CN106208333A - 具有充电、控制和自动放电的太阳能空调系统 - Google Patents
具有充电、控制和自动放电的太阳能空调系统 Download PDFInfo
- Publication number
- CN106208333A CN106208333A CN201610727001.5A CN201610727001A CN106208333A CN 106208333 A CN106208333 A CN 106208333A CN 201610727001 A CN201610727001 A CN 201610727001A CN 106208333 A CN106208333 A CN 106208333A
- Authority
- CN
- China
- Prior art keywords
- resistance
- oxide
- metal
- semiconductor
- audion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007599 discharging Methods 0.000 title claims abstract description 24
- 239000004065 semiconductor Substances 0.000 claims abstract description 151
- 230000005611 electricity Effects 0.000 claims abstract description 22
- 239000003990 capacitor Substances 0.000 claims abstract description 17
- 238000004378 air conditioning Methods 0.000 claims abstract description 14
- 230000000087 stabilizing effect Effects 0.000 claims description 5
- 230000000694 effects Effects 0.000 abstract description 11
- 238000005265 energy consumption Methods 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000000686 essence Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 210000000352 storage cell Anatomy 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
- H02J7/35—Parallel operation in networks using both storage and other DC sources, e.g. providing buffering with light sensitive cells
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2207/00—Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J2207/20—Charging or discharging characterised by the power electronics converter
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
本发明公开了一种具有充电、控制和自动放电的太阳能空调系统,包括太阳能电池、太阳能控制器、蓄电池和变频空调器,太阳能控制器包括充电电路、控制电路、防雷电路和放电电路,变频空调器包括逆变电路和压缩机,充电电路包括第十一至第十七电阻、第十一至第十二电容、第十三至第十四MOS管,放电电路包括第四十一开关、第四十一继电器、第四十一至第四十四电阻、第四十五放电电阻和第四十三电解电容。本发明可以有效防雷、提高系统安全性能、蓄电池进行充电的同时又可以保证蓄电池的活性、能延长蓄电池的寿命、能提高对蓄电池的充电效率、延长蓄电池的用电时间、具有较好的自启动能力、避免出现死循环状态、能大大缩短放电时间、节约系统能耗。
Description
技术领域
本发明涉及太阳能空调领域,特别涉及一种具有充电、控制和自动放电的太阳能空调系统。
背景技术
太阳能空调系统由太阳能电池、控制器、蓄电池和变频空调器等部分组成。现有的太阳能空调系统存在如下缺陷:控制器防雷保护措施不力,影响系统安全性能;蓄电池的多个单体蓄电池之间的容量和自放电不可避免的存在不一致的情形,影响蓄电池寿命。
另外,当出现连续的几个阴雨天时,蓄电池的电力不足以维持被供电设备工作的需要,这将会影响被供电设备的正常工作,要解决该问题,可以加大蓄电池和太阳能电池板的容量,但成本会大幅度上升。
