始位置最近的概率邻域覆盖集节点作为第一个访问点,并将此节点的访问状态置为1;
(3-3)贪婪的选择距离当前访问点最近且访问状态为0的概率邻域覆盖集节点作为下一访问点,将选定访问点的访问状态置为1;
(3-4)判断是否存在访问状态为0的概率邻域覆盖集节点,若存在,则转入步骤(3-3);否则结束路径规划过程。
所述步骤(4)的数据收集调度协议是基于时分多址机制的,具体包含三个阶段:
(4-1)初始阶段:网络中部署的所有功能节点都处于非活跃状态,当AUV靠近某个概率邻域覆盖集节点时,AUV广播一个包含节点初始调度信息的高功率Wake-up控制包,该高功率Wake-up控制包可以触发当前概率邻域内的节点进入活动状态;
(4-2)调度阶段:收到Wake-up包的节点判断自己是否处于当前概率邻域网格内,若是,则转为活动状态,并按照Wake-up包中分配的时槽,按序回复AUV一个确认包ACK,之后,AUV根据各节点回馈的信息重新分配时槽,并将新的传输调度信息发送给节点;
(4-3)数据传输阶段:按照新的传输调度信息,节点将各自存储的数据包传输给AUV,当所有节点的数据传输结束后,AUV重新调度数据传输协议以用于下一轮的数据传输直至所有传输轮数完成。
步骤(4-3)中所述的数据传输轮数是根据用户的需求预先设定的,通过增加数据传输轮数,可以在保持较小数据延迟的情况下,提高信息增益。
与现有的水声传感器网络数据收集方法相比,本发明所具有的积极效果为:
(1)采用概率性水声通信模型,数据收集距离可根据概率需求灵活调整;
(2)利用AUV进行数据收集,有效减少了传感器节点进行数据传输的能耗,延长了网络寿命;
(3)通过构建概率邻域覆盖集,AUV无需遍历所有传感器节点,有效缩短了数据收集完成时间,从而减少了数据延迟;
(4)通过改变保守概率p的值和数据传输轮数,提供了一种有效的均衡信息增益和数据延迟的解决方案。
附图说明
图1为本发明中整个数据收集方法的总体示意图;
图2为本发明中概率邻域覆盖集建立的流程示意图;
图3为传感器节点在三维网络中的随机分布图;
图4为概率邻域覆盖集节点选择示意图;
图5为概率邻域覆盖集建立示意图;
图6为本发明中数据调度协议的框架结构示意图。
具体实施方式
下面结合附图及实施例对本发明作进一步说明。
如图1所示为一种基于概率邻域覆盖集的三维UASNs的移动数据收集方法的流程图,具体包含如下四个步骤:
(1)网络概率性通信模型构建:根据三维UASNs的特性,综合考虑声波衰落、洋流表面活动、湍流噪声、风、热噪声等因素,构建三维UASNs的概率性通信模型;
(2)概率邻域覆盖集建立:基于构建的概率性通信模型建立概率邻域覆盖集作为AUV的停驻点;
(3)数据收集路径规划:基于已经建立的概率邻域覆盖集,采用贪婪启发式策略规划AUV的路径,缩短路径长度,以减少数据时延;
(4)数据收集:AUV沿规划好的路径开始数据收集过程,当AUV靠近选定的停驻点时,采用调度协议收集当前概率邻域内节点的数据。
在本发明所述的基于概率邻域覆盖集的3D水声传感器网络的移动数据收集方法中,节点的部署信息是已知的。
在步骤(1)所述的三维UASNs的概率性通信模型中,数据传输成功率随传输距离的增加而衰减。
步骤(3)所述的AUV路径规划的具体步骤为:
