CN106220146A - 温度稳定型超低介电常数微波介电陶瓷LiGa3Ge2O9 - Google Patents
温度稳定型超低介电常数微波介电陶瓷LiGa3Ge2O9 Download PDFInfo
- Publication number
- CN106220146A CN106220146A CN201610598857.7A CN201610598857A CN106220146A CN 106220146 A CN106220146 A CN 106220146A CN 201610598857 A CN201610598857 A CN 201610598857A CN 106220146 A CN106220146 A CN 106220146A
- Authority
- CN
- China
- Prior art keywords
- hours
- dielectric
- microwave
- liga
- dielectric ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63404—Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/63416—Polyvinylalcohols [PVA]; Polyvinylacetates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
- C04B2235/3203—Lithium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3287—Germanium oxides, germanates or oxide forming salts thereof, e.g. copper germanate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9607—Thermal properties, e.g. thermal expansion coefficient
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Insulating Materials (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明公开了一种超低损耗温度稳定型超低介电常数微波介电陶瓷LiGa3Ge2O9及其制备方法。(1)将纯度为99.9%(重量百分比)以上的Li2CO3、Ga2O3和GeO2的原始粉末按LiGa3Ge2O9的组成称量配料;(2)将步骤(1)原料湿式球磨混合12小时,球磨介质为蒸馏水,烘干后在900℃大气气氛中预烧6小时;(3)在步骤(2)制得的粉末中添加粘结剂并造粒后,再压制成型,最后在950~1000℃大气气氛中烧结4小时;所述的粘结剂采用质量浓度为5%的聚乙烯醇溶液,聚乙烯醇的添加量占粉末总质量的3%。本发明制备的陶瓷在1000℃以下烧结良好,介电常数达到8.3~9.1,其品质因数Qf值高达81000‑98000GHz,谐振频率温度系数小,在工业上有着极大的应用价值。
Description
技术领域
本发明涉及介电陶瓷材料,特别是涉及用于制造微波频率使用的陶瓷基板、谐振器与滤波器等微波元器件的介电陶瓷材料及其制备方法。
背景技术
微波介电陶瓷是指应用于微波频段(主要是UHF和SHF频段)电路中作为介质材料并完成一种或多种功能的陶瓷,在现代通讯中被广泛用作谐振器、滤波器、介质基片和介质导波回路等元器件,是现代通信技术的关键基础材料,已在便携式移动电话、汽车电话、无绳电话、电视卫星接受器和军事雷达等方面有着十分重要的应用,在现代通讯工具的小型化、集成化过程中正发挥着越来越大的作用。
应用于微波频段的介电陶瓷,应满足如下介电特性的要求:(1)系列化介电常数εr以适应不同频率及不同应用场合的要求;(2)高的品质因数Q值或低的介质损耗tanδ以降低噪音,一般要求Qf≥3000GHz;(3)谐振频率的温度系数τf尽可能小以保证器件具有好的热稳定性,一般要求-10ppm/℃≤τf≤+10ppm/℃。国际上从20世纪30年代末就有人尝试将电介质材料应用于微波技术,并制备出TiO2微波介质滤波器,但其谐振频率温度系数τf太大而无法实用化。上世纪70年代以来,开始了大规模的对介质陶瓷材料的开发工作,根据相对介电常数εr的大小与使用频段的不同,通常可将已被开发和正在开发的微波介质陶瓷分为4类。
(1)超低介电常数微波介电陶瓷,主要代表是Al2O3-TiO2、Y2BaCuO5、MgAl2O4和Mg2SiO4等,其εr≤20,品质因数Q×f≥50000GHz,τf≤10ppm/℃。主要用于微波基板以及高端微波元器件。
(2)低εr和高Q值的微波介电陶瓷,主要是BaO-MgO-Ta2O5,BaO-ZnO-Ta2O5或BaO-MgO-Nb2O5,BaO-ZnO-Nb2O5系统或它们之间的复合系统MWDC材料。其εr=20~35,Q=(1~2)×104(在f≥10GHz下),τf≈0。主要应用于f≥8GHz的卫星直播等微波通信机中作为介质谐振器件。
(3)中等εr和Q值的微波介电陶瓷,主要是以BaTi4O9、Ba2Ti9O20和(Zr、Sn)TiO4等为基的MWDC材料,其εr=35~45,Q=(6~9)×103(在f=3~-4GHz下),τf≤5ppm/℃。主要用于4~8GHz频率范围内的微波军用雷达及通信系统中作为介质谐振器件。
(4)高εr而Q值较低的微波介电陶瓷,主要用于0.8~4GHz频率范围内民用移动通讯系统,这也是微波介电陶瓷研究的重点。80年代以来,Kolar、Kato等人相继发现并研究了类钙钛矿钨青铜型BaO—Ln2O3—TiO2系列(Ln=La、Sm、Nd或Pr等,简称BLT系)、复合钙钛矿结构CaO—Li2O—Ln2O3—TiO2系列、铅基系列材料、Ca1-xLn2x/3TiO3系等高εr微波介电陶瓷,其中BLT体系的BaO—Nd2O3—TiO2材料介电常数达到90,铅基系列(Pb,Ca)ZrO3介电常数达到105。
以上这些材料体系的烧结温度一般高于1300℃,不能直接与Ag和Cu等低熔点金属共烧形成多层陶瓷电容器。近年来,随着低温共烧陶瓷技术(Low Temperature Co-firedCeramics,LTCC)的发展和微波多层器件发展的要求,国内外的研究人员对一些低烧体系材料进行了广泛的探索和研究,主要是采用微晶玻璃或玻璃-陶瓷复合材料体系,因低熔点玻璃相具有相对较高的介质损耗,玻璃相的存在大大提高了材料的介质损耗。因此研制无玻璃相的低烧微波介质陶瓷材料是当前研究的重点。
在探索与开发新型可低烧微波介电陶瓷材料的过程中,固有烧结温度低的Li基化合物、Bi基化合物、钨酸盐体系化合物和碲酸盐体系化合物等材料体系得到了广泛关注与研究,但是由于微波介电陶瓷的三个性能指标(εr与Q·f和τf)之间是相互制约的关系(见文献:微波介质陶瓷材料介电性能间的制约关系,朱建华,梁飞,汪小红,吕文中,电子元件与材料,2005年3月第3期),满足三个性能要求且可低温烧结的单相微波介质陶瓷非常少,主要是它们的谐振频率温度系数通常过大或者品质因数偏低而无法实际应用要求。目前对微波介质陶瓷的研究大部分是通过大量实验而得出的经验总结,却没有完整的理论来阐述微观结构与介电性能的关系,因此,在理论上还无法从化合物的组成与结构上预测其谐振频率温度系数和品质因数等微波介电性能,这在很大程度上限制了低温共烧技术及微波多层器件的发展。探索与开发既能低温烧结同时具有近零谐振频率温度系数(-10ppm/℃≤τf≤+10ppm/℃)与较高品质因数的微波介电陶瓷是本领域技术人员一直渴望解决但始终难以获得成功的难题。我们对组成为LiGa3Ge2O9与LiGa3Sn2O9的陶瓷进行了烧结与微波介电性能研究,发现它们的烧结温度低于1200℃,其中LiGa3Ge2O9具有近零谐振频率温度系数与高品质因数,LiGa3Sn2O9陶瓷为半导体,其介电损耗大而没有谐振峰,因此无法作为可实用化的微波介质陶瓷。
发明内容
本发明的目的是提供一种具有良好的热稳定性与低损耗的超低介电常数微波介电陶瓷材料及其制备方法。
本发明的微波介电陶瓷材料的化学组成为LiGa3Ge2O9。
本微波介电陶瓷材料的制备方法步骤为:
(1)将纯度为99.9%(重量百分比)以上的Li2CO3、Ga2O3和GeO2的原始粉末按LiGa3Ge2O9的组成称量配料。
(2)将步骤(1)原料湿式球磨混合12小时,球磨介质为蒸馏水,烘干后在900℃大气气氛中预烧6小时。
(3)在步骤(2)制得的粉末中添加粘结剂并造粒后,再压制成型,最后在950~1000℃大气气氛中烧结4小时;所述的粘结剂采用质量浓度为5%的聚乙烯醇溶液,聚乙烯醇添加量占粉末总质量的3%。
本发明的优点:LiGa3Ge2O9陶瓷烧结温度较低,原料成本低;其品质因数Qf值高达81000-98000GHz,介电常数达到8.3~9.1,其谐振频率的温度系数τf小,温度稳定性好;可广泛用于各种介质基板、谐振器和滤波器等微波器件的制造,可满足低温共烧技术及微波多层器件的技术需要。
具体实施方式
实施例:
表1示出了构成本发明的不同烧结温度的3个具体实施例及其微波介电性能。其制备方法如上所述,用圆柱介质谐振器法进行微波介电性能的评价。
本陶瓷可广泛用于各种介质谐振器和滤波器等微波器件的制造,可满足移动通信和卫星通信等系统的技术需要。
表1:
Claims (1)
1.一种高品质因数温度稳定型超低介电常数微波介电陶瓷,其特征在于所述微波介电陶瓷的化学组成为:LiGa3Ge2O9;
所述微波介电陶瓷的制备方法具体步骤为:
(1)将纯度为99.9%(重量百分比)以上的Li2CO3、Ga2O3和GeO2的原始粉末按LiGa3Ge2O9的组成称量配料;
(2)将步骤(1)原料湿式球磨混合12小时,球磨介质为蒸馏水,烘干后在900℃大气气氛中预烧6小时;
(3)在步骤(2)制得的粉末中添加粘结剂并造粒后,再压制成型,最后在950~1000℃大气气氛中烧结4小时;所述的粘结剂采用质量浓度为5%的聚乙烯醇溶液,聚乙烯醇添加量占粉末总质量的3%。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610598857.7A CN106220146A (zh) | 2016-07-26 | 2016-07-26 | 温度稳定型超低介电常数微波介电陶瓷LiGa3Ge2O9 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610598857.7A CN106220146A (zh) | 2016-07-26 | 2016-07-26 | 温度稳定型超低介电常数微波介电陶瓷LiGa3Ge2O9 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106220146A true CN106220146A (zh) | 2016-12-14 |
Family
ID=57533710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610598857.7A Pending CN106220146A (zh) | 2016-07-26 | 2016-07-26 | 温度稳定型超低介电常数微波介电陶瓷LiGa3Ge2O9 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106220146A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110627480A (zh) * | 2019-09-01 | 2019-12-31 | 桂林理工大学 | MgO-Al2O3-GeO2三元体系微波介质材料的制备方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105541300A (zh) * | 2015-12-19 | 2016-05-04 | 桂林理工大学 | 一种温度稳定型超低介电常数微波介电陶瓷Li2B2Ge2O8及其制备方法 |
-
2016
- 2016-07-26 CN CN201610598857.7A patent/CN106220146A/zh active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105541300A (zh) * | 2015-12-19 | 2016-05-04 | 桂林理工大学 | 一种温度稳定型超低介电常数微波介电陶瓷Li2B2Ge2O8及其制备方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110627480A (zh) * | 2019-09-01 | 2019-12-31 | 桂林理工大学 | MgO-Al2O3-GeO2三元体系微波介质材料的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106187160A (zh) | 低损耗温度稳定型微波介电陶瓷LiGaSn3O8 | |
CN106220146A (zh) | 温度稳定型超低介电常数微波介电陶瓷LiGa3Ge2O9 | |
CN106242557A (zh) | 一种低损耗温度稳定型微波介电陶瓷LiBiSn2O6 | |
CN106242556A (zh) | 一种低损耗温度稳定型微波介电陶瓷LiBSn2O6 | |
CN106187103A (zh) | 高品质因数温度稳定型超低介电常数微波介电陶瓷Li2SrZnGeO5 | |
CN106242530A (zh) | 超低介电常数微波介电陶瓷Li2In4Ge3O13 | |
CN106187129A (zh) | 低损耗温度稳定型微波介电陶瓷LiBSi3O8 | |
CN106242531A (zh) | 温度稳定型超低介电常数微波介电陶瓷LiGa3Si2O9 | |
CN106220160A (zh) | 温度稳定型低介电常数微波介电陶瓷LiBi3Ge2O9 | |
CN106187153A (zh) | 温度稳定型低介电常数微波介电陶瓷LiBi3Sn2O9 | |
CN106278237A (zh) | 温度稳定型低介电常数微波介电陶瓷LiBi3Sn2O9 | |
CN106187133A (zh) | 温度稳定型超低介电常数微波介电陶瓷LiBi3Si2O9 | |
CN106278246A (zh) | 温度稳定型超低介电常数微波介电陶瓷Li2B4Ti3O13 | |
CN106187157A (zh) | 温度稳定型超低介电常数微波介电陶瓷Li2CuSnO4 | |
CN106242555A (zh) | 低损耗温度稳定型微波介电陶瓷Li2Bi4Sn3O13 | |
CN106187159A (zh) | Li2MgSn2O6作为高品质因数温度稳定型低介电常数微波介电陶瓷的应用 | |
CN106242528A (zh) | 高品质因数温度稳定型微波介电陶瓷Li2ZnGe2O6 | |
CN106187158A (zh) | 高品质因数温度稳定型超低介电常数微波介电陶瓷Li2MgSnO4 | |
CN106187102A (zh) | 高品质因数温度稳定型微波介电陶瓷Li2MgGe2O6 | |
CN106187150A (zh) | 温度稳定型超低介电常数微波介电陶瓷Li3BiSnO5 | |
CN106116564A (zh) | 一种低损耗温度稳定型微波介电陶瓷Li3BSnO5 | |
CN106145899A (zh) | LiGaGe2O6作为高品质因数温度稳定型微波介电陶瓷的应用 | |
CN106187105A (zh) | 高品质因数温度稳定型低介电常数微波介电陶瓷Li2BaMgGeO5 | |
CN106278236A (zh) | 高品质因数温度稳定型低介电常数微波介电陶瓷Li2BaZnGeO5 | |
CN106278189A (zh) | 低损耗温度稳定型微波介电陶瓷Li2SrGe2O6 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20161214 |