CN106225587A - A kind of orientation gas blast device that can reuse and manufacture method thereof - Google Patents

A kind of orientation gas blast device that can reuse and manufacture method thereof Download PDF

Info

Publication number
CN106225587A
CN106225587A CN201610779513.6A CN201610779513A CN106225587A CN 106225587 A CN106225587 A CN 106225587A CN 201610779513 A CN201610779513 A CN 201610779513A CN 106225587 A CN106225587 A CN 106225587A
Authority
CN
China
Prior art keywords
energy storage
storage device
gas blast
inflation
reuse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201610779513.6A
Other languages
Chinese (zh)
Inventor
郭远军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610779513.6A priority Critical patent/CN106225587A/en
Publication of CN106225587A publication Critical patent/CN106225587A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B3/00Blasting cartridges, i.e. case and explosive
    • F42B3/04Blasting cartridges, i.e. case and explosive for producing gas under pressure
    • F42B3/045Hybrid systems with previously pressurised gas using blasting to increase the pressure, e.g. causing the gas to be released from its sealed container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a general shape other than plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/047Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material made of fibres or filaments
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C37/00Other methods or devices for dislodging with or without loading
    • E21C37/06Other methods or devices for dislodging with or without loading by making use of hydraulic or pneumatic pressure in a borehole
    • E21C37/14Other methods or devices for dislodging with or without loading by making use of hydraulic or pneumatic pressure in a borehole by compressed air; by gas blast; by gasifying liquids
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/006Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries by making use of blasting methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B3/00Blasting cartridges, i.e. case and explosive
    • F42B3/04Blasting cartridges, i.e. case and explosive for producing gas under pressure
    • F42B3/06Blasting cartridges, i.e. case and explosive for producing gas under pressure with re-utilisable case
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B3/00Blasting cartridges, i.e. case and explosive
    • F42B3/28Cartridge cases characterised by the material used, e.g. coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B33/00Manufacture of ammunition; Dismantling of ammunition; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength

Abstract

The invention discloses a kind of orientation gas blast device that can reuse, including energy storage device and inflation apparatus to cause bursting, inflation apparatus to cause bursting includes inflation mechanism and ignites mechanism, inflation mechanism and ignition mechanism are arranged in energy storage device, and described energy storage device uses the comprcssive strength material more than 345Mpa to make;The bottom internal layer of described energy storage device be provided with lets out can inner cover, described in let out can offer on inner cover let out can window, let out and can seal level pressure rupture disk is installed by window, described in let out and can use metal material by inner cover, any one direction of energy storage device is provided with letting out of orientation can window;Of the present invention the orientation gas blast utensil of recycling can have thickness thin, and lightweight, it is simple to transporting, install, be simple to manufacture, consumables cost is low, and production cost is low, inflation is fast, good airproof performance, service life the advantage such as length.