(3-1)将所有概率邻域覆盖集节点的初始访问状态置为0;
(3-2)选择距离AUV初始位置最近的概率邻域覆盖集节点作为第一个访问点,并将此节点的访问状态置为1;
(3-3)贪婪的选择距离当前访问点最近且访问状态为0的概率邻域覆盖集节点作为下一访问点,将选定访问点的访问状态置为1;
(3-4)判断是否存在访问状态为0的概率邻域覆盖集节点,若存在,则转入步骤(3-3);否则结束路径规划过程。
如图2所示为概率邻域覆盖集建立的流程图。其中,概率邻域定义为:概率邻域Ψn为三维UASNs中到位置xn的数据传输成功率P(xv,xn)≥p的所有位置xv的集合。
所述概率邻域覆盖集建立的具体步骤为:
1)根据三维UASNs的概率性通信模型,综合考虑声波衰落、洋流表面活动、湍流噪声、风、热噪声等因素,计算数据传输成功概率为p时的概率邻域半径d_p;
2)根据需要的数据传输成功概率p的值构建所有节点的概率邻域作为概率邻域候选集;
3)贪婪地选择概率邻域候选集中权重值最大的概率邻域加入概率邻域覆盖集,并从概率邻域候选集中移除入选的概率邻域及该概率邻域覆盖到的节点的概率邻域;
4)判断概率邻域候选集是否为空,若为空,则概率邻域覆盖集建立完成;否则重新计算概率邻域候选集中概率邻域的权重,转入步骤3)。
其中,步骤3)中所述的概率邻域权重值为概率邻域覆盖到的包含于概率邻域候选集的概率邻域节点的数目。
如图3所示,本实施例中所有传感器节点在三维UASNs区域内为随机分布。
如图4所示为概率邻域覆盖集节点选择示意图。若干个节点随机部署于一个三维UASNs中,所有节点都被加入概率邻域候选集,所有节点计算并比较其概率邻域权重值,节点a具有最大的概率邻域权重值6,节点a首先当选为概率邻域覆盖集节点,节点a及其概率邻域覆盖到的节点的概率邻域被移出概率邻域候选集。
如图5所示为实施例中概率邻域覆盖集建立示意图。当概率邻域候选集不为空时,概率邻域候选集节点重新计算并比较各自的概率邻域权重,权重最大的节点被当选为概率邻域覆盖集节点。每一轮中权重最大的节点b,c,d,e,f,g依次当选为概率邻域覆盖集节点,最终的概率邻域候选集为空,概率邻域覆盖集建立过程结束。最终的概率邻域覆盖集为{a,b,c,d,e,f,g}。
如图6所示为数据调度协议的框架结构示意图,数据收集调度协议是基于时分多址机制的,具体包含三个阶段:
1)初始阶段:网络中部署的所有功能节点都处于非活跃状态,当AUV靠近某个概率邻域覆盖集节点时,AUV广播一个包含节点初始调度信息的高功率Wake-up控制包,该高功率Wake-up控制包可以触发当前概率邻域内的节点进入活动状态;
2)调度阶段:收到Wake-up包的节点判断自己是否处于当前概率邻域网格内,若是,则转为活动状态,并按照Wake-up包中分配的时槽,按序回复AUV一个确认包ACK,之后,AUV根据各节点回馈的信息重新分配时槽,并将新的传输调度信息发送给节点;
3)数据传输阶段:按照新的传输调度信息,节点将各自存储的数据包传输给AUV,当所有节点的数据传输结束后,AUV重新调度数据传输协议以用于下一轮的数据传输直至所有传输轮数完成。
其中,所述的数据传输阶段中,数据传输轮数是根据用户的信息增益和数据延迟需求预先设定的,通过增加数据传输轮数,可以在保持较小数据延迟的情况下,提高信息增益。

