CN106198434A - 一种北疆灰漠土土壤有机质含量的遥感监测方法 - Google Patents

一种北疆灰漠土土壤有机质含量的遥感监测方法 Download PDF

Info

Publication number
CN106198434A
CN106198434A CN201610597972.2A CN201610597972A CN106198434A CN 106198434 A CN106198434 A CN 106198434A CN 201610597972 A CN201610597972 A CN 201610597972A CN 106198434 A CN106198434 A CN 106198434A
Authority
CN
China
Prior art keywords
soil
organic matter
remote
sensing monitoring
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610597972.2A
Other languages
English (en)
Inventor
王琼
宋庆平
窦中江
陈兵
高飞
杨秀春
肖春华
戴建国
王方永
苗新明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinjiang Academy of Agricultural and Reclamation Sciences
Original Assignee
Xinjiang Academy of Agricultural and Reclamation Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinjiang Academy of Agricultural and Reclamation Sciences filed Critical Xinjiang Academy of Agricultural and Reclamation Sciences
Priority to CN201610597972.2A priority Critical patent/CN106198434A/zh
Publication of CN106198434A publication Critical patent/CN106198434A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种北疆灰漠土土壤有机质含量的遥感监测方法,选择裸土期土壤的Landset8 OLI数据,并对其进行辐射校正、大气校正得到裸土光谱反射率数值,分别计算不同有机质含量土壤的光谱反射率值,获得可见光和近红外波段范围对灰漠土土壤有机质敏感的反射光谱参数,利用这些参数进行反演得到土壤有机质空间布局图。本发明利用新型卫星光谱数据对北疆灰漠土有机质含量进行大范围快速监测的方法,监测精度在70%以上,显著提高了卫星数据对大范围灰漠土土壤有机质遥感监测的精度,能够满足新疆北部对农田土壤有机质含量监测的需要。

Description

一种北疆灰漠土土壤有机质含量的遥感监测方法
技术领域
本发明涉及一种土壤有机质遥感监测方法,具体涉及一种北疆灰漠土土壤有机质遥感监测方法。
背景技术
土壤中的有机质含量对作物的长势和产量具有较大影响,传统土壤有机质获取的方法主要基于土壤的实验室分析,需耗费大量的人力、物力和财力,同时由于测试过程所需时间较长,采样点数量有限,难以真实反映土壤属性的空间分布特征,不能满足现代农业的发展需求。利用多光谱卫星数据进行土壤有机质的遥感监测,能很好地解决常规土壤有机质田间调查费时费力以及监测范围较小等问题。已有研究表明遥感数据作为土壤有机质监测的辅助参数,在提高监测精度等方面具有明显优势。而且多光谱遥感影像在土壤属性信息获取中应用,能通过少量采样点实现对区域土壤变异性的宏观监测。已有大量研究表明利用卫星数据进行土壤属性的监测是可行的,并且由于方法简便、结果较准确,也可以应用于实际的农业生产管理。
目前,利用卫星多光谱数据进行土壤有机质含量预测的研究较多,例如利用Landsat TM遥感影像、ASTER遥感影像、MODIS遥感图像、SPOT 5遥感数据以及HJ卫星数据反演黑土有机质含量等等。但是利用新型Landsat 8卫星载的陆地成像仪(Operational LandImager,OLI)数据进行土壤有机质遥感反演的研究较少,特别是对北疆灰漠土有机质含量的监测。由于北疆灰漠土分布面积较大,绿洲农田多基于此土壤类型,与黑土相比较,灰漠土有机质含量普遍较低,已有研究证明当土壤有机质含量小于2%时,其光谱反射特征会减弱。同时研究采样多以北疆农田为主,其地势相对平坦,地表覆盖较为均一。因此,对土壤有机质含量产生影响的水分含量、地形、地质等环境因素并没有考虑在内;同时多时相遥感影像进行连续监测的研究还在进行当中,这在一定程度上降低了反演的精度。
发明内容
本发明所要解决的技术问题是,提供一种北疆灰漠土土壤有机质遥感监测方法。
本发明解决其技术问题采用的技术方案是,一种北疆灰漠土土壤有机质含量的遥感监测方法,选择裸土期北疆灰漠土土壤的多光谱成像数据,并对数据进行辐射校正、大气校正得到裸土光谱反射率数值,分别计算不同有机质含量土壤的光谱反射率值,获得在可见光和近红外波段范围对灰漠土土壤有机质反射光谱进行反演得到土壤有机质遥感监测。
进一步,以红外波长范围0.845~0.885nm反射率值的倒数变换形式为自变量X,以土壤有机质含量为因变量得到的一元二次回归模型:Y=81.232-66.723X-643.299X2进行反演得到的灰漠土土壤有机质遥感监测模型精度最高,R2为0.688。
进一步,以0.525~0.600(a)和0.630~0.680(b)波长范围的反射率值变换形式R(a)、R(b)得到的二元一次回归模型y=89.3941-18.142Ra-367.92Rb,精度达到0.6,达到对灰漠土土壤有机质遥感监测的精度要求。
进一步,以0.630~0.680(b)、0.845~0.885(c)和2.100~2.300(d)波长范围的反射率值变换形式R(b)、R(c)、R(d),得到的三元一次回归模型y=116.613-120.067R(b)-401.538R(c)+85.952R(d),精度达到0.72,达到对灰漠土土壤有机质遥感监测的精度要求。
本发明利用新型卫星光谱数据对北疆灰漠土有机质含量进行大范围快速监测的方法,监测精度在70%以上,显著提高了卫星数据对灰漠土土壤有机质遥感监测的精度,满足了北疆大田对土壤有机质含量监测的需要。
具体实施方式
下面结合实施例对本发明进一步加以说明。
实施例1
选择裸土期土壤的多光谱成像数据(Landsat 8/OLI数据),并对数据进行辐射校正、大气校正得到裸土光谱反射率数值,分别计算不同有机质含量土壤的光谱反射率值,发现Landsat 8/OLI数据在中心波长为2.2μm处的光谱反射率值达到最高,0.59μm处反射率值迅速下降。表明Landsat 8/OLI数据在可见光和近红外波段范围对灰漠土土壤有机质反射光谱具有强烈的吸收作用,当波长大于2.2nm时对土壤有机质光谱反射作用增强。
通过实验对比分析,以红外波长范围0.845~0.885nm反射率值的倒数变换形式为自变量X,以土壤有机质含量为因变量得到的一元二次回归模型:Y=81.232-66.723X-643.299X2进行反演得到的灰漠土土壤有机质遥感监测模型精度最高,R2为0.688。
以0.525-0.600(a)和0.630-0.680(b)波长范围的反射率值变换形式得到的二元一次回归模型y=89.3941-18.142R(a)-367.92R(b)和0.630-0.680(b)、0.845-0.885(c)和2.100-2.300(d)波长范围的反射率值变换形式得到的三元一次回归模型y=116.613-120.067R(b)-401.538R(c)+85.952R(d)精度较高,分别达到0.6和0.72,达到对灰漠土土壤有机质遥感监测的精度要求。

Claims (4)

1.一种北疆灰漠土土壤有机质含量的遥感监测方法,其特征在于,选择北疆裸土期土壤的中尺度多光谱成像数据,并对数据进行辐射校正、大气校正得到裸土光谱反射率数值,运用地学统计防范,对得到的反射率数值进行变换,获得对土壤机质含量变化骄较为敏感的光谱参数,并进行遥感反演得到土壤有机质含量空间布局图。
2.根据权利要求1所述的北疆灰漠土土壤有机质遥感监测方法,其特征在于,以红外波长范围0.845~0.885nm反射率值的倒数变换形式为自变量X,以土壤有机质含量为因变量得到的一元二次回归模型:Y=81.232-66.723X-643.299X2进行反演。
3.根据权利要求1所述的北疆灰漠土土壤有机质遥感监测方法,其特征在于,以波长范围a:0.525~0.600和波长范围b:0.630~0.680的反射率值R(a)、R(b)变换形式得到的二元一次回归模型y=89.3941-18.142R(a)-367.92R(b)进行反演。
4.根据权利要求1所述的北疆灰漠土土壤有机质含量遥感监测方法,其特征在于,以波长范围b:0.630~0.680、波长范围c:0.845~0.885和波长范围d:2.100~2.300的反射率值R(b)、R(c)、R(d)变换形式得到的三元一次回归模型y=116.613-120.067R(b)-401.538R(c)+85.952R(d)进行反演。
CN201610597972.2A 2016-07-26 2016-07-26 一种北疆灰漠土土壤有机质含量的遥感监测方法 Pending CN106198434A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610597972.2A CN106198434A (zh) 2016-07-26 2016-07-26 一种北疆灰漠土土壤有机质含量的遥感监测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610597972.2A CN106198434A (zh) 2016-07-26 2016-07-26 一种北疆灰漠土土壤有机质含量的遥感监测方法

Publications (1)

Publication Number Publication Date
CN106198434A true CN106198434A (zh) 2016-12-07

Family

ID=57495395

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610597972.2A Pending CN106198434A (zh) 2016-07-26 2016-07-26 一种北疆灰漠土土壤有机质含量的遥感监测方法

Country Status (1)

Country Link
CN (1) CN106198434A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110046415A (zh) * 2019-04-08 2019-07-23 中国科学院南京地理与湖泊研究所 一种时空精细化的土壤有机质含量遥感动态反演方法
CN112116242A (zh) * 2020-09-17 2020-12-22 福州福大经纬信息科技有限公司 一种结合多种遥感指标的裸土变化识别方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120201415A1 (en) * 2011-02-07 2012-08-09 Southern Minnesota Beet Sugar Cooperative Organic matter mapping
CN103528974A (zh) * 2013-09-18 2014-01-22 浙江工业大学 基于光谱特征波长的东北黑土有机质含量测定方法及装置
CN103529189A (zh) * 2013-06-28 2014-01-22 四川农业大学 一种基于定性和定量辅助变量的土壤有机质空间分布预测方法
CN103954586A (zh) * 2014-05-13 2014-07-30 泰顺派友科技服务有限公司 基于11个光谱小波系数的土壤有机质含量快速预测方法
CN105486655A (zh) * 2015-11-23 2016-04-13 中国科学院南京土壤研究所 基于红外光谱智能鉴定模型的土壤有机质快速检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120201415A1 (en) * 2011-02-07 2012-08-09 Southern Minnesota Beet Sugar Cooperative Organic matter mapping
CN103529189A (zh) * 2013-06-28 2014-01-22 四川农业大学 一种基于定性和定量辅助变量的土壤有机质空间分布预测方法
CN103528974A (zh) * 2013-09-18 2014-01-22 浙江工业大学 基于光谱特征波长的东北黑土有机质含量测定方法及装置
CN103954586A (zh) * 2014-05-13 2014-07-30 泰顺派友科技服务有限公司 基于11个光谱小波系数的土壤有机质含量快速预测方法
CN105486655A (zh) * 2015-11-23 2016-04-13 中国科学院南京土壤研究所 基于红外光谱智能鉴定模型的土壤有机质快速检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘焕军 等: "黑土典型区土壤有机质遥感反演", 《农业工程学报》 *
曾远文 等: "采煤矿区表层土壤有机质含量遥感反演", 《水土保持通报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110046415A (zh) * 2019-04-08 2019-07-23 中国科学院南京地理与湖泊研究所 一种时空精细化的土壤有机质含量遥感动态反演方法
CN112116242A (zh) * 2020-09-17 2020-12-22 福州福大经纬信息科技有限公司 一种结合多种遥感指标的裸土变化识别方法
CN112116242B (zh) * 2020-09-17 2022-08-16 福州福大经纬信息科技有限公司 一种结合多种遥感指标的裸土变化识别方法

Similar Documents

Publication Publication Date Title
Shao et al. Stacked sparse autoencoder modeling using the synergy of airborne LiDAR and satellite optical and SAR data to map forest above-ground biomass
Gong et al. Remote estimation of rapeseed yield with unmanned aerial vehicle (UAV) imaging and spectral mixture analysis
US11636672B2 (en) Crop phenology estimation and tracking with remote sensing imagery
Gao et al. Estimating the Leaf Area Index, height and biomass of maize using HJ-1 and RADARSAT-2
Yang et al. Wheat lodging monitoring using polarimetric index from RADARSAT-2 data
dela Torre et al. Remote sensing-based estimation of rice yields using various models: A critical review
Mukherjee et al. A comparison of different regression models for downscaling Landsat and MODIS land surface temperature images over heterogeneous landscape
Useya et al. Exploring the potential of mapping cropping patterns on smallholder scale croplands using sentinel-1 SAR data
Wu et al. Wheat leaf area index prediction using data fusion based on high-resolution unmanned aerial vehicle imagery
Wang et al. LAI retrieval using PROSAIL model and optimal angle combination of multi-angular data in wheat
Domínguez et al. Assessment of the relationship between spectral indices from satellite remote sensing and winter oilseed rape yield.
Tao et al. Soil moisture retrieval from SAR and optical data using a combined model
CN106198434A (zh) 一种北疆灰漠土土壤有机质含量的遥感监测方法
Yuan et al. Research on rice leaf area index estimation based on fusion of texture and spectral information
Sivasankar et al. The potential of multi-frequency multipolarized ALOS-2/PALSAR-2 and Sentinel-1 SAR data for aboveground forest biomass estimation
Zhang et al. Sun-induced chlorophyll fluorescence is more strongly related to photosynthesis with hemispherical than nadir measurements: Evidence from field observations and model simulations
Lavaquiol et al. A photogrammetry-based methodology to obtain accurate digital ground-truth of leafless fruit trees
Li et al. UAV hyperspectral remote sensing estimation of soybean yield based on physiological and ecological parameter and meteorological factor in China
Meng et al. A fusion approach of the improved Dubois model and best canopy water retrieval models to retrieve soil moisture through all maize growth stages from Radarsat-2 and Landsat-8 data
Zhang et al. A novel composite vegetation index including solar-induced chlorophyll fluorescence for seedling rapeseed net photosynthesis rate retrieval
Khunrattanasiri Application of Remote Sensing Vegetation Indices for Forest Cover Assessments
Rekha et al. Remote sensing technology and applications in agriculture
Zhao et al. Soil moisture retrieval in farmland using C-band SAR and optical data
Qiao et al. Application of EOS/MODIS-NDVI at different time sequences on monitoring winter wheat acreage in Henan Province
Youqing et al. Pathway and method of forest health assessment using remote sensing technology

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Wang Qiong

Inventor after: Wang Fangyong

Inventor after: Miao Xinming

Inventor after: Liu Jingde

Inventor after: Chen Bing

Inventor after: Gao Fei

Inventor after: Song Qingping

Inventor after: Dou Zhongjiang

Inventor after: Yang Xiuchun

Inventor after: Xiao Chunhua

Inventor after: Dai Jianguo

Inventor before: Wang Qiong

Inventor before: Miao Xinming

Inventor before: Song Qingping

Inventor before: Dou Zhongjiang

Inventor before: Chen Bing

Inventor before: Gao Fei

Inventor before: Yang Xiuchun

Inventor before: Xiao Chunhua

Inventor before: Dai Jianguo

Inventor before: Wang Fangyong

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20161207