同时,传统的太阳能控制电路采用蓄电池单电源供电、低电压断开的方式。这种方式会出现一个死循环:如果蓄电池的供电电压低于断开功能的设定电压,太阳能控制电路就会断开,并且太阳能控制电路自己无法自动恢复,原因在于太阳能控制电路只有在蓄电池电压足够高可以工作时,太阳能才能将输出的光能通过太阳能控制电路给蓄电池充电,太阳能控制器断开后即使太阳能输出有电,但蓄电池电压不够,太阳能控制器低电压断开,所以这部分电能无法充到蓄电池里面,由于太阳能电能无法充到蓄电池,这样蓄电池电压就不会上升,太阳能控制器就不会重新启动。
传统的放电电路为直接在储能或滤波电容的两端并联一个放电电阻,当电路断开电源时,电容通过放电电阻消耗残留的电荷。由于放电电阻直接并联在电容上,当电路接通电源处于工作状态时,放电电阻一直处于放电状态,消耗电源能量且造成电路发热,特别是高压系统中电源电压较高,放电电阻的阻值较大,其放电时长可从几分钟至十几分钟,这样就可能造成安全隐患,例如检测维修时无法确定该设备是否完全放电,因此实际应用中要求电路余电的放电时间尽可能短。适当减小放电电阻的阻值可以缩短断电时余电放电时间,但消耗功率将增大。因此电阻值越小其消耗功率越大,电阻值越大其放电时间长。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种可以有效防雷、提高系统安全性能、蓄电池进行充电的同时又可以保证蓄电池的活性、能延长蓄电池的寿命、能提高对蓄电池的充电效率、延长蓄电池的用电时间、具有较好的自启动能力、避免出现死循环状态、能大大缩短放电时间、节约系统能耗的具有充电、控制和自动放电的太阳能空调系统。
本发明解决其技术问题所采用的技术方案是:构造一种具有充电、控制和自动放电的太阳能空调系统,包括太阳能电池、太阳能控制器、蓄电池和变频空调器,所述太阳能控制器包括充电电路、控制电路、防雷电路和放电电路,所述变频空调器包括逆变电路和压缩机,所述太阳能电池与所述充电电路连接,所述充电电路通过所述控制电路与所述放电电路连接,所述充电电路和放电电路还均与所述蓄电池连接,所述控制电路通过所述防雷电路与所述蓄电池连接,所述放电电路还通过所述逆变电路与所述压缩机连接;
所述充电电路包括第十一电阻、第十二电阻、第十三电阻、第十四电阻、第十五电阻、第十六电阻、第十七电阻、第十一电容、第十二电容、第十一稳压管、第十一三极管、第十二三极管、第十三MOS管和第十四MOS管,所述第十一三极管的基极与所述第十一电阻的一端连接,所述第十一电阻的另一端与所述控制电路连接,所述第十一三极管的发射极连接直流电源,所述第十一三极管的集电极通过所述第十二电阻分别与所述第十一电容的一端和第十三电阻的一端连接,所述第十二三极管的基极分别与所述第十一电容的另一端和第十四电阻的一端连接,所述第十二三极管的集电极分别与所述第十二电容的一端和第十五电阻的一端连接,所述第十五电阻的另一端与所述直流电源连接,所述第十二电容的另一端通过所述第十七电阻分别与所述第十三MOS管的栅极、第十一稳压管的阴极和第十四MOS管的栅极连接,所述第十二三极管的发射极通过所述第十六电阻分别与所述第十三MOS管的源极、第十一稳压管的阳极和第十四MOS管的源极连接,所述第十一稳压管的阳极还与所述第十四电阻的另一端连接,所述第十三电阻的另一端分别与所述第十三MOS管的漏极和所述太阳能电池的负极连接,所述第十四MOS管的漏极与所述蓄电池的负极连接,所述太阳能电池的正极与所述蓄电池的正极连接;
所述控制电路包括太阳能控制端口、第三十一二极管、第三十二二极管、第三十三二极管、第三十四稳压管、第三十五二极管、第三十六二极管、第三十七稳压管、第三十一电阻、第三十二电阻、第三十三电阻、第三十一电容、第三十三电容、第三十一MOS管、集成稳压芯片和第三十一电感,所述太阳能端口的第一引脚和第二引脚均与所述太阳能电池的正极连接,所述太阳能端口的第三引脚和第四引脚均与所述太阳能电池的负极连接,所述太阳能端口的第二引脚还分别与所述第三十一二极管的阳极和第三十二二极管的阳极连接,所述第三十二二极管的阴极和第三十三二极管的阳极均与所述蓄电池的正极连接,所述第三十一二极管的阴极分别与所述第三十三二极管的阴极、第三十四稳压管的阴极、第三十三电阻的一端、第三十一电容的正极和集成稳压芯片的第一引脚连接,所述第三十四稳压管的阳极分别与所述第三十一电阻的一端和第三十二电阻的一端连接,所述第三十一MOS管的栅极与所述第三十二电阻的另一端连接,所述第三十一MOS管的源极分别与所述第三十一电阻的另一端、第三十五二极管的阳极和第三十六二极管的阳极连接,所述第三十五二极管的阴极与所述太阳能端口的第四引脚连接,所述第三十六二极管的阴极接地,所述第三十一MOS管的漏极分别与所述第三十三电阻的另一端和集成稳压芯片的第五引脚连接,所述第三十一电容的负极接地,所述集成稳压芯片的第三引脚接地,所述集成稳压芯片的第二引脚分别与所述第三十一电感的一端和第三十七稳压管的阴极连接,所述第三十七稳压管的阳极接地,所述第三十一电感的另一端通过所述第三十三电容接地,所述集成稳压芯片的第四引脚连接所述直流电源;
所述放电电路包括第四十一熔断器、第四十一开关、第四十一二极管、第四十一继电器、第四十一电阻、第四十二电阻、第四十三电阻、第四十四电阻、第四十五放电电阻、第四十一电容、第四十二电容、第四十三电解电容、第四十一三极管、第四十二三极管、第四十三MOS管、第四十四MOS管、第四十五MOS管、第四十六MOS管、第四十七MOS管和第四十八MOS管,所述第四十一熔断器的一端与所述蓄电池的正极连接,所述第四十一熔断器的另一端通过所述第四十一开关与所述第四十一二极管的阳极连接,所述蓄电池的正极还通过所述第四十一继电器的触点分别与所述第四十三电阻的一端、第四十五放电电阻的一端、第四十三电解电容的一端、第四十三MOS管的漏极、第四十五MOS管的漏极、第四十七MOS管的漏极连接,所述第四十一二极管的阴极通过所述第四十一电阻分别与所述第四十一电容的一端和第四十二电阻的一端连接,所述第四十二电阻的另一端接地,所述第四十一三极管的基极与所述第四十一电容的另一端连接,所述第四十一三极管的集电极分别与所述第四十二电容的一端和第四十三电阻的另一端连接,所述第四十一三极管的发射极通过所述第四十四电阻接地,所述第四十二三极管的基极与所述第四十二电容的另一端接地,所述第四十二三极管的集电极与所述第四十五放电电阻的另一端连接,所述第四十二三极管的发射极接地,所述第四十三电解电容的另一端接地,所述第四十三MOS管的源极与所述第四十四MOS管的漏极连接,所述第四十五MOS管的源极与所述第四十六MOS管的漏极连接,所述第四十七MOS管的源极与所述第四十八MOS管的漏极连接,所述第四十四MOS管的源极、第四十六MOS管的源极和第四十八MOS管的源极均接地,所述第四十一继电器受所述第四十一开关的控制。
在本发明所述的具有充电、控制和自动放电的太阳能空调系统中,所述放电电路还包括第四十六电阻,所述第四十二三极管的发射极通过所述第四十六电阻接地。
在本发明所述的具有充电、控制和自动放电的太阳能空调系统中,所述放电电路还包括第四十七电阻,所述第四十三MOS管的源极通过所述第四十七电阻与所述第四十四MOS管的漏极连接。
在本发明所述的具有充电、控制和自动放电的太阳能空调系统中,所述放电电路还包括第四十八电阻,所述第四十五MOS管的源极通过所述第四十八电阻与所述第四十六MOS管的漏极连接。
在本发明所述的具有充电、控制和自动放电的太阳能空调系统中,所述放电电路还包括第四十九电阻,所述第四十七MOS管的源极通过所述第四十九电阻与所述第四十八MOS管的漏极连接。
在本发明所述的具有充电、控制和自动放电的太阳能空调系统中,所述第四十一三极管和第四十二三极管均为NPN型三极管。
在本发明所述的具有充电、控制和自动放电的太阳能空调系统中,所述第四十三MOS管、第四十四MOS管、第四十五MOS管、第四十六MOS管、第四十七MOS管和第四十八MOS管均为N沟道MOS管。
实施本发明的具有充电、控制和自动放电的太阳能空调系统,具有以下有益效果:由于设有防雷电路,这样就可以有效防雷,提高系统安全性能;另外,蓄电池进行充电的同时又可以保证蓄电池的活性,避免了蓄电池发生沉积,从而较大程度的延长了蓄电池的寿命,充电电路的电压损失较传统使用二极管的充电电路降低近一半,提高了太阳能电池对蓄电池的充电效率,充电效率较非PWM高3%-6%,延长了蓄电池的用电时间,控制电路具有良好的自启动能力,避免了现有技术中常出现的死循环状态,放电电路中采用了第四十一开关和第四十一继电器实现了在系统工作时断开第四十五放电电阻,系统断电时将第四十五放电电阻与第四十三电解电容并联,因此第四十五放电电阻可以选用阻值较小的放电电阻,使得该放电电路在系统工作时不消耗电能,减少发热,节约系统能,同时可以使放电时间大大缩短,提高系统的安全性能;所以其可以有效防雷、提高系统安全性能、蓄电池进行充电的同时又可以保证蓄电池的活性、能延长蓄电池的寿命、能提高对蓄电池的充电效率、延长蓄电池的用电时间、具有较好的自启动能力、避免出现死循环状态、能大大缩短放电时间、节约系统能耗。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明具有充电、控制和自动放电的太阳能空调系统一个实施例中的结构示意图;
图2为所述实施例中充电电路的电路原理图;
图3为所述实施例中控制电路的电路原理图;
图4为所述实施例中放电电路的电路原理图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明具有充电、控制和自动放电的太阳能空调系统实施例中,该具有充电、控制和自动放电的太阳能空调系统的结构示意图如图1所示。图1中,该具有充电、控制和自动放电的太阳能空调系统包括太阳能电池PV、太阳能控制器1、蓄电池BAT和变频空调器2,其中,太阳能控制器1包括充电电路11、控制电路12、防雷电路14和放电电路13,变频空调器2包括逆变电路21和压缩机22,太阳能电池PV与充电电路11连接,充电电路11通过控制电路12与放电电路13连接,充电电路11和放电电路13还均与蓄电池BAT连接,控制电路12通过防雷电路14与蓄电池BAT连接,放电电路13还通过逆变电路21与压缩机22连接。太阳能电池PV是将太阳的辐射转换为电能,或送往蓄电池BAT中存储起来,或推动变频空调器2工作。太阳能控制器1的作用是控制整个具有充电、控制和自动放电的太阳能空调系统的工作状态,并对蓄电池BAT起到过充电保护和过放电保护的作用。蓄电池BAT的作用是在有光照时将太阳能电池PV所发出的电能储存起来,到需要的时候再释放出来。变频空调器2作为交流负载,可以方便地调速。
太阳能控制器1通过其防雷电路14可以有效防雷,增强系统的防雷能力,提高系统的安全性能,蓄电池BAT在不损失太阳能转换能量的前提下,提高了蓄电池组3的充电效率及太阳能电源的实际使用效率,蓄电池BAT进行充电的同时又可以保证蓄电池BAT的活性,避免了蓄电池BAT发生沉积,从而较大程度的延长了蓄电池BAT的寿命。
图2为本实施例中充电电路的电路原理图,图2中,充电电路11包括第十一电阻R11、第十二电阻R12、第十三电阻R13、第十四电阻R14、第十五电阻R15、第十六电阻R16、第十七电阻R17、第十一电容C11、第十二电容C12、第十一稳压管D11、第十一三极管Q11、第十二三极管Q12、第十三MOS管Q13和第十四MOS管Q14,其中,第十一电容C11和第十二电容C12均为耦合电容,第十一电容C11用于防止第十一三极管Q11和第十二三极管Q12之间的干扰,第十二电容C12用于防止第十二三极管Q12和第十四MOS管Q14之间的干扰,第十六电阻R16为限流电阻,用于进行过流保护。本实施例中,第十一三极管Q11为PNP型三极管,第十二三极管Q12为NPN型三极管,第十三MOS管Q13和第十四MOS管Q14均为N沟道MOS管。当然,在本实施例的一些情况下,第十一三极管Q11也可以为NPN型三极管,第十二三极管Q12也可以为PNP型三极管,第十三MOS管Q13和第十四MOS管Q14也可以均为P沟道MOS管,但这时充电电路的结构要发生相应的变化。
本实施例中,第十一三极管Q11的基极与第十一电阻的R11一端连接,第十一电阻R11的另一端与控制电路12连接,第十一三极管Q11的发射极连接直流电源VDD(高电平端),第十一三极管Q11的集电极通过第十二电阻R12分别与第十一电容C11的一端和第十三电阻R13的一端连接,第十二三极管Q12的基极分别与第十一电容C11的另一端和第十四电阻R14的一端连接,第十二三极管Q12的集电极分别与第十二电容C12的一端和第十五电阻R15的一端连接,第十五电阻R15的另一端与直流电源VDD连接,第十二电容C12的另一端通过第十七电阻R17分别与第十三MOS管Q13的栅极、第十一稳压管D11的阴极和第十四MOS管Q14的栅极连接,第十二三极管Q12的发射极通过第十六电阻R16分别与第十三MOS管Q13的源极、第十一稳压管D11的阳极和第十四MOS管Q14的源极连接,第十一稳压管D11的阳极还与第十四电阻R14的另一端连接,第十三电阻R13的另一端分别与第十三MOS管Q13的漏极和太阳能电池的负极PV-连接,第十四MOS管Q14的漏极与蓄电池的负极BAT-连接,太阳能电池的正极PV+与蓄电池的正极BAT+连接。
本实施例中,由控制电路12的PWM控制信号来实现对蓄电池BAT充电的管理。当PWM控制信号为低电平时,第十一三极管Q11和第十二三极管Q12截止,第十三MOS管Q13和第十四MOS管Q14在直流电源VDD的作用下,处于导通状态,此时蓄电池的负极BAT-与太阳能电池的负极PV-接通,完成对蓄电池BAT的充电。当PWM控制信号为高电平时,第十一三极管Q11和第十二三极管Q12导通,第十三MOS管Q13和第十四MOS管Q14截止,蓄电池的负极BAT-与太阳能电池的负极PV-断开,蓄电池BAT未充电。该充电电路11与传统的使用快恢复二极管的电路相比,具有更高的充电效率。其提高了太阳能电池PV对蓄电池BAT的充电效率,增加了用电时间。
图3为本实施例中控制电路的电路原理图。图3中,控制电路12包括太阳能控制端口XS1、第三十一二极管D31、第三十二二极管D32、第三十三二极管D33、第三十四稳压管D34、第三十五二极管D35、第三十六二极管D36、第三十七稳压管D37、第三十一电阻R31、第三十二电阻R32、第三十三电阻R33、第三十一电容C31、第三十三电容C33、第三十一MOS管Q31、集成稳压芯片U31和第三十一电感L31,其中,第三十一二极管D31和第三十三二极管D33未防反二极管,第三十二二极管D32为可控硅整流管,第三十二电阻R32为限流电阻,用于进行过流保护。本实施例中,第三十一MOS管Q31为N沟道MOS管,当然,在本实施例的一些情况下,第三十一MOS管Q31也可以为P沟道MOS管,但这时控制电路的结构要相应发生变化。
本实施例中,太阳能端口XS1的第一引脚和第二引脚均与太阳能电池的正极PV+连接,太阳能端口XS1的第三引脚和第四引脚均与太阳能电池PV-的负极连接,太阳能端口XS1的第二引脚还分别与第三十一二极管D31的阳极和第三十二二极管D32的阳极连接,第三十二二极管D32的阴极和第三十三二极管D33的阳极均与蓄电池的正极BAT+连接,第三十一二极管D31的阴极分别与第三十三二极管D32的阴极、第三十四稳压管D34的阴极、第三十三电阻R33的一端、第三十一电容C31的正极和集成稳压芯片U31的第一引脚连接,第三十四稳压管D34的阳极分别与第三十一电阻R31的一端和第三十二电阻R32的一端连接。第三十一电容C31可以增加电路的稳定性,消除电源波动。
本实施例中,第三十一MOS管Q31的栅极与第三十二电阻R32的另一端连接,第三十一MOS管Q31的源极分别与第三十一电阻R31的另一端、第三十五二极管D35的阳极和第三十六二极管D36的阳极连接,第三十五二极管D35的阴极与太阳能端口XS1的第四引脚连接,第三十六二极管D36的阴极接地,第三十一MOS管Q31的漏极分别与第三十三电阻R33的另一端和集成稳压芯片U31的第五引脚连接,第三十一电容C31的负极接地,集成稳压芯片U6的第三引脚接地,集成稳压芯片U31的第二引脚分别与第三十一电感L31的一端和第三十七稳压管D37的阴极连接,第三十七稳压管D37的阳极接地,第三十一电感L31的另一端通过第三十三电容C33接地,集成稳压芯片U31的第四引脚连接直流电源VDD。
太阳能电池的正极PV+经过第三十二二极管D32输出到蓄电池正极BAT+,太阳能电池的正极PV+经过第三十一二极管D31、蓄电池正极BAT+经过第三十三二极管D33连接到第三十四稳压管D34的阴极,经过第三十四稳压管D34和第三十一电阻R31后分别到达接地端GND和太阳能电池的负极PV-,为了防止电流逆向,在第三十一电阻R31接地和连接至太阳能电池的负极PV-之前分别设有第三十五二极管D35、第三十六二极管D36,太阳能电池的正极PV+和蓄电池的正极BAT+分别通过第三十一二极管D31和第三十三二极管D33后都连接到集成稳压芯片U31的第一引脚为其提供工作电源。
集成稳压芯片U31的第五引脚为低电平时,系统进行工作;集成稳压芯片U31的第五引脚为高电平时,系统不工作;第三十一MOS管Q31的栅极和源极之间电压大于VDD时(例如:当VDD等于5V时,即Vgs>5V),第三十一MOS管Q31导通,此时第三十一MOS管Q31的漏极与源极导通,集成稳压芯片U31的第五引脚接地,为低电平,系统处于工作状态;第三十一MOS管Q31的栅极和源极之间电压小于VDD时(例如:当VDD等于5V时,即Vgs<5V),第三十一MOS管Q31截止,第三十一MOS管Q31截止的漏极与源极截止,集成稳压芯片U31的第五引脚为高电平,系统处于不工作状态。第三十四稳压管D34在合理反向电流范围内自身电压恒定。本发明可以有效防雷、提高系统安全性能、蓄电池进行充电的同时又可以保证蓄电池的活性、能延长蓄电池的寿命、能提高对蓄电池的充电效率、延长蓄电池的用电时间、具有较好的自启动能力、避免出现死循环状态。
本实施例中,控制电路12还包括第三十二电容C32,第三十二电容C32的一端与第三十一MOS管Q31的漏极连接,第三十二电容C32的另一端与集成稳压芯片U31的第五引脚连接。第三十二电容C32用于防止第三十一MOS管Q31和集成稳压芯片U31之间的干扰。
本实施例中,控制电路12还包括第三十四电阻R34,第三十四电阻R34的一端与第三十一二极管D31的阴极连接,第三十四电阻R34的另一端与集成稳压芯片U31的第一引脚连接。本实施例中,控制电路12还包括第三十五电阻R35,第三十五电阻R35的一端与集成稳压芯片U31的第四引脚连接,第三十五电阻R35的另一端与直流电源VDD连接。第三十四电阻R34和第三十五电阻R35均为限流电阻,用于进行过流保护。
本实施例中,控制电路12还包括第三十六电阻R36,第三十六电阻R36的一端与集成稳压芯片U31的第二引脚连接,第三十六电阻R36的另一端与第三十一电感L31的一端连接。第三十六电阻R36限流电阻,用于进行过流保护。
图4为本实施例中放电电路的电路原理图。图4中,放电电路13包括第四十一熔断器F41、第四十一开关S41、第四十一二极管D41、第四十一继电器J41、第四十一电阻R41、第四十二电阻R42、第四十三电阻R43、第四十四电阻R44、第四十五放电电阻R45、第四十一电容C41、第四十二电容C42、第四十三电解电容C43、第四十一三极管Q41、第四十二三极管Q42、第四十三MOS管Q43、第四十四MOS管Q44、第四十五MOS管Q45、第四十六MOS管Q46、第四十七MOS管Q47和第四十八MOS管Q48,其中,第四十一电容C41和第四十二电容C42均为耦合电容,第四十一电容C41用于防止前端对第四十一三极管的干扰,第四十二电容C42用于防止第四十一三极管Q41和第四十二三极管Q42之间的干扰。第四十四电阻R44为限流电阻,用于过流保护。第四十五放电电阻R45相对于其他电阻,将比其他电阻的阻值小很多。
本实施例中,第四十一三极管Q41和第四十二三极管Q42均为NPN型三极管。第四十三MOS管Q43、第四十四MOS管Q44、第四十五MOS管Q45、第四十六MOS管Q46、第四十七MOS管Q47和第四十八MOS管Q48均为N沟道MOS管。当然,在本实施例的一些情况下,第四十一三极管Q41和第四十二三极管Q42也可以均为PNP型三极管,第四十三MOS管Q43、第四十四MOS管Q44、第四十五MOS管Q45、第四十六MOS管Q46、第四十七MOS管Q47和第四十八MOS管Q48也可以均为P沟道MOS管,但这时放电电路的结构要相应发生变化。
本实施例中,第四十一熔断器F41的一端与蓄电池的正极BAT+连接,第四十一熔断器F41的另一端通过第四十一开关S41与第四十一二极管D41的阳极连接,蓄电池的正极BAT+还通过第四十一继电器J41的触点分别与第四十三电阻R43的一端、第四十五放电电阻R45的一端、第四十三电解电容C43的一端、第四十三MOS管Q43的漏极、第四十五MOS管Q45的漏极、第四十七MOS管Q47的漏极连接,第四十一二极管D41的阴极通过第四十一电阻R41分别与第四十一电容C41的一端和第四十二电阻R42的一端连接,第四十二电阻R42的另一端接地,第四十一三极管Q41的基极与第四十一电容C41的另一端连接,第四十一三极管Q41的集电极分别与第四十二电容C42的一端和第四十三电阻R43的另一端连接,第四十一三极管Q41的发射极通过第四十四电阻R44接地,第四十二三极管Q42的基极与第四十二电容C42的另一端接地,第四十二三极管Q42的集电极与第四十五放电电阻R45的另一端连接,第四十二三极管Q42的发射极接地,第四十三电解电容C43的另一端接地,第四十三MOS管Q43的源极与第四十四MOS管Q44的漏极连接,第四十五MOS管Q45的源极与第四十六MOS管Q46的漏极连接,第四十七MOS管Q47的源极与第四十八MOS管Q48的漏极连接,第四十四MOS管Q44的源极、第四十六MOS管Q46的源极和第四十八MOS管Q48的源极均接地,第四十一继电器J41受第四十一开关S41的控制,也就是说,当第四十一开关S41没有闭合时,第四十一继电器J41也不会闭合,只有在第四十一开关S41闭合后第四十一继电器J41才可能受控闭合。
本实施例中,当闭合第四十一开关S41时,控制电路12上电,控制电路12检测系统的基本参数,若无故障,则控制第四十一继电器J41吸合,也就是第四十一继电器J41受控闭合,蓄电池BAT提供的电源经过第四十一电阻R41和第四十二电阻R42分压,使得第四十一三极管Q41打开,因此第四十二三极管Q42截止,第四十五放电电阻R45与第四十三电解电容C43断开,因此在该放电电路13工作的情况下,第四十五放电电阻R45不消耗电能。当第四十一开关S41断开,第四十一继电器J41受控断开,则蓄电池BAT提供的电源切断,第四十一三极管Q41截止,第四十三电解电容C43上的余电经过第四十三电阻R43将第四十二三极管Q42打开,此时第四十五放电电阻R45与第四十三电解电容C43并联,通过第四十五放电电阻R45和第四十三电解电容C43实现自动放电。
由于放电电路13采用了第四十一开关S41和第四十一继电器J41实现了在系统工作时断开第四十五放电电阻R45,系统断电时将第四十五放电电阻R45与第四十三电解电容C43并联,因此第四十五放电电阻R45可以选用阻值较小的放电电阻,使得该放电电路13在系统工作时不消耗电能,减少发热,节约系统能,同时由于使用阻值较小的放电电阻,可以使放电时间大大缩短,提高系统的安全性能。
本实施例中,该放电电路13还包括第四十六电阻R46,第四十二三极管Q42的发射极通过第四十六电阻R46接地。第四十六电阻R46为限流电阻,用于进行过流保护。
本实施例中,该放电电路13还包括第四十七电阻R47,第四十三MOS管Q43的源极通过第四十七电阻R47与第四十四MOS管Q44的漏极连接。该放电电路13还包括第四十八电阻R48,第四十五MOS管Q45的源极通过第四十八电阻R48与第四十六MOS管Q46的漏极连接。该放电电路13还包括第四十九电阻R49,第四十七MOS管Q47的源极通过第四十九电阻R49与第四十八MOS管Q48的漏极连接。第四十七电阻R47、第四十八电阻R48和第四十九电阻R49均为限流电阻,用于进行过流保护。
总之,本发明由于设有防雷电路14,这样就可以有效防雷,提高系统安全性能;另外,蓄电池BAT进行充电的同时又可以保证蓄电池BAT的活性,避免了蓄电池BAT发生沉积,从而较大程度的延长了蓄电池BAT的寿命,充电电路11的电压损失较传统使用二极管的充电电路降低近一半,提高了太阳能电池PV对蓄电池BAT的充电效率,充电效率较非PWM高3%-6%,延长了蓄电池BAT的用电时间,控制电路12具有良好的自启动能力,避免了现有技术中常出现的死循环状态,放电电路13中选用阻值较小的放电电阻,使得该放电电路13在系统工作时不消耗电能,减少发热,节约系统能耗,由于使用阻值较小的放电电阻,同时可以使放电时间大大缩短,提高了系统的安全性能。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (7)
1.一种具有充电、控制和自动放电的太阳能空调系统,其特征在于,包括太阳能电池、太阳能控制器、蓄电池和变频空调器,所述太阳能控制器包括充电电路、控制电路、防雷电路和放电电路,所述变频空调器包括逆变电路和压缩机,所述太阳能电池与所述充电电路连接,所述充电电路通过所述控制电路与所述放电电路连接,所述充电电路和放电电路还均与所述蓄电池连接,所述控制电路通过所述防雷电路与所述蓄电池连接,所述放电电路还通过所述逆变电路与所述压缩机连接;
所述充电电路包括第十一电阻、第十二电阻、第十三电阻、第十四电阻、第十五电阻、第十六电阻、第十七电阻、第十一电容、第十二电容、第十一稳压管、第十一三极管、第十二三极管、第十三MOS管和第十四MOS管,所述第十一三极管的基极与所述第十一电阻的一端连接,所述第十一电阻的另一端与所述控制电路连接,所述第十一三极管的发射极连接直流电源,所述第十一三极管的集电极通过所述第十二电阻分别与所述第十一电容的一端和第十三电阻的一端连接,所述第十二三极管的基极分别与所述第十一电容的另一端和第十四电阻的一端连接,所述第十二三极管的集电极分别与所述第十二电容的一端和第十五电阻的一端连接,所述第十五电阻的另一端与所述直流电源连接,所述第十二电容的另一端通过所述第十七电阻分别与所述第十三MOS管的栅极、第十一稳压管的阴极和第十四MOS管的栅极连接,所述第十二三极管的发射极通过所述第十六电阻分别与所述第十三MOS管的源极、第十一稳压管的阳极和第十四MOS管的源极连接,所述第十一稳压管的阳极还与所述第十四电阻的另一端连接,所述第十三电阻的另一端分别与所述第十三MOS管的漏极和所述太阳能电池的负极连接,所述第十四MOS管的漏极与所述蓄电池的负极连接,所述太阳能电池的正极与所述蓄电池的正极连接;
所述控制电路包括太阳能控制端口、第三十一二极管、第三十二二极管、第三十三二极管、第三十四稳压管、第三十五二极管、第三十六二极管、第三十七稳压管、第三十一电阻、第三十二电阻、第三十三电阻、第三十一电容、第三十三电容、第三十一MOS管、集成稳压芯片和第三十一电感,所述太阳能端口的第一引脚和第二引脚均与所述太阳能电池的正极连接,所述太阳能端口的第三引脚和第四引脚均与所述太阳能电池的负极连接,所述太阳能端口的第二引脚还分别与所述第三十一二极管的阳极和第三十二二极管的阳极连接,所述第三十二二极管的阴极和第三十三二极管的阳极均与所述蓄电池的正极连接,所述第三十一二极管的阴极分别与所述第三十三二极管的阴极、第三十四稳压管的阴极、第三十三电阻的一端、第三十一电容的正极和集成稳压芯片的第一引脚连接,所述第三十四稳压管的阳极分别与所述第三十一电阻的一端和第三十二电阻的一端连接,所述第三十一MOS管的栅极与所述第三十二电阻的另一端连接,所述第三十一MOS管的源极分别与所述第三十一电阻的另一端、第三十五二极管的阳极和第三十六二极管的阳极连接,所述第三十五二极管的阴极与所述太阳能端口的第四引脚连接,所述第三十六二极管的阴极接地,所述第三十一MOS管的漏极分别与所述第三十三电阻的另一端和集成稳压芯片的第五引脚连接,所述第三十一电容的负极接地,所述集成稳压芯片的第三引脚接地,所述集成稳压芯片的第二引脚分别与所述第三十一电感的一端和第三十七稳压管的阴极连接,所述第三十七稳压管的阳极接地,所述第三十一电感的另一端通过所述第三十三电容接地,所述集成稳压芯片的第四引脚连接所述直流电源;
所述放电电路包括第四十一熔断器、第四十一开关、第四十一二极管、第四十一继电器、第四十一电阻、第四十二电阻、第四十三电阻、第四十四电阻、第四十五放电电阻、第四十一电容、第四十二电容、第四十三电解电容、第四十一三极管、第四十二三极管、第四十三MOS管、第四十四MOS管、第四十五MOS管、第四十六MOS管、第四十七MOS管和第四十八MOS管,所述第四十一熔断器的一端与所述蓄电池的正极连接,所述第四十一熔断器的另一端通过所述第四十一开关与所述第四十一二极管的阳极连接,所述蓄电池的正极还通过所述第四十一继电器的触点分别与所述第四十三电阻的一端、第四十五放电电阻的一端、第四十三电解电容的一端、第四十三MOS管的漏极、第四十五MOS管的漏极、第四十七MOS管的漏极连接,所述第四十一二极管的阴极通过所述第四十一电阻分别与所述第四十一电容的一端和第四十二电阻的一端连接,所述第四十二电阻的另一端接地,所述第四十一三极管的基极与所述第四十一电容的另一端连接,所述第四十一三极管的集电极分别与所述第四十二电容的一端和第四十三电阻的另一端连接,所述第四十一三极管的发射极通过所述第四十四电阻接地,所述第四十二三极管的基极与所述第四十二电容的另一端接地,所述第四十二三极管的集电极与所述第四十五放电电阻的另一端连接,所述第四十二三极管的发射极接地,所述第四十三电解电容的另一端接地,所述第四十三MOS管的源极与所述第四十四MOS管的漏极连接,所述第四十五MOS管的源极与所述第四十六MOS管的漏极连接,所述第四十七MOS管的源极与所述第四十八MOS管的漏极连接,所述第四十四MOS管的源极、第四十六MOS管的源极和第四十八MOS管的源极均接地,所述第四十一继电器受所述第四十一开关的控制。
2.根据权利要求1所述的具有充电、控制和自动放电的太阳能空调系统,其特征在于,所述放电电路还包括第四十六电阻,所述第四十二三极管的发射极通过所述第四十六电阻接地。
3.根据权利要求2所述的具有充电、控制和自动放电的太阳能空调系统,其特征在于,所述放电电路还包括第四十七电阻,所述第四十三MOS管的源极通过所述第四十七电阻与所述第四十四MOS管的漏极连接。
4.根据权利要求3所述的具有充电、控制和自动放电的太阳能空调系统,其特征在于,所述放电电路还包括第四十八电阻,所述第四十五MOS管的源极通过所述第四十八电阻与所述第四十六MOS管的漏极连接。
5.根据权利要求4所述的具有充电、控制和自动放电的太阳能空调系统,其特征在于,所述放电电路还包括第四十九电阻,所述第四十七MOS管的源极通过所述第四十九电阻与所述第四十八MOS管的漏极连接。
6.根据权利要求1至5任意一项所述的具有充电、控制和自动放电的太阳能空调系统,其特征在于,所述第四十一三极管和第四十二三极管均为NPN型三极管。
7.根据权利要求1至5任意一项所述的具有充电、控制和自动放电的太阳能空调系统,其特征在于,所述第四十三MOS管、第四十四MOS管、第四十五MOS管、第四十六MOS管、第四十七MOS管和第四十八MOS管均为N沟道MOS管。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610727001.5A CN106208333A (zh) | 2016-08-25 | 2016-08-25 | 具有充电、控制和自动放电的太阳能空调系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610727001.5A CN106208333A (zh) | 2016-08-25 | 2016-08-25 | 具有充电、控制和自动放电的太阳能空调系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106208333A true CN106208333A (zh) | 2016-12-07 |
Family
ID=57524941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610727001.5A Pending CN106208333A (zh) | 2016-08-25 | 2016-08-25 | 具有充电、控制和自动放电的太阳能空调系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106208333A (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201854094U (zh) * | 2010-09-27 | 2011-06-01 | 天津市松正电动科技有限公司 | 自动放电电路 |
CN202076807U (zh) * | 2010-11-25 | 2011-12-14 | 江苏银佳企业集团有限公司 | 太阳能充电电路 |
CN204068347U (zh) * | 2014-08-11 | 2014-12-31 | 安徽四创电子股份有限公司 | 一种太阳能控制电路 |
CN205195394U (zh) * | 2015-04-28 | 2016-04-27 | 周磊 | 一种具有防雷太阳能控制器的太阳能空调系统 |
-
2016
- 2016-08-25 CN CN201610727001.5A patent/CN106208333A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201854094U (zh) * | 2010-09-27 | 2011-06-01 | 天津市松正电动科技有限公司 | 自动放电电路 |
CN202076807U (zh) * | 2010-11-25 | 2011-12-14 | 江苏银佳企业集团有限公司 | 太阳能充电电路 |
CN204068347U (zh) * | 2014-08-11 | 2014-12-31 | 安徽四创电子股份有限公司 | 一种太阳能控制电路 |
CN205195394U (zh) * | 2015-04-28 | 2016-04-27 | 周磊 | 一种具有防雷太阳能控制器的太阳能空调系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106300598A (zh) | 具有充电、控制和放电功能的太阳能控制系统 | |
CN105811502B (zh) | 一种基于oz8952芯片的改进型锂电池组管理电路 | |
WO2017020782A1 (zh) | 一种电池充放电控制电路及电池充放电系统 | |
CN106300605A (zh) | 具有放电功能的太阳能控制系统 | |
CN207612217U (zh) | 一种满足功能安全的电机控制器放电控制电路 | |
CN106160174A (zh) | 具有控制和放电功能的太阳能空调控制系统 | |
CN206226786U (zh) | 一种智能应急灯电路 | |
CN106080238B (zh) | 一种电动汽车智能充电系统 | |
CN106208333A (zh) | 具有充电、控制和自动放电的太阳能空调系统 | |
CN106300607A (zh) | 具有充电、控制和h桥逆变的太阳能空调系统 | |
CN210861925U (zh) | 一种冰箱压缩机延时保护电路 | |
CN208423844U (zh) | 一种低功耗蓄电池欠压保护电路 | |
CN106300606A (zh) | 太阳能空调控制系统 | |
CN106208322A (zh) | 具有控制和放电功能的太阳能控制系统 | |
CN101707266B (zh) | 一种充放电控制电路 | |
CN105871045A (zh) | 一种用于太阳能控制系统中的充电电路 | |
CN106208323A (zh) | 具有控制和自放电功能的太阳能空调系统 | |
CN106130160A (zh) | 具有充电、控制和放电功能的太阳能控制系统 | |
CN106253440A (zh) | 具有充放电和控制功能的太阳能空调控制系统 | |
CN106253437A (zh) | 具有充电、控制和自动放电的太阳能空调控制系统 | |
CN220457289U (zh) | 一种电源软启动电路及其设备 | |
CN106208327A (zh) | 具有充电、控制和光伏逆变功能的太阳能空调系统 | |
CN106300599A (zh) | 具有充电控制的太阳能空调系统 | |
CN106208326A (zh) | 具有自动放电的太阳能空调系统 | |
CN221380571U (zh) | 一种充放电异口的电池包充放电控制电路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20161207 |
|
RJ01 | Rejection of invention patent application after publication |