Claims (9)

1.一种基于概率邻域覆盖集的三维UASNs的移动数据收集方法,其特征在于,包含如下步骤:
(1)网络概率性通信模型构建:根据三维UASNs的特性,考虑声波衰落、洋流表面活动、湍流噪声、风、热噪声的因素,构建三维UASNs的概率性通信模型;
(2)概率邻域覆盖集建立:基于构建的概率性通信模型建立概率邻域覆盖集作为AUV的停驻点;
(3)数据收集路径规划:基于已经建立的概率邻域覆盖集,采用贪婪启发式策略规划AUV的路径,缩短路径长度,以减少数据时延;
(4)数据收集:AUV沿规划好的路径开始数据收集过程,当AUV靠近选定的停驻点时,采用调度协议收集当前概率邻域内节点的数据。
2.根据权利要求1所述的基于概率邻域覆盖集的三维UASNs的移动数据收集方法,其特征在于,所述的数据收集方法适用于节点部署信息已知的网络。
3.根据权利要求1所述的基于概率邻域覆盖集的三维UASNs的移动数据收集方法,其特征在于,步骤(1)所述的三维UASNs的概率性通信模型的特征在于:数据传输成功率随距离增长而衰减。
4.根据权利要求1所述的基于概率邻域覆盖集的三维UASNs的移动数据收集方法,其特征在于,步骤(2)所述的概率邻域定义为:概率邻域Ψn为三维UASNs中到位置xn的数据传输成功率P(xv,xn)≥p的所有位置xv的集合。
5.根据权利要求1所述的基于概率邻域覆盖集的三维UASNs的移动数据收集方法,其特征在于,步骤(2)所述的建立概率邻域覆盖集的具体包括如下步骤:
(2-1)根据三维UASNs的概率性通信模型,计算数据传输成功概率p与传输距离d_p的关系;
(2-2)根据需要的数据传输成功概率p构建所有节点的概率邻域作为概率邻域候选集;
(2-3)贪婪地选择概率邻域候选集中权重值最大的概率邻域加入概率邻域覆盖集,并从概率邻域候选集中移除入选的概率邻域及该概率邻域覆盖到的节点的概率邻域;
(2-4)判断概率邻域候选集是否为空,若为空,则概率邻域覆盖集建立完成;否则重新计算概率邻域候选集中概率邻域的权重,转入步骤(2-3)。
6.根据权利要求5所述的基于概率邻域覆盖集的三维UASNs的移动数据收集方法,其特征在于,所述步骤(2-3)中概率邻域权重值为:概率邻域覆盖到的包含于概率邻域候选集的概率邻域节点的数目。
7.根据权利要求1所述的基于概率邻域覆盖集的三维UASNs的移动数据收集方法,其特征在于,步骤(3)所述的路径规划的具体步骤为:
(3-1)将所有概率邻域覆盖集节点的初始访问状态置为0;
(3-2)选择距离AUV初始位置最近的概率邻域覆盖集节点作为第一个访问点,并将此节点的访问状态置为1;
(3-3)贪婪的选择距离当前访问点最近且访问状态为0的概率邻域覆盖集节点作为下一访问点,将选定访问点的访问状态置为1;
(3-4)判断是否存在访问状态为0的概率邻域覆盖集节点,若存在,则转入步骤(3-3);否则结束路径规划过程。
8.根据权利要求1所述的基于概率邻域覆盖集的三维UASNs的移动数据收集方法,其特征在于,步骤(4)所述的数据收集的调度协议是基于时分多址机制的,具体包含三个阶段:
(4-1)初始阶段:网络中部署的所有功能节点都处于非活跃状态,当AUV靠近某个概率邻域覆盖集节点时,AUV广播一个包含节点初始调度信息的高功率Wake-up控制包,该高功率Wake-up控制包可以触发当前概率邻域内的节点进入活动状态;
(4-2)调度阶段:收到Wake-up包的节点判断自己是否处于当前概率邻域网格内,若是,则转为活动状态,并按照Wake-up包中分配的时槽,按序回复AUV一个确认包ACK,之后,AUV根据各节点回馈的信息重新分配时槽,并将新的传输调度信息发送给节点;
(4-3)数据传输阶段:按照新的传输调度信息,节点将各自存储的数据包传输给AUV,当所有节点的数据传输结束后,AUV重新调度数据传输协议以用于下一轮的数据传输直至所有传输轮数完成。
9.根据权利要求8所述的基于概率邻域覆盖集的三维UASNs的移动数据收集方法,其特征在于,所述步骤(4-3)的数据传输轮数是根据用户的需求预先设定的,通过增加数据传输轮数,在保持较小数据延迟的情况下,提高信息增益。
CN201610580906.4A 2016-07-21 2016-07-21 基于概率邻域覆盖集的三维UASNs的移动数据收集方法 Active CN106231636B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610580906.4A CN106231636B (zh) 2016-07-21 2016-07-21 基于概率邻域覆盖集的三维UASNs的移动数据收集方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610580906.4A CN106231636B (zh) 2016-07-21 2016-07-21 基于概率邻域覆盖集的三维UASNs的移动数据收集方法