Description

A kind of orientation gas blast device that can reuse and manufacture method thereof
Technical field
The invention belongs to explosion field, relate to demolition set, a kind of orientation gas blast device that can reuse And manufacture method.
Background technology
Gas blast technology, is to utilize the liquid of easily gasification or solid matter gasification to expand and produce gases at high pressure, makes around Media expansion is done work, and causes crushing;Gas blast technology is widely used in mining industry, geological prospecting, cement, iron and steel, electricity During the industries such as power, subway are speedily carried out rescue work with tunnel and municipal works, Underwater Engineering and emergency management and rescue.Gas blast technology is adopted at present Equipment be gas blast pipe, its blasting cartridge mainly includes inflatable structure, ignites structure, inflating medium memory structure and sealing Structure, it exists following not enough:
The inflating medium memory structure that at present gas blast technology uses is mainly steel pipe or steel cylinder structure, be used for manufacturing steel pipe or The steel of steel cylinder, its tensile strength is 345MPa, and for satisfied design bearing requirements, thickness is bigger;Additionally, use steel pipe easy Bottleneck deformation, damaged, cut problem occur, can not repair after explosion and maybe need to return repair in shop again, cause rehabilitation cost high.
The inflatable structure that gas blast technology uses at present is screw lockhole, needs to carry out eliminating rust and drawing in installation process Trace processes, and then carries out encapsulation process, then carries out activator installation, and rupture disk is installed, and rupture disk goes between two continuity check, Rupture disk goes between two and shell continuity check, after integral installation completes, is attached head and shell continuity check, needs during inflation Twisted pine screw, inflation needs furbuckles, aeration step to need to wash pipe cooling after terminating, its gas replenishment process is the most time-consuming, checks Journey is relatively complicated.
The detonation way that gas blast technology uses at present is that electric-heating-wire-heating is ignited, and its heating wire needs absolutely with steel pipe body Edge layer;
The sealing structure that gas blast technology uses at present is sealing ring or fluid sealant, uses sealing ring or the sealing side of fluid sealant Formula, it seals less stable, there is the energy storage device bottleneck gas leakage of 30% after injecting liquid gas.
At present gas blast technology manufacturing process be by steel are cast, high temp fire blows, cuts, welds, beats Hole, extruding reducing, heat treatment, cutting thread, encapsulation process etc. technique form the steel cylinder or steel pipe sealed, and manufacture process is loaded down with trivial details, Time-consumingly, human cost and consumables cost are bigger.
Additionally, existing disposable gas blaster, there is each sealing position and easily leak gas;And the gas that can reuse It is big to there is bottleneck thickness in blaster, and gas outlet is easily deformed, and gas outlet is easily damaged, and gas outlet easily scratches;Both the above gas Body blaster exists jointly: bottle thickness is big, and bottle overall weight is big, and after inflation, weight is bigger, is not easy to carrying and transport, fills Narrow-minded, manufacture process is loaded down with trivial details, time-consumingly, and human cost and the bigger problem of consumables cost.
Carbon dioxide blasting technique, as the typical case in gas blast technology, is also the more ripe technology of development;Two Carbonoxide blasting technique is the physical expansion technology that a kind of low-voltage is detonated, in implementation process no-spark expose, presplitting power Greatly, without testing big gun, owing to the safety of carbon dioxide explosion is the highest, its purposes is the broadest, can be applicable to high coal content, height The coal field exploitation of gas bearing capacity;The equipment that existing carbon dioxide blasting technique is used is mainly carbon dioxide blasting cartridge, its In, develop preferable, widely used be carbon dioxide blasting excavation device described in patent documentation (publication number: CN204609883U, the day for announcing: 2015.09.02), this carbon dioxide blasting excavation device include letting out can head, let out can hole, rupture disk, Cylinder, automatic heater and lead-in wire, cylinder is used for storing dry ice, lets out and can be provided with rupture disk between head and cylinder, automatically heats Device is arranged on inner barrel, automatic heater connecting lead wire;This carbon dioxide blasting excavation device is by being energized, automatically on lead-in wire Dry ice in cylinder is heated by heater, makes the dry ice high compression swelling of gasification, and can let out energy in hole by rupture disk with letting out, makes surrounding medium Pressurized splits;This kind of carbon dioxide blasting excavation utensil has the advantage of reusable edible, but this carbon dioxide blasting excavation device is still So there is following technical problem:
1. the thickness of explosive cartridge is at 8-60mm, and the density of its steel is big, and it is big that its gas blast device generally exists weight, transport, The problem that installation process is time-consuming, laborious;2. the manufacturing process (more than ten step, each step is time-consuming, laborious) of cylinder is loaded down with trivial details, Time-consumingly, human cost and consumables cost are bigger;3. gas replenishment process is the most time-consuming;4. body is yielding, seals poor stability;5. event Barrier rate is high, and yield rate is low;6. maintenance cost is high or maintenance difficulty is big;7. the steel bottle mouth that can reuse easily scratches and rotten Erosion, causes gas leakage, and sealing is poor;8. the poor stability of blaster after energy storage;9. gas-storing capacity is little.
Summary of the invention
The purpose that the present invention is to be realized is: reduce the weight of existing gas blast device, reduces production cost, compared with skill Art is first bigger than the steel cylinder energy storage capacity of same size, simplifies gas replenishment process, overcomes sealing problem;Existing to solve in above-mentioned background technology Have existing for gas blast device: 1. the thickness of explosive cartridge is at 8-60mm, and the density of its steel is big, and its gas blast device is universal There is weight big, the problem that transport, installation process are time-consuming, laborious;2. the manufacturing process of cylinder is loaded down with trivial details, time-consumingly, human cost and Consumables cost is bigger;3. gas replenishment process is the most time-consuming;4. body is yielding, seals poor stability;5. fault rate is high, yield rate Low;6. maintenance cost is high or maintenance difficulty is big;7. the steel bottle mouth that can reuse easily scratches and corrodes, and causes gas leakage, close Envelope property is poor;8. the poor stability of blaster after energy storage;9. gas-storing capacity is little.
For solving its technical problem the technical solution adopted in the present invention it is: a kind of orientation gas blast that can reuse Device, including energy storage device and inflation apparatus to cause bursting, inflation apparatus to cause bursting includes inflation mechanism and ignites mechanism, inflation mechanism, drawing Quick-fried mechanism is arranged in energy storage device;
It is characterized in that: described energy storage device uses the comprcssive strength material more than 345Mpa to make;The end of described energy storage device Portion's internal layer be provided with lets out can inner cover, described in let out can offer on inner cover let out can window, let out and can seal level pressure rupture disk is installed by window, described in let out Can use metal material by inner cover, any one direction of energy storage device is provided with orientation and lets out energy window.
Further, described inflation mechanism and ignition mechanism are arranged in energy storage device commonly through sealing matrix.
Further, described inflation apparatus to cause bursting sealing matrix underpart extend prominent ring, the reducing of energy storage device extends Inside prominent ring, its prominent ring coordinates with energy storage device reducing, is used for preventing from falling off with energy storage device.
Further, described energy storage device is at least double-layer structure.
Further, described energy storage device uses double-layer structure, and described energy storage device includes the net being sequentially distributed from inside to outside Shape layer and hardened layer.
Further, described energy storage device is three-decker, is base layer, lamina reticularis and hardened layer from inside to outside, described net Shape layer is any one or at least two material in carbon fiber, glass fibre, aramid fiber, polyester fiber or its composite Material.
Carbon fiber or aramid fiber have stronger pull resistance and elasticity, have the longer life-span, can be recycled, glass Fiber or polyester fiber are generally the least expensive, are best suitable for manufacturing disposable blaster.
Further, described base layer uses lucite (PMMA) or polyester fiber (PET) or polyethylene (PE) or poly-third One in alkene (PP) or soft silica gel material or at least two synthesis.
Because the tensile strength of carbon fiber reaches more than 3500MPa, the tensile strength of aramid fiber reaches 5000-6000MPa, glass The tensile strength of fiber is at about 2500MPa, and the tensile strength of polyester fiber reaches more than 500MPa, therefore can substitute existing completely Steel 345MPa carries out the constraint of the easy gasifying medium of high-pressure liquid.
Further, described hardened layer uses UV curable paste or epoxide-resin glue or instant glue or anaerobic adhesive or Gypsum Fibrosum or water Mud.
Further, described cement uses perhafnate cement.
Further, described energy storage device thickness is 1-30mm.
Further, the most described energy storage device thickness is 1-3mm.
It is further, secondary that to select described energy storage device thickness be 3-10mm.
Further, the most described energy storage device thickness is 10-15mm.
Further, the radius of a ball of described energy storage device is 5-20cm.
Further, the thickness of described base layer is 0.2-10mm.
Further, the thickness of described lamina reticularis is 1-10mm.
Further, the thickness of described hardened layer is 1-10mm.
Further, the thickness of described base layer is 0.2mm.
Further, the thickness of described lamina reticularis is 1mm.
Further, the thickness of described hardened layer is 1mm.
Further, the thickness of described base layer is 1mm.
Further, the thickness of described lamina reticularis is 5mm.
Further, the thickness of described hardened layer is 5mm.
Further, the thickness of described base layer is 2mm.
Further, the thickness of described lamina reticularis is 10mm.
Further, the thickness of described hardened layer is 10mm.
Further, described inflation mechanism uses check valve inflatable structure.
Further, described inflation mechanism uses spiral shell rotary switch formula inflatable structure.
Further, described inflation mechanism uses pressing switching regulator inflatable structure.
Further, described ignition mechanism uses physical heating mode to ignite.
Further, described ignition mechanism uses chemical heat release mode to ignite.
Further, described ignition mechanism uses heating wire to ignite structure.
Further, described ignition mechanism includes activator and heating wire, and heating wire input pole is drawn outside, sending out of heating wire Hot spot is embedded in activator.
Further, described ignition mechanism uses heat conductive filament to ignite structure.
Further, described ignition mechanism uses chemical agent to ignite structure.
Further, described energy storage device with inflation apparatus to cause bursting connected mode for threadeding.
Further, described energy storage device is socket entirety hardening with the connected mode of inflation apparatus to cause bursting.
Further, described energy storage device and the connected mode of inflation apparatus to cause bursting are for being intertwined and connected and hardened forming.
Further, described energy storage device is fiber cloth parcel hardened forming with the connected mode of inflation apparatus to cause bursting.
Further, when described inflation mechanism uses one-way valve structures, its inflation mechanism structure is: include valve seat, baffle ring With sealed spring, baffle ring is arranged on valve seat middle and upper part, and baffle ring center is pore, is air pressure ball valve below baffle ring, air pressure Ball valve bottom is sealed spring, and sealed spring is arranged in the middle part of valve seat, when the pressure below air pressure ball valve is more than top pressure, Air pressure ball valve, by pressure difference power and the elastic force of sealed spring, closes with valve seat bottom, and the pressure below air pressure sheet is less than upper During side's pressure, and when air pressure sheet is more than the elastic force of sealed spring by pressure difference power, air pressure sheet moves down, and opens with valve seat bottom Open.
Further, described valve seat is arranged above sealing nut.
Further, when the ignition mechanism of described inflation apparatus to cause bursting uses heating wire to ignite structure, ignite mechanism and include electricity Hinder silk and connect electric lead.
Further, when the ignition mechanism of described inflation apparatus to cause bursting uses chemical agent to ignite structure, ignite mechanism and include alkali Metal area and water reserve, alkali metal district and water reserve by oil separate from, oily district is provided with liquid suction pipe;Liquid suction pipe is in oil district When isolation oil aspirates, the water in water reserve enters oil district, with the alkali metal generation exothermic reaction in alkali metal district.
Further, described prominent ring is provided with seal groove.
Further, outside described sealing matrix, installation settings has sealing gland, and sealing gland passes through helicitic texture and sealing Matrix connects;Sealing gland can be moved up or down by rotation, for coordinating compression energy storage device reducing with prominent ring.
Further, described energy storage device is made and is disposably utilized structure.
The manufacturing process mode of the above-mentioned orientation gas blast device that can reuse is as follows:
Manufacturing process 1: first (such as plastic bottle, hardboard) does a matrix, becomes solid shape after being then inflated matrix, Matrix outer layer is wound around or the lamina reticularis of socket layer of glass material, and lamina reticularis is hardened by hardened material, the method It is suitable for the orientation gas blast device making disposable column type orientation gas blast device and reusing.
Manufacturing process 2: first (such as plastic bottle, hardboard) does the matrix of a solid shape, is wound around or set at matrix outer layer Connecing the lamina reticularis of layer of glass material, lamina reticularis carries out, by hardened material, harden (such as gluing, resinize), then takes out Matrix, the method is suitable for the orientation gas blast device making disposable column type orientation gas blast device and reusing.
Manufacturing process 3: first (such as plastic bottle, hardboard) does a matrix, becomes fixing shape after being then inflated matrix Shape, is wound around or the lamina reticularis of socket layer of glass material at matrix outer layer, and lamina reticularis is hardened by hardened material, so Rear outer layer is wound around or the lamina reticularis of socket layer of glass material at outer layer again, hardens lamina reticularis the most again, this side Method is suitable for the orientation gas blast device making disposable column type orientation gas blast device and reusing.
Manufacturing process 4: sealing colloid is cast in blasting cartridge body model outer layer, is formed after mummification and has certain elasticity Bag, and be sealed against elastic pouch take out, as base layer;Fibrous material is used to develop and body model outer surface Shape, cellulosic bag of the same size, as lamina reticularis;By packed for above-mentioned sealed elastic enter cellulosic bag, and simultaneously will The opening sleeve female connector of sealed elastic bag and cellulosic bag is connected on inflation apparatus to cause bursting;Charger is used to be sealed against flexible bag Body becomes blasting cartridge body model with cellulosic bag body expansion;Dip on the above-mentioned cellulosic bag expanding into body mould shapes Or spraying hardenable material so that it is hardening material penetrates in cellulosic bag, and covers cellulosic bag surface, forms hardening Layer;After material to be hardened hardening, its sealed elastic bag is all bondd with cellulosic bag and is solidified.
Manufacturing process 5: or be molded in energy storage device through blowing, extrusion blow by mould of plastics by rubber mass Chamber;In energy storage device, intracavity is drawn many with cellulosic lines, and installs inflation apparatus to cause bursting;To draw many with cellulosic lines It is wrapped in energy storage device inner chamber outer layer and inflation apparatus to cause bursting outer layer uniformly, exposes inflation inlet and the ignition of inflation apparatus to cause bursting Line.
Manufacturing process 6: use fibrous material moulding with firming agent become energy storage device;Energy storage device is arranged on for even Connect the hard joint of inflation apparatus to cause bursting, and use fibrous material be wound around and solidify at energy storage device and hard joint; Inflation apparatus to cause bursting is arranged on hard joint.
Manufacturing process 7: formed in energy storage device through blowing, extrusion blow or injection by mould of plastics by rubber mass Chamber, i.e. base layer;Interior accent at energy storage device places inflation apparatus to cause bursting, Reusability fiber and sclerosing agent parcel energy storage dress The inner chamber outer layer put, the multilamellar forming fibrous layer and hardened layer overlaps chamber shell repeatedly.
Manufacturing process 8: formed in energy storage device through blowing, extrusion blow or injection by mould of plastics by rubber mass Chamber, i.e. base layer;Interior accent at energy storage device places inflation apparatus to cause bursting, and places silvalin on inflation apparatus to cause bursting Net, lead-in wire and the charging connector of inflation apparatus to cause bursting expose gauze, and solidifying and setting;Inner chamber outer layer at energy storage device swathes fiber Matter screen cloth material, then reuses sclerosing agent and carries out curing molding.
Manufacturing process 9: formed in energy storage device through blowing, extrusion blow or injection by mould of plastics by rubber mass Chamber, the inner chamber of energy storage device comprises two reducings;In two reducings of the inner chamber of energy storage device, place inflation respectively ignite dress Putting and let out energy window, and can place gauze on window at inflation apparatus to cause bursting with letting out, lead-in wire and the charging connector of inflating apparatus to cause bursting expose Gauze, lets out and can expose gauze, and solidifying and setting in the middle part of window;Inner chamber outer layer at energy storage device swathes cellulosic screen cloth material, then Reuse sclerosing agent and carry out curing molding.
Manufacturing process 10: use steel to manufacture steel cylinder, and by intermediate frequency electromagnetic mode of heating, squeeze out reducing, formed close The preferable energy storage device of sealing property;Above-mentioned steel cylinder is carried out quenching heat treatment, strengthens the tensile strength of steel;Steel cylinder reducing with fill The connected mode of gas apparatus to cause bursting takes helicitic texture to connect, and threaded mouth is provided with O-ring seal.
Optimization to above-mentioned manufacture technology illustrates further, and above-mentioned rubber mass uses lucite, PET material, polyethylene Or any one material of soft silica gel makes.
Optimization to above-mentioned manufacture technology illustrates further, and above-mentioned sclerosing agent uses UV curable paste, epoxide-resin glue, moment Any one in glue, anaerobic adhesive, Gypsum Fibrosum or cement;
Optimization to above-mentioned manufacture technology illustrates further, and described sclerosing agent uses perhafnate cement.
Technique effect is analyzed as follows:
The energy storage device 1 manufactured by aramid fiber, its reducing is flexible, so reducing is not easy to damage.
What carbon fiber manufactured energy storage device 1, reducing hardness is very big, so bottleneck is not easy to damage.
The energy storage device 1 manufactured by Fiber Materials and composite, because density of material is low, so same volume can store more Many liquid gases;Because the liquid gas amount of same volume storage is many, so brisance is bigger;Also mitigate energy storage device 1 simultaneously Weight, can make energy storage device overall weight decline 80%.
The energy storage device 1 manufactured by Fiber Materials and composite, owing to its integration manufactures, sealing is the best, And it is highly stable.
The energy storage device 1 manufactured by Fiber Materials and composite, due to its cellulosic tensile strength up to More than 3500MPa, is ten times of steel tensile strength, therefore can be the least in terms of thickness, can reduce weight largely, It is highly convenient for transport and installs.
Simultaneously as carbon dioxide blaster of the present invention is in manufacturer's technique, relatively simple, manufacture process consumes Time short, its production cost is the least, about 1/10th of the most existing steel blasting cartridge cost.
Because the tensile strength of carbon fiber reaches more than 3500MPa, steel tensile strength 345MPa,
Carbon fiber is calculated by 3500Mpa, then tensile strength of carbon fibers is at least 10.1(3500/ of steel tensile strength 345) again, therefore relatively 90% can at least be reduced with steel manufacture energy storage device thickness with carbon fiber manufacture energy storage device;The most existing skill Art steel manufacture the energy storage device of 8mm thickness, use now carbon fiber instead and only need to be manufactured into the energy storage device of 0.8mm thickness with regard to energy Meeting requirement, cylinder volume computing formula is: volume=floor space * is high, i.e. VCylinder=πr2*h.So, if originally using steel Manufacturing chamber outer wall thickness dimensions is 106mm, cavity wall thickness 8mm, then inner circle radius is 45mm, the steel cylinder of high 600mm, and it holds Long-pending is 3815100mm3;Using carbon fiber instead and manufacturing chamber outer wall thickness dimensions is 106mm, and cavity wall thickness 0.8mm(meets steel Tensile strength), then inner circle radius is 52.2mm, the energy storage device of high 600mm, and its volume is 5133598.5 mm3;By upper point Analysis understands, and uses carbon fibre material to manufacture the energy storage device of same chamber outer wall size, and volume increases 1.34 times, and (inwall becomes Thin, volume increases), meanwhile, after volume increases, the energy of storage is the biggest 1.34 times, and plasting damage effect increases exponentially.
The tensile strength of aramid fiber reaches 5000-6000MPa, steel tensile strength 345MPa,
Aramid fiber is calculated by 5000Mpa, then aramid fiber tensile strength is at least the 14.5 of steel tensile strength (5000/345) again, therefore relatively 93.1% can at least be reduced with steel manufacture energy storage device thickness with aramid fiber manufacture energy storage device; Such as prior art steel manufacture the energy storage device of 8mm thickness, use now aramid fiber instead and only need to be manufactured into 0.55mm thickness Energy storage device just can meet requirement, cylinder volume computing formula is: volume=floor space * is high, i.e. VCylinder=πr2*h.So, If originally manufacturing chamber outer wall thickness dimensions with steel is 106mm, cavity wall thickness 8mm, then inner circle radius is 45mm, high The steel cylinder of 600mm, its volume is 3815100mm3;Using aramid fiber instead and manufacturing chamber outer wall thickness dimensions is 106mm, and cavity wall is thick Degree 0.55mm(meets the tensile strength of steel), then inner circle radius is 52.45mm, the energy storage device of high 600mm, and its volume is 5182888.7 mm3;From upper analysis, use aramid fiber material to manufacture the energy storage device of same chamber outer wall size, hold Amassing and increase 1.36 times (inwall is thinning, and volume increases), meanwhile, after volume increases, the energy of storage is the biggest 1.36 times, explosion Power increases exponentially.
The tensile strength of glass fibre about 2500MPa, steel tensile strength 345MPa,
Glass fibre is calculated by 2500Mpa, then glass fibre tensile strength is steel tensile strength about 7.2(2500/345) Times, therefore manufacture energy storage device with glass fibre and relatively can reduce 86% with steel manufacture energy storage device thickness;Such as prior art steel Material manufactures the energy storage device of 8mm thickness, uses now glass fibre instead and only need to be manufactured into the energy storage device of 1.1mm thickness and just can meet Requirement, cylinder volume computing formula is: volume=floor space * is high, i.e. VCylinder=πr2*h.So, if original steel manufacture Chamber outer wall thickness dimensions is 106mm, cavity wall thickness 8mm, then inner circle radius is 45mm, the steel cylinder of high 600mm, and its volume is 3815100mm3;Using glass fibre instead and manufacturing chamber outer wall thickness dimensions is 106mm, and cavity wall thickness 1.1mm(meets the anti-of steel Tensile strength), then inner circle radius is 52.2mm, the energy storage device of high 600mm, and its volume is 5074761.2 mm3;By upper analysis Understanding, use glass fiber material to manufacture the energy storage device of same chamber outer wall size, volume increases 1.33 times, and (inwall becomes Thin, volume increases), meanwhile, after volume increases, the energy of storage is the biggest 1.33 times, and plasting damage effect increases exponentially.
The tensile strength of polyester fiber (terylene) reaches more than or equal to 500MPa, steel tensile strength 345MPa,
Polyester fiber is calculated by 3500Mpa, then polyester fiber tensile strength is at least the 10.1 of steel tensile strength (3500/345) again, therefore relatively 90% can at least be reduced with steel manufacture energy storage device thickness with polyester fiber manufacture energy storage device;Example Such as the prior art energy storage device of steel manufacture 8mm thickness, use now polyester fiber instead and only need to be manufactured into the storage of 0.8mm thickness Just can meet requirement by device, cylinder volume computing formula is: volume=floor space * is high, i.e. VCylinder=πr2*h.So, if Originally manufacturing chamber outer wall thickness dimensions with steel is 106mm, and cavity wall thickness 8mm, then inner circle radius is 45mm, high 600mm's Steel cylinder, its volume is 3815100mm3;Using polyester fiber instead and manufacturing chamber outer wall thickness dimensions is 106mm, cavity wall thickness 0.8mm (meeting the tensile strength of steel), then inner circle radius is 52.2mm, the energy storage device of high 600mm, and its volume is 5133598.5; From upper analysis, using Polyester Fibers to manufacture the energy storage device of same chamber outer wall size, volume increases 1.34 times (inwall is thinning, and volume increases), meanwhile, after volume increases, the energy of storage is the biggest 1.34 times, and plasting damage effect increases exponentially.
Therefore existing steel 345MPa can be substituted completely and carry out the constraint of the easy gasifying medium of high-pressure liquid.
Title material Density of material (g/cm3) Comprcssive strength (MPa) With steel ratio
Steel 7.85 345 1:1
Carbon fiber 1.8 ≥3500 1:4.36
Aramid fiber 1.37-1.38 5000-6000 1:5.68
Glass fibre 2.4-2.7 2500 1:5.72
Polyester fiber 1.2-1.37 ≥500 1:6.5
From the above mentioned, in the case of same volume or volume, carbon fiber is lighter 4.36 times than steel, and aramid fiber is lighter by 5.68 than steel Times, glass fibre lighter 5.72 times than steel, polyester fiber lighter 6.5 times than steel.
The invention have the advantage that 1. thickness are thin, lightweight, it is simple to transport, install;2. being simple to manufacture, consumables cost is low, raw Produce low cost;3. inflation is fast;4. good airproof performance, service life is long, has extended cycle life;5. easily repair after explosion deformation, maintenance Cost is extremely low, can field repair;5. the good stability of blaster after energy storage;6. yield rate is high;7. manufacturing process is simple.
Accompanying drawing explanation
Fig. 1 is the overall structure schematic diagram of the present invention program one;
Fig. 2 is the horizontal cross-section structural representation of the present invention program one;
Fig. 3 is the overall structure schematic diagram of the present invention program two;
Fig. 4 is the overall structure schematic diagram of the present invention program three;
Fig. 5 is the overall structure schematic diagram of the present invention program four;
Fig. 6 is the overall structure schematic diagram of the present invention program five;
Fig. 7 is the inflation mechanism structural representation of the present invention program six;
In figure: 1 be energy storage device, 11 be base layer, 12 be lamina reticularis, 13 be hardened layer, 2 be inflation apparatus to cause bursting, 21 for close Envelope matrix, 211 be prominent ring, 22 be inflation mechanism, 23 for ignite mechanism, 231 be activator, 232 be heating wire, let out can inner cover 3, Letting out can window 31, level pressure rupture disk 32.
Detailed description of the invention
Below in conjunction with the accompanying drawing in the embodiment of the present invention, the technical scheme in the embodiment of the present invention is carried out clear, complete Describe wholely;Obviously, described embodiment is only a part of embodiment of the present invention rather than whole embodiments.Based on Embodiment in the present invention, it is every other that those of ordinary skill in the art are obtained under not making creative work premise Embodiment, broadly falls into the scope of protection of the invention.
Embodiment 1(is as illustrated in fig. 1 and 2), a kind of carbon dioxide blaster, including energy storage device 1 and inflation apparatus to cause bursting 2, energy storage device 1 installs inflation apparatus to cause bursting 2;The material that described energy storage device 1 uses comprcssive strength to be more than 345Mpa is made;Institute State the bottom internal layer of energy storage device 1 be provided with let out can inner cover 3, described in let out can offer on inner cover 3 let out can window 31, let out and can seal by window 31 Install level pressure rupture disk 32, described in let out can inner cover 3 use metal material, any one direction of energy storage device 1 is provided with orientation Letting out can window 31;Described orientation is let out and can be used and the identical material of energy storage device 1 by window 31, and its orientation is let out the bearing strength of energy window 31 and is less than Other region of energy storage device 1.
Use said structure, there is extraordinary directional blasting effect, be suitable for driving face explosive.
As being further elaborated with of above-mentioned enforcement, described energy storage device 1 uses carbon fiber, glass fibre, aramid fiber fine Any one or at least two solidification in dimension, polyester fiber or its composite form.
As being further elaborated with of above-mentioned enforcement, described energy storage device 1 is in double-layer structure, and energy storage device 1 includes net Outwards it is distributed in shape layer 12 and hardened layer 13.
As being further elaborated with of above-mentioned enforcement, described inflation apparatus to cause bursting 2 includes inflation mechanism 22 and ignition machine Structure 23, inflation mechanism 22 and ignition mechanism 23 are arranged on energy storage device 1 by sealing matrix 21.
As being further elaborated with of above-mentioned enforcement, sealing matrix 21 bottom of described inflation apparatus to cause bursting 2 is extended Prominent ring 211;Its prominent ring 211 coordinates with energy storage device 1 reducing, is used for preventing from falling off with energy storage device 1.
As being further elaborated with of above-mentioned enforcement, described ignition mechanism 23 includes activator 231 and heating wire 232, Heating wire 232 inputs pole and draws outside, and the heating position of heating wire 232 is embedded in activator 231
As being further elaborated with of above-mentioned enforcement, the middle part helicitic texture of described sealing matrix 21 is outwardly, is used for expanding Volume in exhibition energy storage device 1.
As above-mentioned embodiment there is explanation further, the connection side of described energy storage device 1 and inflation apparatus to cause bursting 2 Formula is socket entirety hardening.
Having explanation further as above-mentioned embodiment, the thickness of described lamina reticularis 12 is 1mm, described hardened layer 13 Thickness be 1mm.
As above-mentioned embodiment there is explanation further, in described energy storage device 1, use liquid or solid-state titanium dioxide Carbon is as inflating medium.
As the manufacturing process explanation to above-mentioned embodiment, the manufacturing process of described carbon dioxide blaster is as follows:
1. first pass through the moulding matrix making a solid shape of plastic colloid;
2. it is wound around or the lamina reticularis of one layer of Fiber Materials of socket at matrix outer layer;
3. lamina reticularis carries out, by hardened material, harden (such as gluing, resinize);
4., after lamina reticularis hardens with hardened layer, take out matrix.
Having explanation further as above-mentioned embodiment, described hardened layer 13 uses UV curable paste.
The orientation gas blast device that can be reused by above-described embodiment one embodiment gained, in hinge structure The orientation gas blast device that can reuse, due in the present invention tensile strength of lamina reticularis 12 up to more than 2500MPa, and Steel tensile strength is only about 355MPa, and the combined density of its lamina reticularis 12 and hardened layer 13 is only 2.6 × 103kg/m3, and Steel density is 7.9 × 103kg/m3;Material combined density is blasting cartridge steel 0.33 times of the present invention;The pipe of the present embodiment Body thickness is up to about 0.25 times of existing steel blasting cartridge;In tensile strength, the body tensile strength of the present embodiment is with existing The steel blasting cartridge intensity having 8mm thickness is closely same;Therefore, the orientation gas blast device that can reuse described in the present embodiment is only For the quality of about 0.085 times of gas blast pipe of the prior art, the present invention has the weight of very lightweight, is highly convenient for Transport and installation.
Embodiment two: be with embodiment one difference: (as shown in Figure 3) described energy storage device (1) in three-decker, It is base layer (11), lamina reticularis (12) and hardened layer (13) from inside to outside;Described lamina reticularis (12) be carbon fiber, glass fibre, Any one in aramid fiber, polyester fiber or its composite, described hardened layer (13) uses epoxy resin glue material, institute State base layer (11) and use polythene material.
Embodiment three: be with embodiment two difference: the middle part screw thread knot of (as shown in Figure 4) described sealing matrix 21 Structure inwardly concaves;This structure is readily transported and saves overall volume, simultaneously facilitates protection inflation apparatus to cause bursting 2, it is to avoid hit.
Embodiment four: be with embodiment two difference: the input pole of (as shown in Figure 5) described heating wire 232 is in advance It is solidificated in energy storage device 1, outside by drawing by the wall shell of energy storage device 1;Using this structure, its input pole is without using Earthenware is isolated, and sealing is preferable, and it seals matrix 21 can save the course of processing of electrode input hole.
Embodiment five: be with embodiment two difference: the exposed face of (as shown in Figure 6) described sealing matrix 21 uses Smooth surface;Use this structure, can preferably reduce damaged in collision.
Embodiment six: be with embodiment two difference: (as shown in Figure 7) described inflation mechanism 22 uses check valve to fill Depressed structure;Described inflation mechanism 22 includes valve seat 221, baffle ring 222 and sealed spring 223, and baffle ring 222 is arranged on valve seat 221 middle and upper parts, baffle ring 222 center is pore 224, is air pressure ball valve 225 below baffle ring 222, and air pressure ball valve 225 bottom is Sealed spring 223, sealed spring 223 is arranged in the middle part of valve seat 221, and the pressure below air pressure ball valve 225 is more than top pressure Time, air pressure ball valve 225 by pressure difference power and the elastic force of sealed spring 223, closes with valve seat 221 bottom, when air pressure sheet 222 times When the pressure of side is less than top pressure, and when air pressure sheet 222 is more than the elastic force of sealed spring 223 by pressure difference power, air pressure sheet 222 move down, and open with valve seat 221 bottom;Described valve seat 221 is arranged above sealing nut 226.
Embodiment seven: be with embodiment one difference: the thickness of described lamina reticularis 12 is 5mm, described base layer 11 Thickness be 1mm, the thickness of described hardened layer 13 is 5mm.
Embodiment eight: be with embodiment one difference: the thickness of described lamina reticularis 12 is 10mm, described base layer 11 Thickness be 2mm, the thickness of described hardened layer 13 is 10mm.
Finally it is noted that the foregoing is only the preferred embodiments of the present invention, it is not limited to the present invention, Although being described in detail the present invention with reference to previous embodiment, for a person skilled in the art, it still may be used So that the technical scheme described in foregoing embodiments to be modified, or wherein portion of techniques feature is carried out equivalent, All within the spirit and principles in the present invention, any modification, equivalent substitution and improvement etc. made, should be included in the present invention's Within protection domain.

Claims (10)

1. the orientation gas blast device that can reuse, including energy storage device (1) and inflation apparatus to cause bursting (2), inflation is drawn Quick-fried device (2) includes inflation mechanism (22) and ignites mechanism (23), and inflation mechanism (22) and ignition mechanism (23) are arranged on energy storage In device (1), it is characterised in that: described energy storage device (1) uses the comprcssive strength material more than 345Mpa to make, energy storage device (1) bottom internal layer be provided with lets out can inner cover (3), described in let out can offer on inner cover (3) let out can window (31), let out and can seal by window (31) Install level pressure rupture disk (32), described in let out can inner cover (3) use metal material, any one fixed-direction of energy storage device (1) It is provided with one and lets out energy window (31).
The orientation gas blast device that can reuse the most according to claim 1, it is characterised in that: described orientation is let out can window (31) in flute profile or in circle hole shape.
The most according to claim 1 can recycling orientation gas blast device, it is characterised in that: described inflation mechanism and Ignite mechanism and be arranged in energy storage device (1) commonly through sealing matrix (21).
The orientation gas blast device that can reuse the most according to claim 1, it is characterised in that: dress is ignited in described inflation Prominent ring (211) is extended in sealing matrix (21) bottom putting (2), and the reducing of energy storage device (1) extends to prominent ring (211) inner side.
The orientation gas blast device that can reuse the most according to claim 1 and 2, it is characterised in that: described energy storage fills Put at least double-layer structure.
The orientation gas blast device that can reuse the most according to claim 3, it is characterised in that: described energy storage device (1) in three-decker, it is base layer (11), lamina reticularis (12) and hardened layer (13) from inside to outside.
The orientation gas blast device that can reuse the most according to claim 5, it is characterised in that: described lamina reticularis (12) For any one in carbon fiber, glass fibre, aramid fiber, polyester fiber or its composite or at least two material.
The orientation gas blast device that can reuse the most according to claim 5, it is characterised in that: described base layer (1) Use the one in lucite or polyester fiber or polyethylene or polypropylene or soft silica gel material or at least two synthesis, institute State hardened layer (13) and use the one in UV curable paste or epoxide-resin glue or instant glue or anaerobic adhesive or Gypsum Fibrosum or cement or extremely Few two kinds of synthesis.
The orientation gas blast device that can reuse the most according to claim 1, it is characterised in that: described energy storage device (1) thickness is 1-30mm.
10. the manufacture method of the orientation gas blast device that a kind can reuse, it is characterised in that: by rubber mass by plastics mould Tool forms the inner chamber of energy storage device through blowing, extrusion blow or injection, and the inner chamber of energy storage device comprises two reducings;In energy storage Two reducings of the inner chamber of device are placed respectively and inflates apparatus to cause bursting and let out energy window, and inflating apparatus to cause bursting and letting out on energy window Placing gauze, lead-in wire and the charging connector of inflation apparatus to cause bursting expose gauze, let out and can expose gauze, and solidifying and setting in the middle part of window;? The inner chamber outer layer of energy storage device swathes cellulosic screen cloth material, then reuses sclerosing agent and carries out curing molding.
CN201610779513.6A 2016-08-31 2016-08-31 A kind of orientation gas blast device that can reuse and manufacture method thereof Withdrawn CN106225587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610779513.6A CN106225587A (en) 2016-08-31 2016-08-31 A kind of orientation gas blast device that can reuse and manufacture method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610779513.6A CN106225587A (en) 2016-08-31 2016-08-31 A kind of orientation gas blast device that can reuse and manufacture method thereof

Publications (1)

Publication Number Publication Date
CN106225587A true CN106225587A (en) 2016-12-14

Family

ID=58072080

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610779513.6A Withdrawn CN106225587A (en) 2016-08-31 2016-08-31 A kind of orientation gas blast device that can reuse and manufacture method thereof

Country Status (1)

Country Link
CN (1) CN106225587A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113008090A (en) * 2021-03-02 2021-06-22 陕西新通宇彤智能科技有限公司 Application of high-pressure electromagnetic force blasting device in shale gas shale oil well development
CN114198100A (en) * 2021-12-03 2022-03-18 太原理工大学 Rock drilling high-temperature thermal cracking axial directional pre-splitting equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113008090A (en) * 2021-03-02 2021-06-22 陕西新通宇彤智能科技有限公司 Application of high-pressure electromagnetic force blasting device in shale gas shale oil well development
CN113008090B (en) * 2021-03-02 2023-11-28 陕西新通宇彤智能科技有限公司 Application of high-voltage electromagnetic blasting device in shale gas shale oil well development
CN114198100A (en) * 2021-12-03 2022-03-18 太原理工大学 Rock drilling high-temperature thermal cracking axial directional pre-splitting equipment
CN114198100B (en) * 2021-12-03 2023-06-20 太原理工大学 Rock drilling high-temperature thermal cracking axial directional pre-cracking equipment

Similar Documents

Publication Publication Date Title
CN106223948A (en) A kind of disposable column type check valve gas blast device and manufacture method thereof
CN106225587A (en) A kind of orientation gas blast device that can reuse and manufacture method thereof
CN106247865A (en) A kind of check valve gas blast device that can reuse and manufacture method thereof
CN106225601A (en) One can reuse gas blast device and manufacture method thereof
CN106225589A (en) A kind of multidirectional blasting fume blaster that can reuse and manufacture method thereof
CN106225597A (en) A kind of column type orientation gas blast device that can reuse and manufacture method thereof
CN106223951A (en) A kind of column type composite construction gas blast device that can reuse and manufacture method thereof
CN106370062A (en) Recyclable cylindrical multi-directional blasting gas blaster and manufacturing method thereof
CN106223949A (en) A kind of disposable column type glass fibre gas blast device and manufacture method thereof
CN106223952A (en) A kind of disposable column type orientation gas blast device and manufacture method thereof
CN106223953A (en) Integrated air blaster and manufacture method thereof are ignited in a kind of inflation that can reuse
CN106225586A (en) Integrated air blaster and manufacture method thereof are ignited in a kind of disposable column type inflation
CN106225591A (en) A kind of disposable column type multidirectional blasting fume blaster and manufacture method thereof
CN106223950A (en) A kind of disposable column type composite construction gas blast device and manufacture method thereof
CN106288967A (en) A kind of disposable ball type check valve gas blast device and manufacture method thereof
CN106323098A (en) Ball-shaped gas inflation and detonation integrated gas blasting device for single use and manufacturing method thereof
CN106225588A (en) Split type gas blast device and manufacture method thereof are ignited in a kind of inflation that can reuse
CN106225590A (en) Integrated air blaster and manufacture method thereof are ignited in a kind of column type inflation that can reuse
CN106225599A (en) A kind of composite construction gas blast device that can reuse and manufacture method thereof
CN106225600A (en) A kind of column type glass fibre gas blast device that can reuse and manufacture method thereof
CN106225593A (en) A kind of carbon fiber gas blaster that can reuse and manufacture method thereof
CN106225584A (en) A kind of disposable column type carbon fiber gas blaster and manufacture method thereof
CN106225595A (en) A kind of column type aramid fiber gas blast device that can reuse and manufacture method thereof
CN106225592A (en) A kind of aramid fiber gas blast device that can reuse and manufacture method thereof
CN106437708A (en) One-off cylinder-shaped inflating detonating split-type gas blaster and manufacturing method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20161214

WW01 Invention patent application withdrawn after publication