CN106203684A - A kind of parameter identification for tire magic formula and optimization method - Google Patents
A kind of parameter identification for tire magic formula and optimization method Download PDFInfo
- Publication number
- CN106203684A CN106203684A CN201610498215.XA CN201610498215A CN106203684A CN 106203684 A CN106203684 A CN 106203684A CN 201610498215 A CN201610498215 A CN 201610498215A CN 106203684 A CN106203684 A CN 106203684A
- Authority
- CN
- China
- Prior art keywords
- particle
- tire
- parameters
- formula
- magic formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C99/00—Subject matter not provided for in other groups of this subclass
- B60C99/006—Computer aided tyre design or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/15—Vehicle, aircraft or watercraft design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/004—Artificial life, i.e. computing arrangements simulating life
- G06N3/006—Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Business, Economics & Management (AREA)
- Evolutionary Computation (AREA)
- Software Systems (AREA)
- Computer Hardware Design (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Artificial Intelligence (AREA)
- Strategic Management (AREA)
- Human Resources & Organizations (AREA)
- Economics (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Operations Research (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Mechanical Engineering (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Development Economics (AREA)
- Biomedical Technology (AREA)
- Game Theory and Decision Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Entrepreneurship & Innovation (AREA)
- Marketing (AREA)
- Computational Linguistics (AREA)
- Quality & Reliability (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Automation & Control Theory (AREA)
- Aviation & Aerospace Engineering (AREA)
- Medical Informatics (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
Abstract
本发明属于车辆动力学参数辨识技术领域,具体涉及一种用于轮胎魔术公式的参数辨识及优化方法,包括以下步骤:1)按照汽车轮胎动力学试验进行试验操作,基于经验型魔术公式轮胎模型,针对不同工况采集公式中相应的自变量与因变量的数据;2)将步骤1)所采集得到的数据通过非线性最小二乘法先初次辨识轮胎魔术公式中的主要参数;3)在步骤2)的基础上运用粒子群算法对初次辨识得到的参数进行深度优化,得到准确度、精确度更高的参数。通过该方法辨识,可高效快速地辨识出魔术公式的参数,易于实现,普适性好。
The invention belongs to the technical field of vehicle dynamics parameter identification, and specifically relates to a parameter identification and optimization method for tire magic formula, comprising the following steps: 1) performing test operation according to automobile tire dynamics test, based on empirical magic formula tire model , collect the data of the corresponding independent variable and dependent variable in the formula according to different working conditions; 2) use the data collected in step 1) to identify the main parameters in the tire magic formula for the first time through the nonlinear least square method; 3) in the step On the basis of 2), the particle swarm algorithm is used to deeply optimize the parameters obtained from the initial identification to obtain parameters with higher accuracy and precision. Through the identification method, the parameters of the magic formula can be identified efficiently and quickly, which is easy to implement and has good universality.
Description
技术领域technical field
本发明属于车辆动力学参数辨识技术领域,涉及一种用于轮胎魔术公式的参数辨识及优化方法。The invention belongs to the technical field of vehicle dynamics parameter identification, and relates to a parameter identification and optimization method for a tire magic formula.
背景技术Background technique
随着汽车产业的迅速壮大以及市场汽车保有量的大幅提高,同时车辆技术和计算机信息技术的快速发展,无论是对于传统汽车还是新能源汽车,车辆设计越来越偏向低成本高效化、信息化等,信息技术推动着现代汽车设计技术的发展,加工制造的智能化、精细化以及快速化,提高了汽车制造技术的科技含量,使传统的制造技术发生质的改变。特别是计算机仿真技术在汽车工业中的应用,极大方便了产品的设计研发,提高了产品的质量,给汽车企业以及相关科研机构提供有效的帮助。汽车仿真分析技术可对汽车产品的性能及其可制造性进行预测和分析,从而缩短产品的设计与制造周期,降低产品的开发成本,提高研发设计系统快速响应市场变化的能力。With the rapid growth of the automobile industry and the substantial increase in the number of cars in the market, and the rapid development of vehicle technology and computer information technology, whether it is for traditional cars or new energy vehicles, vehicle design is increasingly biased towards low-cost, high-efficiency, and informatization. etc. Information technology promotes the development of modern automobile design technology, and the intelligent, refined and rapid processing and manufacturing have improved the technological content of automobile manufacturing technology and brought about a qualitative change in traditional manufacturing technology. In particular, the application of computer simulation technology in the automobile industry greatly facilitates product design and development, improves product quality, and provides effective assistance to automobile companies and related scientific research institutions. Automotive simulation analysis technology can predict and analyze the performance and manufacturability of automotive products, thereby shortening product design and manufacturing cycles, reducing product development costs, and improving the ability of R&D and design systems to quickly respond to market changes.
轮胎是车辆与道路保持直接接触的唯一的关键部件,是汽车的重要组成部分,作为汽车与道路面的支承和传递单元,它的力学特性是研究汽车动力学的基础。轮胎所受到的纵向力、侧向力、垂直载荷以及回正力矩对车辆的动力性、操纵稳定性、制动稳定性、乘坐舒适性以及行驶安全性起重要作用。建立合理的轮胎动力学模型对产品的开发和车辆整车性能分析有关键作用,所以轮胎模型的精度可直接接影响到汽车产品的后续研究中。Tire is the only key component that maintains direct contact between the vehicle and the road, and is an important part of the car. As a supporting and transmitting unit between the car and the road surface, its mechanical properties are the basis for studying car dynamics. The longitudinal force, lateral force, vertical load and righting moment on the tire play an important role in the dynamic performance, handling stability, braking stability, ride comfort and driving safety of the vehicle. Establishing a reasonable tire dynamics model plays a key role in product development and vehicle performance analysis, so the accuracy of the tire model can directly affect the follow-up research of automotive products.
魔术公式轮胎模型是一种基于试验数据得到的经验型模型公式,可以准确的描述轮胎的侧偏性能,被广泛应用与车辆动力学的研究中。魔术公式是基于轮胎试验数据,用三角函数的组合拟合得到的公式,这一系列形式相同的公式可完整地表达轮胎所受纵向力、侧向力、回正力矩、翻转力矩,以及阻力矩分别和纵向力、侧向力的联合作用工况。The magic formula tire model is an empirical model formula based on test data, which can accurately describe the cornering performance of tires, and is widely used in the research of vehicle dynamics. The magic formula is based on the tire test data and fitted with a combination of trigonometric functions. This series of formulas in the same form can completely express the longitudinal force, lateral force, aligning moment, turning moment, and resistance moment on the tire. Respectively and the joint action condition of longitudinal force and lateral force.
魔术公式的一般表达式为:The general expression of the magic formula is:
Y(x)=Dsin(Carctan(Bx-E(Bx-arctan(Bx))))+……Y(x)=Dsin(Carctan(Bx-E(Bx-arctan(Bx))))+...
其中Y(x)可以是侧向力,也可以是回正力矩或纵向力,x可以在不同工况下分别表示轮胎的侧偏角或纵向滑移率,公式的系数B、C、D、E等由轮胎的垂直载荷和外倾角确定。可见魔术公式参数多,高度非线性化,所以对其中参数的辨识显得较为困难但尤为重要。目前,对于一般的魔术公式参数辨识问题多采用遗传算法进行研究,遗传算法虽然也可进行辨识,可以在全局范围内逼近最优解,但局部搜索能力较差,收敛速度较慢,算法实时性欠佳。Among them, Y(x) can be the lateral force, the righting moment or the longitudinal force, and x can respectively represent the side slip angle or the longitudinal slip rate of the tire under different working conditions, and the coefficients B, C, D, E etc. are determined by the vertical load and camber angle of the tire. It can be seen that the magic formula has many parameters and is highly nonlinear, so the identification of the parameters is difficult but particularly important. At present, the genetic algorithm is often used for research on the general magic formula parameter identification problem. Although the genetic algorithm can also be identified and can approach the optimal solution in the global range, but the local search ability is poor, the convergence speed is slow, and the algorithm is real-time. Poor.
发明内容Contents of the invention
本发明的目的在于克服现有技术的不足之处,提出一种用于轮胎魔术公式的参数辨识及优化方法。该方法目的性强,收敛速度非常快,并且求解精度高。The purpose of the present invention is to overcome the deficiencies of the prior art, and propose a parameter identification and optimization method for tire magic formula. This method has strong purpose, very fast convergence speed, and high solution accuracy.
为了使用实际测量数据拟合出魔术公式中的参数并进行优化,本发明采用以下技术方案:In order to use actual measurement data to fit and optimize the parameters in the magic formula, the present invention adopts the following technical solutions:
一种用于轮胎魔术公式的参数辨识及优化方法,包括以下步骤:A parameter identification and optimization method for tire magic formula, comprising the following steps:
1)按照汽车轮胎动力学试验进行试验操作,基于经验型魔术公式轮胎模型,针对不同工况采集公式中相应的自变量与因变量的数据;1) Carry out the test operation according to the automobile tire dynamics test, based on the empirical magic formula tire model, collect the data of the corresponding independent variable and dependent variable in the formula for different working conditions;
2)将步骤1)所采集得到的数据通过非线性最小二乘法先初次辨识轮胎魔术公式中的主要参数;2) Using the data collected in step 1) to identify the main parameters in the tire magic formula for the first time through the nonlinear least squares method;
3)在步骤2)的基础上运用粒子群算法对初次辨识得到的参数进行深度优化,实现魔术公式参数的自适应调整,得到优化后的辨识参数值。3) On the basis of step 2), the particle swarm optimization algorithm is used to deeply optimize the parameters obtained from the initial identification, to realize the adaptive adjustment of the parameters of the magic formula, and to obtain the optimized identification parameter values.
作为本发明的进一步改进,步骤1)具体为:对轮胎进行不同工况下相应力学特性的试验,通过试验中传感器检测并采集得各工况下轮胎模型魔术公式中的Y(x)和x数据,包括侧向力、回正力矩或纵向力,以及不同工况下分别对应的轮胎的侧偏角或纵向滑移率。As a further improvement of the present invention, step 1) is specifically: carry out the test of the corresponding mechanical properties of the tire under different working conditions, and obtain Y(x) and x in the magic formula of the tire model under each working condition through sensor detection and collection in the test Data, including lateral force, righting moment or longitudinal force, and the side slip angle or longitudinal slip rate of the corresponding tire under different working conditions.
作为本发明的进一步改进,步骤2)中的非线性最小二乘法是通过泰勒级数将公式展开为线性模型,其包括一阶展开式,高阶展开式均归入误差项,然后再进行最小二乘回归,将得到的估计量作为新的展开点,再对线性部分进行估计,如此往复迭代,直至收敛。As a further improvement of the present invention, the nonlinear least squares method in step 2) expands the formula into a linear model through Taylor series, which includes a first-order expansion, and high-order expansions are all included in the error term, and then the minimum The quadratic regression uses the obtained estimator as a new expansion point, and then estimates the linear part, and iterates until convergence.
作为本发明的进一步改进,步骤3)中的粒子群算法是指首先在可行解的范围内初始化一群粒子,每个粒子代表一个解;用位置和速度来表示该粒子的特征,引入适应度函数来计算粒子的适应度值来表示粒子的优劣;在解的空间内,通过跟踪个体极值和群体极值来更新个体位置;粒子每更新一次位置,就重新计算一次适应度值,通过比较新粒子的适应度值和个体极值、群体极值的适应度值更新个体极值和群体极值的位置;As a further improvement of the present invention, the particle swarm algorithm in step 3) refers to initializing a group of particles within the scope of feasible solutions, each particle represents a solution; the characteristics of the particles are represented by position and speed, and the fitness function is introduced To calculate the fitness value of the particle to represent the quality of the particle; in the solution space, update the individual position by tracking the individual extremum and the group extremum; every time the particle updates its position, recalculate the fitness value, and compare The fitness value of the new particle, the individual extremum, and the fitness value of the group extremum update the positions of the individual extremum and the group extremum;
其中,个体极值是指个体所经历位置中适应度值最优位置,群体极值是种群中所有粒子搜索到的适应度最优位置。Among them, the individual extremum refers to the optimal position of the fitness value in the position experienced by the individual, and the group extremum is the optimal position of fitness searched by all particles in the population.
作为本发明的进一步改进,粒子群算法得具体步骤如下:As a further improvement of the present invention, the specific steps of the particle swarm algorithm are as follows:
3.1)进行初始化,设置粒子群算法中初始化因子;3.1) Initialize and set the initialization factor in the particle swarm optimization algorithm;
3.2)粒子适应度值计算;3.2) Particle fitness value calculation;
3.3)在每次迭代过程中,粒子通过搜索个体极值和群体极值进行粒子的速度更新和位置更新;3.3) In each iteration process, the particle updates the speed and position of the particle by searching for the individual extremum and the group extremum;
3.4)不断更新粒子速度和位置,并且根据新粒子的适应度值更新个体极值和群体极值;同时根据初始化中设定的迭代次数阈值和设定的循环条件进行循环;3.4) Continuously update the particle velocity and position, and update the individual extremum and group extremum according to the fitness value of the new particle; at the same time, perform a loop according to the iteration threshold and the set loop conditions set in the initialization;
若迭代次数达到阈值则迭代结束,否则转入步骤3.3),依次循环更新各粒子的速度和位置,最后得到优化后参数值。If the number of iterations reaches the threshold, the iteration ends, otherwise, go to step 3.3), and update the velocity and position of each particle in turn, and finally obtain the optimized parameter value.
作为本发明的进一步改进,步骤2)具体算法如下:As a further improvement of the present invention, step 2) specific algorithm is as follows:
设模型中存在(k+1)个参数β=(β0,β1,K,βk);Suppose there are (k+1) parameters in the model β=(β 0 ,β 1 ,K,β k );
首先选择一组初值:β0=(β0,0,β1,0,K,βk,0),将f(X,β)在β0点展开,可以得到:First select a set of initial values: β 0 = (β 0,0 ,β 1,0 ,K,β k,0 ), and expand f(X,β) at β 0 to get:
f(X,β)=f(X,β0)+g(0)′(β-β(0))+Rf(X,β)=f(X,β 0 )+g (0) ′(β-β (0) )+R
其中g(0)表示一阶导数在β0=(β0,0,β1,0,K,βk,0)时取值,R为高阶部分,但只保留β的线性部分,将高阶部分归入误差项,可以得到:Where g (0) means that the first-order derivative takes value when β 0 = (β 0,0 ,β 1,0 ,K,β k,0 ), R is the high-order part, but only the linear part of β is reserved, the The high-order part is subsumed into the error term, and it can be obtained:
y=f(X,β)+u=f(X,β0)+g(0)′(β-β(0))+R+uy=f(X,β)+u=f(X,β 0 )+g (0) ′(β-β (0) )+R+u
=g(0)′β+f(X,β0)-g(0)′β+u1 =g (0) ′β+f(X,β 0 )-g (0) ′β+u 1
其中,随机扰动项u1包含u和泰勒级数展开式中的高阶部分,得到新的回归模型:Among them, the random disturbance term u1 contains u and the high - order part in the Taylor series expansion, and a new regression model is obtained:
y-f(X,β0)+g(0)′β(0)=g(0)′β+uyf(X,β 0 )+g (0) ′β (0) =g (0) ′β+u
新的目标函数为模型的最小二乘估计量为:The new objective function is The least squares estimator of the model is:
β1=(g(0)g(0)′)-1g(0)(y-f(X,β0)+g(0)′β(0))β 1 =(g (0) g (0) ′) -1 g (0) (yf(X,β 0 )+g (0) ′β (0) )
=β(0)+(g(0)g(0)′)g(0)(y-f(X,β(0)))=β (0) +(g (0) g (0) ′)g (0) (yf(X,β (0) ))
因此非线性最小二乘迭代估计式为:Therefore, the nonlinear least squares iterative estimation formula is:
βj+1=β(j)+(g(j)g(j)′)g(j)(y-f(X,β(j)))。β j+1 = β (j) + (g (j) g (j) ′)g (j) (yf(X,β (j) )).
作为本发明的进一步改进,步骤3.1)根据需要辨识的魔术公式轮胎模型对粒子种群进行初始化:As a further improvement of the present invention, step 3.1) initializes the particle population according to the magic formula tire model that needs to be identified:
在一个D维的搜索空间中,由n个粒子组成的种群X=(X1,X2,L,Xn);其中需要设置的参数有粒子群内粒子数目n、加速度因子c1、c2、惯重权数ω和迭代次数k;In a D-dimensional search space, a population X=(X 1 ,X 2 ,L,X n ) composed of n particles; the parameters that need to be set include the number of particles in the particle swarm n, acceleration factors c 1 , c 2. Inertia weight ω and number of iterations k;
其中,第i个粒子表示为一个D维的向量Xi=(Xi1,Xi2,L,XiD)T,代表第i个粒子在D维搜索空间中的位置,也代表模型的一个潜在解;Among them, the i-th particle is expressed as a D-dimensional vector Xi = (X i1 , X i2 ,L,X iD ) T , which represents the position of the i-th particle in the D-dimensional search space and also represents a potential untie;
粒子初始位置参考非线性最小二乘法得到的参数进行初始化。The initial position of the particle is initialized with reference to the parameters obtained by the nonlinear least squares method.
作为本发明的进一步改进,步骤3.2)具体步骤如下:As a further improvement of the present invention, the specific steps of step 3.2) are as follows:
根据目标函数计算出每个粒子位置Xi对应的适应度值,第i个粒子的速度为:According to the objective function, the fitness value corresponding to each particle position X i is calculated, and the speed of the i-th particle is:
Vi=(Vi1,Vi2,L,ViD)T,V i =(V i1 ,V i2 ,L,V iD ) T ,
其个体极值为Pi=(Pi1,Pi2,L,PiD)T,种群的群体极值为Pg=(Pg1,Pg2,L,PgD)T;The individual extremum value is P i =(P i1 ,P i2 ,L,P iD ) T , and the population extremum value is P g =(P g1 ,P g2 ,L,P gD ) T ;
对于一般魔术公式,设置适应度函数如下:For the general magic formula, set the fitness function as follows:
Y(x)=Dsin(Carctan(Bx-E(Bx-arctan(Bx))))+……Y(x)=Dsin(Carctan(Bx-E(Bx-arctan(Bx))))+...
其中,x为方程输入,Y(x)为方程输出,B、C、D、E为待拟合的参数;Among them, x is the input of the equation, Y(x) is the output of the equation, and B, C, D, E are the parameters to be fitted;
根据步骤2)得到的魔术公式的参数通过粒子群计算可以得出:The parameters of the magic formula obtained according to step 2) can be obtained through particle swarm calculation:
Y(xj)=Disin(Ciarctan(Bixj-Ei(Bixj-arctan(Bixj))))+……Y(x j )=D i sin(C i arctan(B i x j -E i (B i x j -arctan(B i x j ))))+……
其中,Di、Ci、Bi、Ei等表示步骤2)得到的参数值,xj表示方程第j个输入值,Y(xj)表示方程输出值;结合试验数据引入目标函数是每一次优化辨识结果的参数所拟合函数的输出值与实际测量值之差的均方根:Among them, D i , C i , Bi , E i , etc. represent the parameter values obtained in step 2), x j represents the jth input value of the equation, and Y(x j ) represents the output value of the equation; the objective function introduced in combination with the test data is The root mean square of the difference between the output value of the function fitted by the parameters of each optimized identification result and the actual measured value:
其中,n为试验数据的个数,Bi,CiDi,EiL为第i次搜索所对应的参数,xj,Y(xj)分别为第j次试验数据的测试结果。Among them, n is the number of test data, B i , C i D i , E i L are the parameters corresponding to the i-th search, x j , Y(x j ) are the test results of the j-th test data respectively.
作为本发明的进一步改进,步骤3.3)中,As a further improvement of the present invention, in step 3.3),
速度更新公式为:Vid(k+1)=ω×Vid(k)+c1r1×[Pid(k)-Xid(k)]+c2r2×[Pgd(k)-Xgd(k)];The velocity update formula is: V id (k+1)=ω×V id (k)+c 1 r 1 ×[P id (k)-X id (k)]+c 2 r 2 ×[P gd (k )-X gd (k)];
位置更新公式为:Xid(k+1)=Xid(k)+Vid(k+1);The location update formula is: X id (k+1)=X id (k)+V id (k+1);
其中,ω为惯重权数,d=1,2,L,D;i=1,2,L,n;k为当前的迭代次数;表示编号为id的的粒子当前迭代次数为k的速度;表示编号为id的例子当前迭代次数为k的位置;表示当前迭代次数为k时第d个种群的极值;c1、c2是非负的常数,称成为加速度因子;r1和r2是分布于[0,1]区间的随机数。Among them, ω is the inertial weight, d=1,2,L,D; i=1,2,L,n; k is the current iteration number; Indicates the velocity of the particle numbered id whose current number of iterations is k; Indicates the position of the example numbered id whose current number of iterations is k; Indicates the extremum of the dth population when the current number of iterations is k; c 1 and c 2 are non-negative constants, called acceleration factors; r 1 and r 2 are random numbers distributed in the [0,1] interval.
与现有参数辨识技术相比,本发明提供的方法具有以下优点:Compared with the existing parameter identification technology, the method provided by the present invention has the following advantages:
本发明的方法在轮胎动力学模型基础上,通过试验测试采集得到所需数据,然后基于经验型魔术公式轮胎模型,首先采用非线性最小二乘法对数据进行拟合,通过迭代对魔术公式参数进行初次辨识。然后利用粒子群优化算法,根据魔术公式的特点,确定适应度函数,通过粒子群算法辨识,进行参数的辨识及其优化,能够得到科学合理的公式参数值。该方法目的性强,收敛速度非常快,并且求解精度高。能够实现对常用的轮胎魔术公式中的参数进行辨识及其优化,所得到的参数辨识值可用于计算和分析轮胎在其他工况下的受力情况以及车辆的产品设计等方面。具体优点为:The method of the present invention is based on the tire dynamics model, collects the required data through test and test, and then based on the empirical magic formula tire model, firstly adopts the nonlinear least square method to fit the data, and iterates the magic formula parameters first identification. Then, the particle swarm optimization algorithm is used to determine the fitness function according to the characteristics of the magic formula, and the parameter identification and optimization are carried out through the particle swarm algorithm identification, so that scientific and reasonable formula parameter values can be obtained. This method has strong purpose, very fast convergence speed, and high solution accuracy. It can realize the identification and optimization of the parameters in the commonly used tire magic formula, and the obtained parameter identification values can be used to calculate and analyze the force of the tire under other working conditions and the product design of the vehicle. The specific advantages are:
1)将非线性最小二乘拟合与粒子群算法相结合,首选用非线性最小二乘方法对采样数据进行初次辨识,再用粒子群优化算法对初次辨识结果进行优化再辨识,与一般辨识采用的遗传算法不同,遗传算虽可以在全局范围内逼近最优解,但局部搜索能力较差,收敛速度较慢,算法实时性欠佳。1) Combining the nonlinear least squares fitting with the particle swarm optimization algorithm, the first choice is to use the nonlinear least squares method to identify the sampling data for the first time, and then use the particle swarm optimization algorithm to optimize the initial identification results and re-identify, which is different from the general identification The genetic algorithm used is different. Although the genetic algorithm can approach the optimal solution in the global range, the local search ability is poor, the convergence speed is slow, and the real-time performance of the algorithm is not good.
2)该发明采用的粒子群优化算法具有以下优点:该算法规则简单,目的性强;收敛速度非常快,同时有很多措施可以避免陷入局部最优,从而求得全局最优;求解精度高,容易实现。2) The particle swarm optimization algorithm adopted in this invention has the following advantages: the algorithm rule is simple, and the purpose is strong; the convergence speed is very fast, and there are many measures to avoid falling into the local optimum, thereby obtaining the global optimum; the solution accuracy is high, easy to accomplish.
附图说明Description of drawings
图1是本发明提供的轮胎魔术公式的参数辨识及优化方法总流程图;Fig. 1 is the general flowchart of parameter identification and optimization method of tire magic formula provided by the present invention;
图2是本发明提供的具体实施方式中在参数辨识过程中粒子群适应度值的变化曲线;Fig. 2 is the change curve of the particle swarm fitness value in the parameter identification process in the specific embodiment provided by the present invention;
图3是本发明提供的具体实施方式中使用粒子群算法优化之后与优化之前的对比曲线。Fig. 3 is a comparison curve after optimization using particle swarm optimization algorithm and before optimization in the specific embodiment provided by the present invention.
具体实施方式detailed description
如图1所示,本发明一种用于轮胎魔术公式的参数辨识及优化方法,在轮胎动力学模型基础上,基于简化后的经验型魔术公式轮胎模型,利用最小二乘方法初步识别出简化后的魔术公式中的参数,为更加精准地辨识魔术公式参数,进一步确定各参数可能取值范围,利用粒子群算法对初次识别得到的一系列参数进行优化,实现魔术公式参数的自适应调整,最终辨识得到准确度高、精确性好的魔术公式参数,进而为车辆整车性能的分析以及后续产品研究做好基础。As shown in Figure 1, the present invention is a parameter identification and optimization method for the tire magic formula, based on the tire dynamics model, based on the simplified empirical magic formula tire model, using the least squares method to initially identify the simplified The parameters in the final magic formula, in order to more accurately identify the parameters of the magic formula, further determine the possible value range of each parameter, use the particle swarm optimization algorithm to optimize a series of parameters obtained from the initial identification, and realize the adaptive adjustment of the parameters of the magic formula. Finally, the magic formula parameters with high accuracy and good precision are identified, which lays a solid foundation for the analysis of vehicle performance and follow-up product research.
其特征具体包括以下步骤:Its characteristics specifically include the following steps:
步骤一:轮胎模型魔术公式中的数据采样。Step 1: Data sampling in the tire model magic formula.
对轮胎进行不同工况下相应力学特性的试验,通过试验中传感器检测并采集得各工况下轮胎模型魔术公式中的Y(x)和x数据。如侧向力、回正力矩或纵向力,以及不同工况下分别对应的轮胎的侧偏角或纵向滑移率等。The corresponding mechanical properties of the tire under different working conditions are tested, and the Y(x) and x data in the magic formula of the tire model under each working condition are detected and collected through the sensor in the test. Such as lateral force, righting moment or longitudinal force, and the side slip angle or longitudinal slip rate of the tire corresponding to different working conditions.
步骤二:采用非线性最小二乘方法先初次辨识轮胎魔术公式中的主要参数。主要是通过对步骤一中采样到的数据进行非线性最小二乘拟合,经过数据拟合,初次辨识得到魔术公式中的参数值。Step 2: Use the nonlinear least squares method to identify the main parameters in the tire magic formula for the first time. Mainly through nonlinear least squares fitting of the data sampled in step 1, after data fitting, the parameter values in the magic formula are obtained for the first time identification.
非线性最小二乘的具体方法是通过泰勒级数将公式展开为线性模型,即只包括一阶展开式,而高阶展开式均归入误差项,然后再进行最小二乘回归,将得到的估计量作为新的展开点,再对线性部分进行估计。如此往复迭代,直至收敛。具体算法设计如下:The specific method of nonlinear least squares is to expand the formula into a linear model through Taylor series, that is, only the first-order expansion is included, and the higher-order expansions are all included in the error term, and then the least squares regression is performed, and the obtained The estimator is used as a new expansion point, and then the linear part is estimated. Iterates in this way until convergence. The specific algorithm design is as follows:
设模型中存在(k+1)个参数β=(β0,β1,K,βk)。Suppose there are (k+1) parameters β=(β 0 ,β 1 ,K,β k ) in the model.
首先选择一组初值:First choose a set of initial values:
β0=(β0,0,β1,0,K,βk,0),将f(X,β)在β0点展开,可以得到:β 0 =(β 0,0 ,β 1,0 ,K,β k,0 ), expanding f(X,β) at β 0 , we can get:
f(X,β)=f(X,β0)+g(0)′(β-β(0))+Rf(X,β)=f(X,β 0 )+g (0) ′(β-β (0) )+R
其中g(0)表示一阶导数在β0=(β0,0,β1,0,K,βk,0)时取值,R为高阶部分,但只保留β的线性部分,将高阶部分归入误差项,可以得到:Where g (0) means that the first-order derivative takes value when β 0 = (β 0,0 ,β 1,0 ,K,β k,0 ), R is the high-order part, but only the linear part of β is reserved, the The high-order part is subsumed into the error term, and it can be obtained:
y=f(X,β)+u=f(X,β0)+g(0)′(β-β(0))+R+uy=f(X,β)+u=f(X,β 0 )+g (0) ′(β-β (0) )+R+u
=g(0)′β+f(X,β0)-g(0)′β+u1 =g (0) ′β+f(X,β 0 )-g (0) ′β+u 1
其中,随机扰动项u1包含u和泰勒级数展开式中的高阶部分,得到新的回归模型:Among them, the random disturbance term u1 contains u and the high - order part in the Taylor series expansion, and a new regression model is obtained:
y-f(X,β0)+g(0)′β(0)=g(0)′β+uyf(X,β 0 )+g (0) ′β (0) =g (0) ′β+u
新的目标函数为模型的最小二乘估计量The new objective function is least squares estimator for the model
为: for:
因此非线性最小二乘迭代估计式为:Therefore, the nonlinear least squares iterative estimation formula is:
βj+1=β(j)+(g(j)g(j)′)g(j)(y-f(X,β(j)))β j+1 =β (j) +(g (j) g (j) ′)g (j) (yf(X,β (j) ))
易知,由非线性最小二乘法算法流程可以看出如果要得到较好的结果需要设置较好的初始值与迭代结束法则。因此由非线性最小二乘法拟合得到的参数虽然是较为符合的参数,但不一定是最优的参数,还存在可以继续优化的空间。为了更加精确的辨识魔术公式的参数,我们提出采用粒子群算法对非线性最小二乘法辨识得到的参数结果进行再优化。It is easy to know, from the non-linear least squares algorithm flow, it can be seen that if you want to get better results, you need to set better initial values and iteration end rules. Therefore, although the parameters fitted by the nonlinear least squares method are relatively consistent parameters, they are not necessarily the optimal parameters, and there is still room for further optimization. In order to identify the parameters of the magic formula more accurately, we propose to use the particle swarm optimization algorithm to re-optimize the parameter results obtained by the nonlinear least squares method.
步骤三:通过步骤二获得魔术公式初次辨识的参数后,采用基本粒子群算法对魔术公式的参数进行再次辨识以及优化,以得到更精确的结果。Step 3: After obtaining the parameters of the initial identification of the magic formula through step 2, use the basic particle swarm optimization algorithm to re-identify and optimize the parameters of the magic formula to obtain more accurate results.
粒子群算法首先在可行解的范围内初始化一群粒子,每个粒子代表一个解。用位置和速度来表示该粒子的特征,引入适应度函数来计算粒子的适应度值来表示粒子的优劣。在解的空间内,通过跟踪个体极值和群体极值来更新个体位置。个体极值是指个体所经历位置中适应度值最优位置,群体极值是种群中所有粒子搜索到的适应度最优位置。粒子每更新一次位置,就重新计算一次适应度值,通过比较新粒子的适应度值和个体极值、群体极值的适应度值更新个体极值和群体极值的位置。PSO algorithm first initializes a group of particles within the range of feasible solutions, and each particle represents a solution. Use the position and speed to represent the characteristics of the particle, and introduce the fitness function to calculate the fitness value of the particle to represent the quality of the particle. In the solution space, the individual position is updated by tracking the individual extremum and the population extremum. The individual extremum refers to the optimal position of the fitness value in the position experienced by the individual, and the group extremum is the optimal position of the fitness searched by all particles in the population. Every time a particle updates its position, the fitness value is recalculated, and the positions of the individual extremum and the group extremum are updated by comparing the fitness value of the new particle with the fitness value of the individual extremum and the group extremum.
步骤3.1:进行初始化,设置粒子群算法中初始化因子。Step 3.1: Initialize and set the initialization factor in the particle swarm optimization algorithm.
其中需要设置的参数有粒子群内粒子数目n、加速度因子c1、c2、惯重权数ω和迭代次数k。The parameters that need to be set include the particle number n in the particle swarm, acceleration factors c 1 , c 2 , inertial weight ω and iteration number k.
假设在一个D维的搜索空间中,由n个粒子组成的种群X=(X1,X2,L,Xn)Assume that in a D-dimensional search space, a population X=(X 1 ,X 2 ,L,X n ) composed of n particles
其中第i个粒子表示为一个D维的向量Xi=(Xi1,Xi2,L,XiD)T,代表第i个粒子在D维搜索空间中的位置,也代表模型的一个潜在解。The i-th particle is expressed as a D-dimensional vector Xi = (X i1 , X i2 ,L,X iD ) T , which represents the position of the i-th particle in the D-dimensional search space and also represents a potential solution of the model .
优化算法的粒子初始位置参考非线性最小二乘法得到的参数进行初始化。The initial position of the particles in the optimization algorithm is initialized with reference to the parameters obtained by the nonlinear least squares method.
步骤3.2:粒子适应度值计算。Step 3.2: Particle fitness value calculation.
根据目标函数即可计算出每个粒子位置Xi对应的适应度值,According to the objective function, the fitness value corresponding to each particle position X i can be calculated,
第i个粒子的速度为Vi=(Vi1,Vi2,L,ViD)T,The velocity of the i-th particle is V i =(V i1 ,V i2 ,L,V iD ) T ,
其个体极值为Pi=(Pi1,Pi2,L,PiD)T,Its individual extreme value is P i =(P i1 ,P i2 ,L,P iD ) T ,
种群的群体极值为:Pg=(Pg1,Pg2,L,PgD)T。The population extremum value of the population is: P g =(P g1 ,P g2 ,L,P gD ) T .
对于一般魔术公式,设置适应度函数如下,即待辨识的模型:For the general magic formula, set the fitness function as follows, that is, the model to be identified:
Y(x)=Dsin(Carctan(Bx-E(Bx-arctan(Bx))))+……Y(x)=Dsin(Carctan(Bx-E(Bx-arctan(Bx))))+...
其中x为方程输入,Y(x)为方程输出,B、C、D、E等为待拟合的参数Where x is the input of the equation, Y(x) is the output of the equation, and B, C, D, E, etc. are the parameters to be fitted
根据步骤二得到的魔术公式的参数(B、C、D、E等)通过粒子群计算可以得出:According to the parameters (B, C, D, E, etc.) of the magic formula obtained in step 2, it can be obtained through particle swarm calculation:
Y(xj)=Disin(Ciarctan(Bixj-Ei(Bixj-arctan(Bixj))))+……Y(x j )=D i sin(C i arctan(B i x j -E i (B i x j -arctan(B i x j ))))+……
其中的Di、Ci、Bi、Ei等表示步骤二得到的参数值,xj表示方程第j个输入值,Y(xj)表示方程输出值。结合试验数据可以引入目标函数是每一次优化辨识结果的参数所拟合函数的输出值与实际测量值之差的均方根:Among them, D i , C i , Bi , E i , etc. represent the parameter values obtained in step 2, x j represents the jth input value of the equation, and Y(x j ) represents the output value of the equation. Combined with the experimental data, it can be introduced that the objective function is the root mean square of the difference between the output value of the function fitted by the parameters of each optimization identification result and the actual measured value:
其中n为试验数据的个数,Bi,CiDi,Ei L为第i次搜索所对应的参数,xj,Y(xj)分别为第j次试验数据的测试结果。Where n is the number of test data, B i , C i D i , E i L are the parameters corresponding to the i-th search, x j , Y(x j ) are the test results of the j-th test data respectively.
步骤3.3:在每次迭代过程中,粒子通过搜索个体极值和群体极值进行粒子的速度更新和位置更新,其中粒子群算法公式中更新粒子的位置和速度公式:Step 3.3: During each iteration, the particles update the velocity and position of the particle by searching for the individual extremum and the group extremum, where the particle swarm algorithm formula updates the particle's position and velocity formula:
速度更新公式:Vid(k+1)=ω×Vid(k)+c1r1×[Pid(k)-Xid(k)]+c2r2×[Pgd(k)-Xgd(k)]Velocity update formula: V id (k+1)=ω×V id (k)+c 1 r 1 ×[P id (k)-X id (k)]+c 2 r 2 ×[P gd (k) -X gd (k)]
位置更新公式:Position update formula:
Xid(k+1)=Xid(k)+Vid(k+1)X id (k+1)=X id (k)+V id (k+1)
其中ω为惯重权数,d=1,2,L,D;i=1,2,L,n;k为当前的迭代次数;表示编号为id的的粒子当前迭代次数为k的速度;表示编号为id的例子当前迭代次数为k的位置;表示当前迭代次数为k时第d个种群的极值;c1、c2是非负的常数,称成为加速度因子;r1和r2是分布于[0,1]区间的随机数。Where ω is the inertial weight, d=1,2,L,D; i=1,2,L,n; k is the current number of iterations; Indicates the velocity of the particle numbered id whose current number of iterations is k; Indicates the position of the example numbered id whose current number of iterations is k; Indicates the extremum of the dth population when the current number of iterations is k; c 1 and c 2 are non-negative constants, called acceleration factors; r 1 and r 2 are random numbers distributed in the [0,1] interval.
步骤3.4:不断更新粒子速度和位置,并且根据新粒子的适应度值更新个体极值和群体极值。同时根据初始化中设定的迭代次数阈值和设定的循环条件进行循环。若迭代次数达到阈值则迭代结束,否则转入步骤3.3,依次循环更新各粒子的速度和位置,最后得到优化后参数值。Step 3.4: Constantly update the particle velocity and position, and update the individual extremum and group extremum according to the fitness value of the new particle. At the same time, the loop is performed according to the iteration threshold and the loop condition set in the initialization. If the number of iterations reaches the threshold, the iteration ends, otherwise, go to step 3.3, and update the velocity and position of each particle in turn, and finally obtain the optimized parameter value.
以下结合具体的实施例对本发明提出的一种用于轮胎魔术公式的参数辨识及优化方法进行具体说明:A kind of parameter identification and optimization method for tire magic formula proposed by the present invention is described in detail below in conjunction with specific embodiments:
本实施例选用轮胎型号为Hoosier18×6-10R25B,轮胎测试胎压为82.74kPa,垂直载荷为227N,无外倾角,以轮胎纯制动工况下所受纵向力为一实施例,将魔术公式应用于纯制动工况下轮胎所受纵向力与其纵向滑移率和轮胎垂直载荷之间的关系模型。In this embodiment, the tire model is Hoosier18×6-10R25B, the tire test pressure is 82.74kPa, the vertical load is 227N, and there is no camber angle. Taking the longitudinal force of the tire under pure braking conditions as an example, the magic formula It is applied to the relationship model between the longitudinal force on the tire, its longitudinal slip rate and the vertical load of the tire under pure braking conditions.
该工况下的关系模型为:The relationship model in this case is:
Y(X)=Dsin(Carctan(BX1-E(BX1-arctan(BX1))))+SV Y(X)=Dsin(Carctan(BX 1 -E(BX 1 -arctan(BX 1 ))))+S V
式中:In the formula:
X1——纵向力组合自变量:X1=(κ+Sh);X 1 ——Longitudinal force combined variable: X 1 = (κ+S h );
κ——纵向滑移率(车辆制动时为负值);κ——longitudinal slip ratio (negative value when the vehicle brakes);
C——曲线形状因子,纵向力计算时取B0值:C=B0;C——curve shape factor, take the value of B 0 when calculating the longitudinal force: C=B 0 ;
D——峰值因子,表示曲线的最大值:D=B1FZ 2+B2FZ;D——crest factor, indicating the maximum value of the curve: D=B 1 F Z 2 +B 2 F Z ;
B——刚度因子:B=BCD/CD;B——stiffness factor: B=BCD/CD;
BCD——纵向力零点处的纵向刚度, BCD—longitudinal stiffness at zero point of longitudinal force,
Sh——曲线的水平方向漂移,Sh=B9Fz+B10;S h ——horizontal direction drift of the curve, Sh =B 9 F z +B 10 ;
Sv——曲线的垂直方向漂移,该工况下Sv=0;S v ——the vertical direction drift of the curve, under this working condition, S v = 0;
E——曲线的曲率因子,表示曲线最大值附近的形状,E=B6Fz 2+B7Fz+B8 E——the curvature factor of the curve, which indicates the shape near the maximum value of the curve, E=B 6 F z 2 +B 7 F z +B 8
步骤一:轮胎模型魔术公式中的数据采样。Step 1: Data sampling in the tire model magic formula.
对轮胎进行一定垂直载荷下的轮胎制动力学特性试验,通过试验中传感器检测并采集得轮胎模型魔术公式中的不同的纵向力Y(x)和纵向滑移率x的数据。Carry out the tire braking dynamics test under a certain vertical load, and collect the data of different longitudinal force Y(x) and longitudinal slip rate x in the magic formula of the tire model through the sensor detection in the test.
步骤二:根据步骤一中的公式可知需要辨识的参有:{B0,B1,B2,B3,B4,B5,B6,B7,B8,B9,B10},然后采用非线性最小二乘方法先初次辨识轮胎魔术公式中的主要参数。主要是通过对步骤一中采样到的数据进行非线性最小二乘拟合,经过数据拟合,初次辨识得到魔术公式的参数值见表1:Step 2: According to the formula in Step 1, the parameters to be identified are: {B 0 , B 1 , B 2 , B 3 , B 4 , B 5 , B 6 , B 7 , B 8 , B 9 , B 10 } , and then the main parameters in the tire magic formula are firstly identified by nonlinear least squares method. Mainly by performing nonlinear least squares fitting on the data sampled in step 1, after data fitting, the parameter values of the magic formula obtained for the first time identification are shown in Table 1:
表1Table 1
步骤三:通过步骤二获得魔术公式初次辨识的参数后,采用基本粒子群算法对魔术公式的参数进行再次辨识以及优化,可得到更精确的结果。Step 3: After obtaining the parameters of the initial identification of the magic formula through step 2, use the basic particle swarm optimization algorithm to re-identify and optimize the parameters of the magic formula to obtain more accurate results.
根据需要辨识的魔术公式轮胎模型对粒子种群进行初始化:在一个D维的搜索空间中,由n个粒子组成的种群X=(X1,X2,L,Xn),其中粒子群内粒子数目n、加速度因子c1、c2、惯重权数ω和迭代次数k;根据轮胎模型特点以及工况,取n为11,为避免陷入局部极限极值,可以取ω=1,c1=2.05,c2=2.05,k=50。初始化生成初始种群后,需要辨识的11个参数的值将在解空间运动,粒子通常会跟踪个体极值和群体极值更新个体位置。The particle population is initialized according to the magic formula tire model that needs to be identified: in a D-dimensional search space, a population X=(X 1 ,X 2 ,L,X n ) composed of n particles, in which the particles in the particle population Number n, acceleration factors c 1 , c 2 , inertial weight ω and iteration number k; according to tire model characteristics and working conditions, take n to be 11, in order to avoid falling into local limit extremum, you can take ω=1, c 1 =2.05, c 2 =2.05, k=50. After initialization and generation of the initial population, the values of the 11 parameters that need to be identified will move in the solution space, and the particles usually track the individual extremum and group extremum to update the individual position.
因此在这个11维的搜索空间中,由n个粒子组成的种群X=(X1,X2,L,Xn),其中第i个粒子表示为一个D维的向量Xi=(Xi1,Xi2,L,XiD)T,代表第i个粒子在D维搜索空间中的位置,也代表模型的一个潜在解。根据目标函数即可计算出每个粒子位置Xi对应的适应度值,第i个粒子的速度为Vi=(Vi1,Vi2,L,ViD)T,其个体极值为Pi=(Pi1,Pi2,L,PiD)T,种群的群体极值为Pg=(Pg1,Pg2,L,PgD)T。Therefore, in this 11-dimensional search space, the population X=(X 1 ,X 2 ,L,X n ) composed of n particles, where the i-th particle is expressed as a D-dimensional vector Xi =(X i1 ,X i2 ,L,X iD ) T , represents the position of the i-th particle in the D-dimensional search space, and also represents a potential solution of the model. According to the objective function, the fitness value corresponding to each particle position X i can be calculated. The speed of the i-th particle is V i =(V i1 ,V i2 ,L,V iD ) T , and its individual extremum value is P i =(P i1 ,P i2 ,L,P iD ) T , the population extremum value of the population is P g =(P g1 ,P g2 ,L,P gD ) T .
步骤四:粒子适应度值计算。首先设置适应度函数为:Step 4: Particle fitness value calculation. First set the fitness function as:
Y(X)=Dsin(Carctan(BX1-E(BX1-arctan(BX1))))+SV Y(X)=Dsin(Carctan(BX 1 -E(BX 1 -arctan(BX 1 ))))+S V
式中:In the formula:
X1——纵向力组合自变量:X1=(κ+Sh);X 1 ——Longitudinal force combined variable: X 1 = (κ+S h );
κ——纵向滑移率(车辆制动时为负值);κ——longitudinal slip ratio (negative value when the vehicle brakes);
C——曲线形状因子,纵向力计算时取B0值:C=B0;C——curve shape factor, take the value of B 0 when calculating the longitudinal force: C=B 0 ;
D——峰值因子,表示曲线的最大值:D=B1FZ 2+B2FZ;D——crest factor, indicating the maximum value of the curve: D=B 1 F Z 2 +B 2 F Z ;
B——刚度因子:B=BCD/CD;B——stiffness factor: B=BCD/CD;
BCD——纵向力零点处的纵向刚度, BCD—longitudinal stiffness at zero point of longitudinal force,
Sh——曲线的水平方向漂移,Sh=B9Fz+B10;S h ——horizontal direction drift of the curve, Sh =B 9 F z +B 10 ;
Sv——曲线的垂直方向漂移,该工况下Sv=0;S v ——the vertical direction drift of the curve, under this working condition, S v = 0;
E——曲线的曲率因子,表示曲线最大值附近的形状,E=B6Fz 2+B7Fz+B8 E——the curvature factor of the curve, which indicates the shape near the maximum value of the curve, E=B 6 F z 2 +B 7 F z +B 8
进行粒子适应度计算,进行个体极值和群体极值的搜索:Perform particle fitness calculation and search for individual extremum and group extremum:
本发明提供在参数辨识过程中粒子群适应度值的变化曲线如图2所示。The present invention provides a change curve of the particle swarm fitness value during the parameter identification process as shown in FIG. 2 .
步骤五:粒子的速度和位置的更新:Step 5: Update the speed and position of particles:
速度更新公式Velocity update formula
Vid(k+1)=ω×Vid(k)+c1r1×[Pid(k)-Xid(k)]+c2r2×[Pgd(k)-Xgd(k)]V id (k+1)=ω×V id (k)+c 1 r 1 ×[P id (k)-X id (k)]+c 2 r 2 ×[P gd (k)-X gd ( k)]
位置更新公式:Position update formula:
Xid(k+1)=Xid(k)+Vid(k+1)X id (k+1)=X id (k)+V id (k+1)
步骤六:不断更新粒子速度和位置,并且根据新粒子的适应度值更新个体极值和群体极值。同时根据初始化中设定的迭代次数阈值和设定的循环条件进行循环。若迭代次数达到阈值则迭代结束,否则转入步骤五,依次循环更新各粒子的速度和位置,更新后的粒子值即为用粒子群优化算法优化后的参数辨识结果,最后得到粒子群算法优化后的辨识参数值见表2。Step 6: Constantly update the particle velocity and position, and update the individual extremum and group extremum according to the fitness value of the new particle. At the same time, the loop is performed according to the iteration threshold and the loop condition set in the initialization. If the number of iterations reaches the threshold, the iteration ends. Otherwise, go to step five, and update the speed and position of each particle in turn. The updated particle value is the parameter identification result optimized by the particle swarm optimization algorithm, and finally the particle swarm optimization algorithm is obtained. The final identification parameter values are shown in Table 2.
表2Table 2
通过图3以及已知试验中实际测得的数据可以明显对比得优化后的辨识参数值与实际值的误差比优化之前小,说明该方法是可用的,较好的提高了辨识精度。From Figure 3 and the actual measured data in the known experiment, it can be clearly compared that the error between the optimized identification parameter value and the actual value is smaller than that before optimization, indicating that the method is available and the identification accuracy is better improved.
以上所述仅仅是本发明的一种车辆动力学工况下轮胎的受力实施例而已,也并非对本发明其余工况下的受力分析以及参数辨识的进行了限制,说明本发明采用的用于轮胎魔术公式的参数辨识及优化方法是科学有效的。同时,上述实施例并非用来限定本发明,该方法还可以应用于其他参数较多的非线性模型的参数辨识上,具有一定的普适性和推广价值。The above description is only a stress embodiment of the tire under a vehicle dynamics working condition of the present invention, and it does not limit the force analysis and parameter identification under the rest of the working conditions of the present invention. The parameter identification and optimization method based on the tire magic formula is scientific and effective. At the same time, the above-mentioned embodiments are not intended to limit the present invention, and the method can also be applied to parameter identification of other nonlinear models with many parameters, and has certain universality and promotion value.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610498215.XA CN106203684A (en) | 2016-06-29 | 2016-06-29 | A kind of parameter identification for tire magic formula and optimization method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610498215.XA CN106203684A (en) | 2016-06-29 | 2016-06-29 | A kind of parameter identification for tire magic formula and optimization method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106203684A true CN106203684A (en) | 2016-12-07 |
Family
ID=57463302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610498215.XA Pending CN106203684A (en) | 2016-06-29 | 2016-06-29 | A kind of parameter identification for tire magic formula and optimization method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106203684A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108501955A (en) * | 2018-04-20 | 2018-09-07 | 北京理工大学 | A kind of distance increasing unit pressure point of maximum efficiency optimization method |
CN108760349A (en) * | 2018-05-24 | 2018-11-06 | 中策橡胶集团有限公司 | A kind of prediction technique and system of tire six square phase |
CN109177745A (en) * | 2018-09-28 | 2019-01-11 | 同济大学 | A kind of torque distribution control method considering multiple target distributed-driving electric automobile |
CN111241692A (en) * | 2020-01-16 | 2020-06-05 | 南京航空航天大学 | A Parameter Identification Method for Tire Magic Formula |
CN112632455A (en) * | 2020-12-29 | 2021-04-09 | 华中科技大学 | Parameter identification method and device for rotating equipment |
CN112660135A (en) * | 2020-12-25 | 2021-04-16 | 浙江吉利控股集团有限公司 | Road surface adhesion coefficient estimation method and device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1892637A2 (en) * | 2006-08-22 | 2008-02-27 | The Yokohama Rubber Co., Ltd. | Tire characteristic calculation method, tire dynamic element parameter value derivation method, vehicle traveling simulation method, and tire designing method and vehicle designing method in which consideration is given to tire friction ellipse |
CN103407451A (en) * | 2013-09-03 | 2013-11-27 | 东南大学 | Method for estimating longitudinal adhesion coefficient of road |
WO2015015093A1 (en) * | 2013-08-02 | 2015-02-05 | Compagnie Generale Des Etablissements Michelin | Method for simulating a deflection radius of a motor vehicle tyre |
CN104408265A (en) * | 2014-12-10 | 2015-03-11 | 辽宁石油化工大学 | Vehicle running state and tire magic formula parameter joint estimation method |
CN104636591A (en) * | 2014-12-09 | 2015-05-20 | 北京工业大学 | Nonlinear analysis method for steering stability of electric automobile |
-
2016
- 2016-06-29 CN CN201610498215.XA patent/CN106203684A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1892637A2 (en) * | 2006-08-22 | 2008-02-27 | The Yokohama Rubber Co., Ltd. | Tire characteristic calculation method, tire dynamic element parameter value derivation method, vehicle traveling simulation method, and tire designing method and vehicle designing method in which consideration is given to tire friction ellipse |
WO2015015093A1 (en) * | 2013-08-02 | 2015-02-05 | Compagnie Generale Des Etablissements Michelin | Method for simulating a deflection radius of a motor vehicle tyre |
CN103407451A (en) * | 2013-09-03 | 2013-11-27 | 东南大学 | Method for estimating longitudinal adhesion coefficient of road |
CN104636591A (en) * | 2014-12-09 | 2015-05-20 | 北京工业大学 | Nonlinear analysis method for steering stability of electric automobile |
CN104408265A (en) * | 2014-12-10 | 2015-03-11 | 辽宁石油化工大学 | Vehicle running state and tire magic formula parameter joint estimation method |
Non-Patent Citations (2)
Title |
---|
A. STOTSKY等: "Stability analysis of robustly decoupled car steering system with nonlinear tire model", 《PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL》 * |
包瑞新等: "基于辅助粒子滤波的汽车轮胎参数和行驶状态估计", 《农业机械学报》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108501955A (en) * | 2018-04-20 | 2018-09-07 | 北京理工大学 | A kind of distance increasing unit pressure point of maximum efficiency optimization method |
CN108760349A (en) * | 2018-05-24 | 2018-11-06 | 中策橡胶集团有限公司 | A kind of prediction technique and system of tire six square phase |
CN108760349B (en) * | 2018-05-24 | 2020-06-23 | 中策橡胶集团有限公司 | Prediction method and system for six component forces of tire |
CN109177745A (en) * | 2018-09-28 | 2019-01-11 | 同济大学 | A kind of torque distribution control method considering multiple target distributed-driving electric automobile |
CN109177745B (en) * | 2018-09-28 | 2021-04-23 | 同济大学 | A Torque Distribution Control Method Considering Multi-objective Distributed Drive Electric Vehicles |
CN111241692A (en) * | 2020-01-16 | 2020-06-05 | 南京航空航天大学 | A Parameter Identification Method for Tire Magic Formula |
CN112660135A (en) * | 2020-12-25 | 2021-04-16 | 浙江吉利控股集团有限公司 | Road surface adhesion coefficient estimation method and device |
CN112632455A (en) * | 2020-12-29 | 2021-04-09 | 华中科技大学 | Parameter identification method and device for rotating equipment |
CN112632455B (en) * | 2020-12-29 | 2024-06-07 | 华中科技大学 | Parameter identification method and device for rotating equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106203684A (en) | A kind of parameter identification for tire magic formula and optimization method | |
CN104354700B (en) | A kind of vehicle parameter On-line Estimation method based on Unscented kalman filtering | |
CN105843073B (en) | A kind of wing structure aeroelastic stability analysis method not knowing depression of order based on aerodynamic force | |
CN109255094B (en) | Commercial truck quality estimation method based on SVR-Adaboost improved algorithm | |
CN103914985A (en) | A Method for Predicting the Future Speed Trajectory of a Hybrid Electric Bus | |
CN108545081A (en) | Slip angle estimation method and system based on robust Unscented kalman filtering | |
CN105034986B (en) | A kind of driver's steering characteristic on-line identification method and device | |
CN106652441A (en) | Urban road traffic condition prediction method based on spatial-temporal data | |
CN112298354B (en) | State estimation method for steering wheel and front wheel corner of steering system of unmanned automobile | |
Liu et al. | Vehicle state estimation based on unscented Kalman filtering and a genetic-particle swarm algorithm | |
CN106707765A (en) | Running-tracking, real-time optimization control method for high speed train | |
CN107229801B (en) | On-line Identification Method of Tire Rolling Resistance Coefficient | |
CN104408265B (en) | Vehicle running state and the method for tire magic formula parametric joint estimation | |
CN105739305A (en) | Crawler control method | |
CN117252071A (en) | GSA-PCA-GPR-based intelligent tire slip angle prediction method | |
CN108846200A (en) | A kind of quasi-static Bridge Influence Line recognition methods based on iterative method | |
Andriaminahy et al. | Comparative study of vehicle aerodynamic and rolling resistance coefficients estimation methods | |
Yacine et al. | Nonlinear vehicle lateral dynamics estimation with unmeasurable premise variable Takagi-Sugeno approach | |
CN108413923B (en) | A Robust Hybrid Filter-Based Vehicle Roll and Pitch Estimation Method | |
Yuhao | Estimation of vehicle status and parameters based on nonlinear Kalman filtering | |
CN106651209B (en) | Method for evaluating influence of bicycle express way on local bicycle running amount | |
CN105787507B (en) | LS SVMs on-line study methods based on budget supporting vector collection | |
CN109253727A (en) | A kind of localization method based on improvement iteration volume particle filter algorithm | |
CN112590769A (en) | Coordination control method for lateral stability of vehicle | |
CN112560351B (en) | Vehicle transverse stable state judging method with higher accuracy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20161207 |
|
WD01 | Invention patent application deemed withdrawn after publication |