Publications (2)

Publication Number Publication Date
CN106231636A CN106231636A (zh) 2016-12-14
CN106231636B true CN106231636B (zh) 2019-05-31

Family

ID=57532128

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610580906.4A Active CN106231636B (zh) 2016-07-21 2016-07-21 基于概率邻域覆盖集的三维UASNs的移动数据收集方法

Country Status (1)

Country Link
CN (1) CN106231636B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108683468B (zh) * 2018-04-27 2020-09-22 河海大学常州校区 基于数据预测的水下传感网络中auv移动数据收集算法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101409681A (zh) * 2008-11-24 2009-04-15 北京交通大学 基于节点梯次移动的新型无线传感器网络节能路由算法
CN103024814A (zh) * 2013-01-09 2013-04-03 中国人民解放军理工大学 一种基于冗余控制和分簇路由的无线传感网节能方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101409681A (zh) * 2008-11-24 2009-04-15 北京交通大学 基于节点梯次移动的新型无线传感器网络节能路由算法
CN103024814A (zh) * 2013-01-09 2013-04-03 中国人民解放军理工大学 一种基于冗余控制和分簇路由的无线传感网节能方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Nusrat Nowsheen;Gour Karmakar;Joarder Kamruzzaman.An Adaptive Approach to Opportunistic Data Forwarding in Underwater Acoustic Sensor Networks.《2014 IEEE 13th International Symposium on Network Computing and Applications》.2014,全文.
Salma S. Shahapur;Rajashri Khanai.Underwater Sensor Network at physical, data link and network layer - a survey.《2015 International Conference on Communications and Signal Processing (ICCSP)》.2015,全文.

Also Published As

Publication number Publication date
CN106231636A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
Wang et al. An Asynchronous Clustering and Mobile Data Gathering Schema Based on Timer Mechanism in Wireless Sensor Networks.
Lin et al. TADP: Enabling temporal and distantial priority scheduling for on-demand charging architecture in wireless rechargeable sensor networks
Gunduz et al. Designing intelligent energy harvesting communication systems
WO2018107306A1 (zh) 一种基于概率邻域和障碍物规避的三维UASNs的数据收集方法
Altman et al. Combined optimal control of activation and transmission in delay-tolerant networks
CN106209261B (zh) 基于概率邻域网格的三维UASNs的移动数据收集方法
CN103269506A (zh) 一种干扰感知的移动无线传感器网络路由方法
CN109451556A (zh) 基于uav对无线传感网充电的方法
Dong et al. An efficient combined charging strategy for large-scale wireless rechargeable sensor networks
CN106231636B (zh) 基于概率邻域覆盖集的三维UASNs的移动数据收集方法
Bölöni et al. Should I send now or send later? A decision‐theoretic approach to transmission scheduling in sensor networks with mobile sinks
Ibrahim Enhanced power management scheme for embedded road side units
CN103237364B (zh) 一种集成的无线传感器网络数据收集机制
Li et al. Voronoi-based relay placement scheme for wireless sensor networks
CN110248330A (zh) 一种基于中继充电模型最大化充电小车休息时间调度方法
Song et al. Design of greenhouse control system based on wireless sensor networks and AVR microcontroller
Agrawal et al. Layered clustering routing protocol with overlapping cluster heads in WSN
CN110049500A (zh) 基于模拟退火算法的无线可充电传感网中uav能量补偿方法
Bharathi et al. Artificial bee colony algorithm to find optimum path for mobile agents in wireless sensor networks
Papithasri et al. Efficient multihop dual data upload clustering based mobile data collection in Wireless Sensor Network
Wei et al. Satellite-controlled uav-assisted iot information collection with deep reinforcement learning and device matching
Pandey et al. Performance Evaluation of Various Routing Protocols and quality of service for Wireless Sensor Network
Liu et al. Modeling and performance optimization of wireless sensor network based on Markov chain
KR101794676B1 (ko) 에너지 수집형 무선 센서 네트워크에서의 센서 노드, 잔존 에너지 예측을 통한 데이터 수집률 향상 방법 및 이를 수행하기 위한 기록 매체
Gul et al. NTN-aided quality and energy-aware data collection in time-critical robotic wireless sensor networks

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant